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A B S T R A C T

Visual inspection has been a common practice to determine the number of plants in orchards, which is a labor-
intensive and time-consuming task. Deep learning algorithms have demonstrated great potential for counting
plants on unmanned aerial vehicle (UAV)-borne sensor imagery. This paper presents a convolutional neural
network (CNN) approach to address the challenge of estimating the number of citrus trees in highly dense
orchards from UAV multispectral images. The method estimates a dense map with the confidence that a plant
occurs in each pixel. A flight was conducted over an orchard of Valencia-orange trees planted in linear fashion,
using a multispectral camera with four bands in green, red, red-edge and near-infrared. The approach was
assessed considering the individual bands and their combinations. A total of 37,353 trees were adopted in point
feature to evaluate the method. A variation of σ (0.5; 1.0 and 1.5) was used to generate different ground truth
confidence maps. Different stages (T) were also used to refine the confidence map predicted. To evaluate the
robustness of our method, we compared it with two state-of-the-art object detection CNN methods (Faster R-CNN
and RetinaNet). The results show better performance with the combination of green, red and near-infrared
bands, achieving a Mean Absolute Error (MAE), Mean Square Error (MSE), R2 and Normalized Root-Mean-
Squared Error (NRMSE) of 2.28, 9.82, 0.96 and 0.05, respectively. This band combination, when adopting σ = 1
and a stage (T = 8), resulted in an R2, MAE, Precision, Recall and F1 of 0.97, 2.05, 0.95, 0.96 and 0.95,
respectively. Our method outperforms significantly object detection methods for counting and geolocation. It
was concluded that our CNN approach developed to estimate the number and geolocation of citrus trees in high-
density orchards is satisfactory and is an effective strategy to replace the traditional visual inspection method to
determine the number of plants in orchards trees.

1. Introduction

Unmanned aerial vehicle (UAV) platforms can deliver ultra-high
spatial resolution images, offer versatility in adverse weather condi-
tions and permit a flexible revisit time (Varela et al., 2018). In precision
agriculture, remote sensing data provided by UAV-borne sensors has
assisted farmers in the management of their fields (Deng et al., 2018;
Hunt and Daughtry, 2018). However, different factors (e.g., plant and

ground characteristics, environmental factors) can contribute to the
complexity of an image used for plant field analysis (Leiva et al., 2017).
In addition, different analytical methods have been employed to eval-
uate this complexity better.

The use of Deep-Learning (DL) algorithms have increased in remote
sensing applications (Zhang et al., 2011a,b; Alshehhi et al., 2017; Ball
et al., 2017; Liu et al., 2018; Liu and Abd-Elrahman, 2018; Paoletti
et al., 2018; Ma et al., 2019). DL algorithms based on convolutional

https://doi.org/10.1016/j.isprsjprs.2019.12.010
Received 8 August 2019; Received in revised form 7 November 2019; Accepted 11 December 2019

⁎ Corresponding author.
E-mail address: pradoosco@gmail.com (L.P. Osco).

ISPRS Journal of Photogrammetry and Remote Sensing 160 (2020) 97–106

0924-2716/ © 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09242716
https://www.elsevier.com/locate/isprsjprs
https://doi.org/10.1016/j.isprsjprs.2019.12.010
https://doi.org/10.1016/j.isprsjprs.2019.12.010
mailto:pradoosco@gmail.com
https://doi.org/10.1016/j.isprsjprs.2019.12.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2019.12.010&domain=pdf


neural network (CNN) have presented a high performance for different
types of application in image data from agricultural fields (Kamilaris
and Prenafeta-Boldú, 2018; Wu et al., 2019). These applications involve
the analysis of wheat spikes (Hasan et al., 2018), wheat-ear density
estimation (Madec et al., 2019), rice seedlings in the field (Wu et al.,
2019) and the counting of fruits (Chen et al., 2017), plants (Djerriri
et al., 2018) and trees (Jiang et al., 2017; Li et al., 2017) in crop fields.

Information as to the number of plants in a crop field is essential for
farmers because it helps them estimate productivity, evaluate the
density of their plantations and errors occurring during the seedling
process (Ampatzidis and Partel, 2019). However, counting plants is a
labor-intensive and time-consuming task (Leiva et al., 2017). To ad-
dress this issue, recent researches have investigated the potential of the
CNN approach applied to images obtained from UAV-borne sensors
(Djerriri et al., 2018; Onish and Ise, 2018; Salamí et al., 2019). One type
of agricultural activity that relies heavily on plant counting data is the
tree type (Li et al., 2017).

Different techniques in UAV-borne sensor imagery have been im-
plemented to identify and count trees (Goldbergs et al., 2018). Until
recently, the delineation of different tree rows from UAV data was
consistently used for this task (Jakubowski, et al., 2013; Tao et al.,
2015; Verma et al., 2016). Also, automatic detection and delineation
methods are being used for trees in agricultural fields, such as citrus
plantations (Ozdarici-Ok, 2015). Recently, the implementation of CNN
in UAV image produced high precision results, up to 99.9% (Ampatzidis
and Partel, 2019) and 94.59% (Csillik et al., 2018),

Although studies have given high accuracy in counting citrus trees
using CNN in UAV multispectral images, the current methodology
(Ampatzidis and Partel, 2019; Csillik et al., 2018) is based on object
detection CNNs. These CNNs use rectangles to detect each plant in-
dividually, but their detection and performance decrease as the image
becomes crowded and the plant size decreases (Kang et al., 2019). In
such cases, the boundaries of individual plants may not be sufficiently
visible to detect a rectangle, which may increase the difficulty of dis-
criminating individual plants. Up to the time of writing, the perfor-
mance of CNN to count citrus trees considering a high-density orchard
is still unknown.

This paper addresses the mentioned gap and presents a CNN ap-
proach to cope with the challenge of estimating the number of citrus
trees in highly dense orchards from UAV multispectral images. Our
method not only provides the counting but also the geolocation of each
tree, similar to object detection methods. The rest of this paper is or-
ganized as follows: Section 2 provides a literature review of tree de-
tection and crown delineation; Section 3 shows the study area and
materials used; Section 4 details the proposed method; Section 5 pre-
sents and discusses the experimental results, and; Section 6 concludes
the paper.

2. Related works

Automated tree detection in computer vision presents different
challenges since its performance can be affected by sensor character-
istics and tree complexity (Ozdarici-Ok, 2015). Sensors used in this task
involve UAV-based and satellite systems (Jiang et al., 2017; Varela
et al., 2018; Ozdarici-Ok, 2015; Zhang et al., 2016b) such as, synthetic
aperture radar (SAR) (Ndikumana et al., 2018; Ho Tong Minh et al.,
2018), light detection and ranging (LiDAR) (Tao et al., 2015; Li et al.,
2016; Hartling et al., 2019), and optical imagery (Surový et al., 2018; Li
et al., 2016). Regarding tree complexity, the most common challenges
are crown-type differences, shadow complexity, background effects,
and spectral heterogeneity, which variate according to vegetation
characteristics, planting-method, and landscape conditions (Özcan
et al., 2017). This is problematic since no computer vision technique
can be universally applied, and different types of approaches must be
tested to address specific issues.

In relation to tree delineation literature, studies are generally

separated into two groups: tree detection and crown delineation (Özcan
et al., 2017). For tree detection, the size of the tree and the spatial
resolution of the image are the most important aspects (Larsen et al.,
2011; Nevalainen et al., 2017). In tree crown delineation, different
approaches such as valley following, watershed segmentation, and re-
gion growing are used for boundary extraction (Mathews and Jensen,
2013). In recent years, studies have provided an extensive literature
review on these delineation methods, indicating innovative techniques
emerging in remote sensing analysis (Ozdarici-Ok, 2015; Özcan et al.,
2017).

The traditional techniques used for analyzing images include re-
gression analysis, vegetation indices, linear polarizations, wavelet-
based filtering and machine learning (ML) such as support vector ma-
chine (SVM), k-means, artificial neural networks (ANN), among others
(Ghamisi et al., 2017; Ball et al., 2017; Kamilaris and Prenafeta-Boldú,
2018; Index et al., 2019). As one type of ML techniques, Deep Learning
(DL) is recently gaining attention in both environmental and computer
vision applications (LeCun et al., 2015; Guo et al., 2016). Similar to
ANN; DL uses a deeper neural network with a data hierarchical re-
presentation in various convolutions (Ghamisi et al., 2017;
Badrinarayanan et al., 2017). This results in a larger leaning capability
and improvement in its performance and precision regarding different
applications.

A DL algorithm consists of different components that depend on the
network architectures (Ball et al., 2017). These components consist of
convolutions, fully connected layers, memory cells, gates, pooling
layers, activation functions, encode/decode and others (Lecun et al.,
2015); while most common architectures are recurrent neural networks
(RNN), unsupervised pre-trained networks (UPN), and convolutional
neural network (CNN) (Kamilaris and Prenafeta-Boldú, 2018). For
image and pattern recognition, CNN has presented better performance
overall and is currently been implemented in different remote sensing
approaches (Zhang et al., 2016a). A recent review study indicated that
CNNs appeared in numerous review papers, representing 42% of the DL
techniques used in solving agricultural problems (Kamilaris and
Prenafeta-Boldú, 2018).

Although there are different applications of CNN in remote sensing,
they can be basically divided into three types: spectral information
extraction (Chen et al., 2017; Ghamisi et al., 2017); spatial information
extraction (Zhang et al., 2016a) and; spectral-spatial information ex-
traction (Zhang et al., 2017; Li et al., 2017). The latter presents an
advantage since both spatial and spectral combined information can
significantly improve its accuracy (Paoletti et al, 2018). Likewise, fea-
ture learning is one of the main advantages of CNN, but an adequate
number of datasets must be available to describe the problem (Dijkstra
et al., 2019). For tree detection, the number of features used for test and
validation of a method variate accordingly to the characteristics of the
study (Safonova et al., 2019; Ampatzidis and Partel, 2019; Dijkstra
et al., 2019; Hartling et al., 2019; Csillik et al., 2018; Fan et al., 2018;
Özcan et al., 2017).

In citrus tree counting, CNN has been the subject of recent studies
(Ampatzidis and Partel, 2019; Csillik et al., 2018). These studies either
implemented a simple CNN with a refinement algorithm based on su-
perpixels (Csillik et al., 2018) or a region-based CNN detection algo-
rithm (YOLOv3) (Ampatzidis and Partel, 2019. Both methods utilized
an object detection approach, which performs well when canopies have
a minimum distance between them (Ampatzidis and Partel, 2019).
Other object-based approaches like Faster R-CNN (Ren et al., 2015) and
RetinaNet (Lin et al., 2017) can also be used in tree detection. A pre-
vious study showed these methods potential to discriminated tree
species (Santos et al., 2019). However, until this moment, both methods
were not tested in high-density citrus-tree. The object detection ap-
proach relies on the bright pixels being recognized as the tree, while
dark pixels (shadows) represents the boundary of the tree-canopy
(Özcan et al., 2017). In a high-density orchard, this type of approach is
expected to be less consistent and even problematic, thus decreasing its
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performance (Ampatzidis and Partel, 2019).
To overcome these issues, this study presents a new CNN approach

for counting citrus trees in multispectral images obtained from a UAV-
borne sensor. Its details are described in the following section. Unlike
previous researches which have estimated a rectangle for each plant,
the present method estimates a dense map with the confidence that a
plant occurs at each pixel, which is more suitable for situations with
high plant density. In the experiments, the use of individual spectral
bands or the combination of them was also tested to ascertain which is
more suitable for the proposed task. To evaluate the robustness of our
method, we compared it against object detection CNN methods like
Faster R-CNN and RetinaNet. This analysis conducted here may con-
tribute to optimize the counting of citrus plants while at the same time
indicating the importance of evaluating different spectral regions in a
high-density orchard.

3. Materials and studied area

Fig. 1 shows our studied area with planting lines of a Valencia-or-
ange tree orchard (Citrumelo Swingle rootstock), located in a property
in Ubirajara, SP, Brazil. The area has approximately 70 ha, with Va-
lencia-orange trees planted at a 7 × 1.9 m spacing, with around 752
plants per ha. The UAV flight took place on March 22, 2018, and the
trees were in their vegetative state. The trees were approximately
5 years old and about 3 m high, reaching their maturity and production
stages.

The images were acquired with a Parrot Sequoia camera (©Parrot-
Drones SAS, USA) onboard the eBee SenseFly UAV (©SenseFly, Parrot-
Group, USA), which operates in the four spectral bands of green, red,
red-edge, and near-infrared (NIR), respectively. A total of 37,353 trees
were manually identified in the orthophoto, which was generated using
2,389 images, acquired in the study area. Details describing the

Fig. 1. Characteristics of the study area: (a) location map; (b) band combination displaying a portion of the evaluated area; (c1, c2) examples of planting lines of our
studied site.
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cameras and flight conditions are presented in Table 1.
The orthorectification was performed with Pix4DMapper software

using 9 ground control points (GCPs) surveyed with dual-frequency
GNSS (Global Navigation Satellite System) Leica Plus GS15 receiver, in
RTK (Real-Time Kinematic) mode. The images were radiometrically
corrected using the radiance values of a calibrated reflectance plate,
recorded with the camera prior to the flight. An orthorectified surface
reflectance image was generated, and the tree locations were generated
as point features using the photointerpretation technique.

4. Method

Our approach takes a UAV multispectral image as input and pro-
duces the location of each plant. An image has w × h pixels for each of
the d bands. The problem of plant counting was modeled as a 2D
confidence map estimation problem (Cao et al., 2017). The map is a 2D
representation of the confidence that a particular plant occurs in each
pixel. The proposed approach uses CNN to estimate the 2D confidence
map. We use the ground truth confidence map by placing a 2D Gaussian
kernel at each plant location (manually labeled) to train the CNN.
Sections 3.1 and 3.2 presents a detailed description of this process.

Given the confidence map, predicted and refined by CNN, the lo-
cation of each plant is obtained from the peaks (local maximum), as
described in Section 4.3. If n plants occur in the image, there should be
a peak in the 2D confidence map corresponding to each plant. The steps
of the proposed approach are described in the following sections.

4.1. Generation of 2D confidence maps

Given the locations L = {l1, l2, …, ln} | lk ∈ R2 of n plants in an
image, the ground truth confidence map C is obtained by placing a 2D
Gaussian kernel at each plant location. To obtain C, a confidence map
Ck is first calculated for each plant k ∈ [0, n]. The value of each location
p ∈ R2 in Ck is defined by

=C (p) exp p l
k

k 2
2

2 (1)

where σ is the important parameter controlling the spread of the peak.
Ideally, σ is proportional to the size of the tree canopy. The ground
truth confidence map C is obtained by aggregating the individual maps
via a maximum operator

=C(p) maxC (p)
k

k (2)

Fig. 2 illustrates the confidence map for two images and three values
of σ. The first column shows the images and locations of plants in red
dots. The next three columns present the confidence maps for σ = 0.5,
1.0, 1.5, respectively. The ground truth confidence map is used to train
a CNN.

4.2. Confidence map estimation

Our approach uses CNN to learn a regression function that receives
an image as input and returns a prediction of the confidence map as
shown in Fig. 3. The initial part of the CNN (Fig. 3a) is based on the
VGG16 (Simonyan and Zisserman, 2015). The first two convolutional

layers have 64 filters of size 3 × 3, and they are followed by a 2 × 2
max-pooling layer. The third and fourth convolutional layers have 128
3 × 3 filters, which are also followed by a 2 × 2 max-pooling layer.
Finally, the last two convolutional layers have 256 filters of size 3 × 3.
All convolutional layers use rectified linear units (ReLU) as the acti-
vation function. In this work, the first part receives an image with
256 × 256 pixels with d bands and produces a feature map F with a
dimension of 64 × 64 due to the max-pooling layers.

The feature map F generated by the first part of the CNN is given as
input to T stages that estimate the confidence map. At the first stage
(Fig. 3b), a series of convolutional layers Ω generate the confidence
map Ĉ1 = Ω (F). Ω is a sequence of five convolutional layers: three
layers with 128 filters of size 3 × 3, one layer with 512 filters of size
1 × 1, and one layer with a single filter that corresponds to the con-
fidence map.

In a subsequent stage t (Fig. 3c), the prediction of the previous stage
Ĉt22121 and the feature map F are concatenated and used to produce a
refined confidence map Ĉt = Ψ (F, Ĉt−1). Ψ is a sequence of seven
convolutional layers: five layers with 128 filters of size 7 × 7 and two
layers with filters of size 1 × 1. The stages refine the predictions of the
confidence map over successive steps, t ∈ {1, …, T}.

To train the CNN, the loss function (Equation (3)) is applied at the
end of each stage. This intermediate supervision addresses the van-
ishing gradient problem as shown in (Cao et al., 2017). Since the size of
the predicted confidence map is smaller than the image size, the ground
truth confidence map is generated with the output size of the CNN,
which in this work was 64 × 64 pixels.

=f C(p) C (p)t
p

t

2

2

(3)

where C is the ground truth confidence map generated. Finally, the
overall loss function is given by

=
=

f f
t 1

T t
(4)

4.3. Plant localization from confidence map

The location of the plants is obtained from the peaks (local max-
imum) of the predicted confidence map of the last stage ĈT, which is the
refined confidence map. A location p = (xp, yp) is the local maximum if
ĈT(p) > ĈT(v) for all neighbors v. The 4-connected pixels were con-
sidered as neighbors to every location p = (xp, yp), i.e., v = (xp±1, yp)
or (xp, yp±1).

To avoid noise, the peaks need to be separated by at least δ pixels.
This prevents two plants from being detected very close to each other.
Also, a peak must have confidence greater than a threshold τ. After
preliminary experiments, δ= 3 and τ = 0.2 were used. Fig. 4 shows an
example of the confidence map, where the width and height are the
image dimensions and the blue peaks represent the regions with local
maximum confidence.

4.4. Experimental setup

The orthorectified surface reflectance image was split into 562
patches of 256 × 256 non-overlapping pixels (with approximately

Table 1
Parrot Sequoia camera and eBee SenseFly flight details.

Spectral band Wavelength Bandwidth Spectral resolution 10 bits Flight high 120 m

Green 550 nm 40 GSD - Spatial resolution 12.9 cm Flight time 01:30P.M..
Red 660 nm 40 HFOV 70.6° Weather cloudy/partially-cloudy
Red-edge 735 nm 10 VFOV 52.6° Precipitation 0 mm
Near-infrared 790 nm 40 DFOC 89.6° Wind at 1 to 2 m/s

Ground Sample Distance (GSD) Horizontal Field of View (HFOV); Vertical Field of View (VFOV); Displayed Field of View (DFOC).
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33 × 33 meters). To evaluate the proposed approach, the patches were
randomly divided into training, validation and testing sets made up of
80% (448 patches), 10% (56 patches), and 10% (56 patches), respec-
tively. For training, the stochastic gradient descent (SGD) optimizer was
used with a momentum of 0.9. Hyperparameter tuning was performed
on the learning rate and the number of epochs, using the validation set
to reduce the risk of overfitting. After a minimal hyperparameter
tuning, the learning rate was 0.01 and the number of epochs was 300.

Instead of training the proposed approach from scratch, the weights
of the first part were initialized with pre-trained weights in ImageNet.
Although weights are trained in RGB images from ImageNet, it was
found out that the transfer learning assists the training of the proposed
approach. When the multispectral image had more than three channels,
an additional dimension with random weights in the first layer was
included.

In the experiments, regression metrics are reported measuring the
agreement between the number of annotated and predicted plants. The
metrics were mean absolute error (MAE), mean squared error (MSE),
coefficient of determination (R2), and normalized root-mean-squared
error (NRMSE). Given the number of annotated yj and predicted yj
plants for patch j, MAE calculates the average of the absolute errors,

= =MAE y yn j
n

j j
1

1 . Similarly, MSE estimates the average of the
squares of the errors, = y y( ) .n j

n
j j

1
1

2 NRMSE represents the square

root of the normalized MSE. This metric facilitates the comparison
between methods that work at different scales.

Finally, the coefficient of determination (R2) estimates the correla-
tion between the number of annotated and predicted plants. To assess
the quality of plant detection, we also used classification metrics such
as precision, recall, and F1 calculated according to = +p tp

tp fp , = +r tp
tp fn ,

and F1 = 2 × ×
+

p r
p r

respectively. We defined a true positive (tp) if the
predicted and annotated position of the plant is at less than a maximum
distance d. False-positive ( fp) and false negative ( fn) are calculated
similarly using the distance d. In this work, the distance d was defined
as the size of the tree canopy (120 cm). We compared our method to
two state-of-the-art object detection methods, RetinaNet and Faster R-
CNN.

Training and testing were performed using a desktop computer with
Intel(R) Xeon(R) CPU E3-1270@3.80 GHz, 64 GB memory, and NVIDIA
Titan V graphics card (5120 Compute Unified Device Architecture -
CUDA cores and 12 GB graphics memory). The methods were im-
plemented using Keras-Tensorflow on the Ubuntu 18.04 operating
system. The computational cost for the different number of stages (T)
considering this desktop had already been assessed.

Fig. 2. Example of two images and their corresponding confidence maps for different values of σ.

Fig. 3. CNN used for confidence map prediction. It consists of an initial part (a) to extract a feature map of the input image. This feature map is used as input to the
first stage (b). The concatenation of the feature map and the prediction map of the previous stage is used as input for the remaining stages.
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5. Results and discussion

5.1. Analysis of the proposed method parameters

Table 2 presents the results for different bands and combinations
among them. The objective is to evaluate which bands are most ap-
propriate for plant counting using the proposed approach. These results
were obtained using T = 6 stages and σ = 1.0. Even considering only
one spectral band (e.g., green), the proposed approach already presents
satisfactory results, with MAE, MSE, R2, and NRMSE of 2.51, 10.72,
0.96, and 0.039 respectively. However, a performance increase was
obtained when combining the green, red and NIR bands, giving an
NRMSE of 0.038.

It can also be seen that using the Red-edge band did not imply good
results compared to the other bands. We observed that the Red-edge
band does not have sufficient contrast regarding other targets. Red-edge
parameters such as curve slope and reflectance can be used to differ-
entiate illuminated from shaded canopies (Index et al., 2019), and its
usage is commonly known in remote sensing applications. However, the
evaluated region (735 ± 10 nm) in this study presented a high simi-
larity between other vegetation targets.

The spectral response from the citrus plants in comparison to other
types of land cover (bare soil, shallow grassland, and dense grassland)
in the study area is displayed in Fig. 5. By collecting different samples
(one hundred for each land cover type), it could be seen that the or-
ange-trees and dense grassland presented similar surface reflectance at
the Red-edge region. This may be indicative of the reduced CNN per-
formance for this band. In general, similar studies implemented
common RGB cameras in their analysis (Weinstein et al., 2019; Csillik

et al., 2018; Fan et al., 2018; Varela et al., 2018; Ampatzidis and Partel,
2019), so this type of problem was not perceptible. But the CNN
struggle in the Red-edge band in this study case is an important finding
since it directs towards adversity in using this band for the proposed
task.

When increasing to two bands, the use of the Green and Red bands
obtained the best result, although it did not surpass the results obtained
by the Green band alone. On the other hand, using the Green, Red and
NIR bands obtained the best result. These bands achieved MAE, MSE,
R2, and NRMSE of 2.28, 9.82, 0.96 and 0.05, respectively. Considering
the four bands as input images, the results were satisfactory although it
did not surpass the best result because of the inclusion of the Red-edge
band, which does not help in counting the plants. σ, which is re-
sponsible for generating the ground truth confidence maps used in the
training of the proposed approach, was also evaluated. In these ex-
periments, the green, red and NIR bands that achieved the best results
among all bands in the previous experiment were used. σ has a great
influence on the results, as can be seen from Tables 3 and 4. For small σ
in relation to the tree canopy, results were low as the confidence map
does not cover the plants properly (see Fig. 2b). Instead, σ = 1.5 (large
values) generates ground truth confidence maps whose peaks are close
and can be confused. The best result was obtained for σ = 1.0, which,
in this case, is better fitted to the size of the tree canopy.

Finally, the number of stages that refine the confidence map pre-
dicted by the proposed approach was evaluated. As expected, the re-
sults improve as the number of stages is increased. This shows that the
refinement of the confidence map helps in counting the plants. The

Fig. 4. Example of the confidence map in three dimensions.

Table 2
Results obtained with different bands and combinations.

Bands MAE MSE R2 NRMSE

Green 2.51 10.72 0.96 0.039
Red 2.74 13.08 0.95 0.046
Red-edge 3.65 40.56 0.85 0.077
NIR 2.98 18.11 0.93 0.052
Green, Red 2.40 13.32 0.95 0.046
Green, Red-edge 2.67 15.68 0.94 0.050
Green, NIR 2.93 16.09 0.94 0.057
Red, Red-edge 2.37 15.18 0.94 0.050
Red, NIR 2.82 17.35 0.93 0.052
Red-edge, NIR 2.96 17.74 0.93 0.052
Green, Red, Red-edge 2.65 15.67 0.94 0.050
Green, Red, NIR 2.28 9.82 0.96 0.038
Green, Red-edge, NIR 2.89 20.09 0.92 0.057
Red, Red-edge, NIR 2.68 14.44 0.95 0.047
Green, Red, Red-edge, NIR 2.56 13.47 0.95 0.046

Fig. 5. Spectral behavior of different types of land cover commonly present in
the study area.
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proposed approach achieved its best result with eight stages (T = 8).
The results show that the proposed approach provided accurate

results for counting plants and can be used to automate this task. This
performance approximates from the accuracy obtained in lesser diffi-
cult conditions, such as a high-spaced citrus plantation (Ampatzidis and
Partel, 2019; Csillik et al., 2018). A visually similar density condition
was evaluated in a different crop type (Fan et al., 2018), which achieve
93% accuracy on tobacco plant detection using CNN. One advantage of
this approach is that it was conducted multispectral imagery, while
previous studies used LIDAR and hyperspectral data (Wu et al., 2016;
Wu and Prasad, 2018). Regardless, it’s possible that the presented ap-
proach accuracy could be improved if three-high is inserted in a CNN
layer.

5.2. Qualitative results

To analyze the results qualitatively, a region around the annotated
locations was considered to visualize the proximity of the prediction
and the center of the plants. Fig. 6 shows the results using the best
configuration (three bands, σ = 1.0, and T = 8). The predicted loca-
tions are represented by red dots in this figure and the plant regions are
represented by yellow circles whose center is the location annotated by

the specialist. It can be seen that the proposed approach can correctly
predict most plant locations, with a 2.05 trees error per image, so that
they are aligned with the annotated locations and within the plant re-
gion.

The results show that planting lines are also identified without the
need for any annotation or additional procedure. Identifying planting
lines is also an important feature in remote sensing of agricultural fields
since it can easily detect missing trees and help optimize crop man-
agement (Dian Bah et al., 2018; Oliveira et al., 2018). Remote sensing
approaches were already conducted in canola fields (Hassanein et al.,
2019), tomato crops (Ramesh et al., 2016), vineyards (Puletti et al.,
2014) and others, but none has been found for citrus trees orchards.
Nonetheless, some difficulties were observed considering the char-
acteristics of the area investigated here. Fig. 7 shows examples of the
main challenges faced by our approach.

It can be seen that far-center predictions occur in short planting
lines (2–4 plants) or when much of the plant canopy is occluded.
However, even in images where these cases occur, the proposed ap-
proach is capable of predicting the location of the vast majority of
plants. Even with a fixed plantation line size, the area had some missing
trees that were previously removed due to health conditions. But, dif-
ferent plantation lines with spaced tree locations were identified by the

Table 3
Evaluation of the σ responsible for generating ground truth Confidence maps to
train the proposed approach.

σ MAE MSE R2 NRMSE

0.5 5.11 58.86 0.87 0.098
1.0 2.28 9.82 0.96 0.038
1.5 3.56 25.63 0.90 0.064

Table 4
Evaluation of the number of stages t used to refine the Confidence map pre-
dicted by the proposed approach.

Stages (T) MAE MSE R2 NRMSE

1 3.61 21.05 0.92 0.057
2 2.86 17.39 0.93 0.052
4 2.56 14.42 0.95 0.047
6 2.28 9.82 0.96 0.038
8 2.05 8.75 0.97 0.036
10 2.21 11.79 0.96 0.043

Fig. 6. Comparison of predicted locations (red dots) and plant regions in two images. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Examples of prediction errors in our approach.
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CNN method without difficulty (Fig. 8). This indicates that our ap-
proach is also suitable for estimating isolated trees with different plant
spacing.

5.3. Comparison with object detection methods

The proposed approach was compared with recent object detection
methods such as Faster R-CNN and RetinaNet. To train the object de-
tection methods, we used the plant position (x, y) as the center of the
rectangle. The size of the rectangle corresponds to the size of the plant
canopy (240 cm). We considered Green, Red, and NIR bands for this
comparison. Similarly, an inverse process was used during the testing
stage, obtaining the plant position from the center point of the rectangle
predicted by the RetinaNet and Faster R-CNN methods.

Table 5 shows the results obtained by all methods using MAE,
Precision, Recall, and F1 metrics. We can see that the proposed ap-
proach achieved better results for all metrics with 0.95 and 0.96 for
Precision and Recall, respectively. In addition, the proposed approach
achieved an MAE of 2.05 while RetinaNet and Faster R-CNN provided
values of 30.87 and 37.85, respectively. RetinaNet and Faster R-CNN
achieved only 0.74 and 0.54 for the F1 score, against 0.95 of the pro-
posed approach. These results indicate that the proposed approach can
predict citrus trees with high precision, having a very low number of
false detections. The results of object detection methods are consistent
with recent works for other high-density object detection applications.
Goldman et al. (2019) and Hsieh et al. (2017) showed that these
methods do not present satisfactory results when the rectangles have a
high intersection, that is, a high density of objects.

Fig. 9 shows the visual results of the predictions generated by the
three methods in two images. We can see that our approach has few
errors in detecting plants. Faster R-CNN is the most misleading method,
failing to identify plants in the images, while RetinaNet predicts more
plants than those in the image, generating many false predictions. Note

that the Precision reflects this behavior, being lower for RetinaNet than
for Faster R-CNN since the number of false positives is higher for Re-
tinaNet.

5.4. Computational cost

Table 6 presents the computational cost of the proposed approach
using different values for the number of stages, which is the main
parameter influencing the size of the CNN. This table presents the
average time in seconds to process an image with 256 × 256 pixels and
three bands, in addition to the estimated number of images per second
(FPS) that the proposed approach is capable of processing. The number
of bands does not change the cost significantly since the only change is
one more dimension in the first layer.

Still, one observation that must be noted is that, by increasing the
number of stages, the computational cost also increases. Using one
stage, the proposed approach is capable of processing approximately
258 images per second, with a cost of 0.0039 s per image. Considering
the best result that was obtained with eight stages (Table 4), the pro-
posed approach is able to process approximately 25 images per second.
The speed/accuracy trade-off can be considered in the choice of the
number of stages. If an application needs to run in real-time with more
than 30 images per second, then four or six stages is a good alternative.

6. Concluding remarks

This paper presented a CNN approach to estimate the number and
location of citrus trees from UAV multispectral imagery. Our results
archived 0.97 in R2 and 0.036 trees in NRMSE. The combination of the
spectral bands green, red and near-infrared produced better perfor-
mance than the use of individual spectral bands. Our method also de-
monstrated reasonable computational cost for embedded real-time ap-
plications. One of the advantages of our approach is in estimating a
dense map to detect individual trees in high-density plantations, rather
than the object-detection approach using rectangles to represent trees.
The comparison against object-based methods returned a higher
Precision (0.95) and lower MAE (2.05) for our method. This approach is
recommended for the counting of citrus trees and we hoped that new
studies for different crops will utilize and evaluate it.

Fig. 8. Examples of spaced trees correctly identified with the proposed approach.

Table 5
Comparison of the proposed approach with recent object detection methods.

Methods MAE Precision Recall F1

RetinaNet 30.87 0.62 0.92 0.74
Faster R-CNN 37.85 0.86 0.39 0.54
Proposed approach 2.05 0.95 0.96 0.95
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