
Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

Land-cover classification of multispectral LiDAR data using CNN with
optimized hyper-parameters
Suoyan Pana, Haiyan Guanb,c,⁎, Yating Chenb, Yongtao Yud, Wesley Nunes Gonçalvese,
José Marcato Juniorf, Jonathan Lig
a School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, JS 210044, China
b School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, JS 210044, China
c Suzhou Xiaoqi Information Technology Co., Ltd., 162 Renmin South Road, Chengxiang, Taicang, Jiangsu, JS 215400, China
d Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian 223003, China
e Faculty of Computer Science and Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Brazil
f Faculty of Engineering, Architecture and Urbanism, and Geography, Federal University of Mato Grosso do Sul, Brazil
g Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON N2L 3G1, Canada

A R T I C L E I N F O

Keywords:
Multi-spectral LiDAR
CNN
Land-cover classification
Hyper-parameters

A B S T R A C T

Multispectral LiDAR (Light Detection And Ranging) is characterized of the completeness and consistency of its
spectrum and spatial geometric data, which provides a new data source for land-cover classification. In recent
years, the convolutional neural network (CNN), compared with traditional machine learning methods, has made
a series of breakthroughs in image classification, object detection, and image semantic segmentation due to its
stronger feature learning and feature expression abilities. However, traditional CNN models suffer from some
issues, such as a large number of layers, leading to higher computational cost. To address this problem, we
propose a CNN-based multi-spectral LiDAR land-cover classification framework and analyze its optimal para-
meters to improve classification accuracy. This framework starts with the preprocessing of multi-spectral 3D
LiDAR data into 2D images. Next, a CNN model is constructed with seven fundamental functional layers, and its
hyper-parameters are comprehensively discussed and optimized. The constructed CNN model with the optimized
hyper-parameters was tested on the Titan multi-spectral LiDAR data, which include three wavelengths of
532 nm, 1064 nm, and 1550 nm. Extensive experiments demonstrated that the constructed CNN with the op-
timized hyper-parameters is feasible for multi-spectral LiDAR land-cover classification tasks. Compared with the
classical CNN models (i.e., AlexNet, VGG16 and ResNet50) and our previous studies, our constructed CNN model
with the optimized hyper-parameters is superior in computational performance and classification accuracies.

1. Introduction

Multi-spectral LiDAR (Light Detection And Ranging), as a new type
of active remote sensing technology, has been widely used in land-cover
classification, vegetation mapping, phreatic water depth measurement,
and complex terrain survey (Scaioni et al., 2018; Yan et al., 2018;
Ekhtari et al., 2018). Multi-spectral LiDAR system can provide point
clouds coming from multiple channels with different wavelengths.
More terms, such as multi-wavelength and multi-channel, are change-
ably used in the field of laser scanning. Airborne multi-spectral LiDAR
data provide relatively complete and consistent spectral and spatial
geometric information, contributing to land-cover and land-use

classification (Bakuła et al., 2016; Matikainen et al., 2017; Shaker et al.,
2019). Wichmann et al. (2015) studied the spectral patterns of some
land covers in multi-spectral LiDAR data. Ekhtari et al. (2018) de-
monstrated that the recorded intensities of laser returns together with
spatial metrics calculated from the three-dimensional locations of laser
returns are sufficient for classifying the point cloud into ten distinct
land cover classes, including grass, trees, two classes of soil, four classes
of pavement, and two classes of buildings. Pan and Guan (2018), using
multi-spectral LiDAR data, investigated a deep Boltzmann machine
(DBM) model based high-level feature representation and two machine
learning based low-level feature extraction and selection methods
(principal component analysis (PCA) and random forest (RF)) in land

https://doi.org/10.1016/j.isprsjprs.2020.05.022
Received 30 November 2019; Received in revised form 24 May 2020; Accepted 27 May 2020

⁎ Corresponding author at: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, JS 210044,
China.

E-mail addresses: guanhy.nj@nuist.edu.cn (H. Guan), wesley.goncalves@ufms.br (W. Nunes Gonçalves), jose.marcato@ufms.br (J. Marcato Junior),
junli@uwaterloo.ca (J. Li).

ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

0924-2716/ © 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09242716
https://www.elsevier.com/locate/isprsjprs
https://doi.org/10.1016/j.isprsjprs.2020.05.022
https://doi.org/10.1016/j.isprsjprs.2020.05.022
mailto:guanhy.nj@nuist.edu.cn
mailto:wesley.goncalves@ufms.br
mailto:jose.marcato@ufms.br
mailto:junli@uwaterloo.ca
https://doi.org/10.1016/j.isprsjprs.2020.05.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2020.05.022&domain=pdf

cover classification. These studies show that, compared with single-
wavelength LiDAR data and optical images, multi-spectral LiDAR data
are more suitable for conventional land-cover classification and map-
ping.

Currently, by using multi-spectral LiDAR data, many land-cover
classification studies have been increasingly presented (Fernandez-Diaz
et al., 2016; Hopkinson et al., 2016; Miller et al., 2016; Morsy et al.,
2017; Chen et al., 2018). These land-cover classification methods are
generally performed on either three-dimensional (3D) LiDAR points
(Kumar et al., 2019b) or two-dimensional (2D) feature images inter-
polated from 3D points (Teo and Wu, 2017). Matikainen et al. (2017)
demonstrated that the land-cover classification accuracies of 3D multi-
spectral LiDAR points were better than those considering 2D inter-
polated feature images. However, with the development of LiDAR
technologies, higher point density has been achieved, which implies in
heavier computational burden when land-cover classification is per-
formed using 3D LiDAR points (Kang and Yang, 2018). Therefore,
converting 3D airborne multi-spectral LiDAR points into 2D feature
images has been shown as an effective way to obtain land-cover maps
by using established image processing algorithms (e.g., maximum
likelihood, support vector machine, decision tree, and random forest)
(Pan et al., 2019; Wang et al., 2019a, 2019b). Moreover, the increase in
point density guarantees the details of land covers in 2D interpolated
feature images.

Although the aforementioned methods have provided key technol-
ogies for land-cover classification by using multi-spectral LiDAR data,
all of them conduct analysis based on traditional low-level LiDAR me-
trics (e.g., variance, entropy, and skewness), which are incapable of
extracting comprehensive, high-level features from multi-spectral
LiDAR data. Deep learning methods, which focus on how to increase the
layer depth of the network architectures and reduce the fitting para-
meters of each layer, are capable of extracting deep, high-level features
from the original data, thereby achieving satisfactory classification
accuracy and better performance (Kumar et al., 2019a; Liu et al., 2019).
In conventional deep learning architectures, the convolutional neural
network (CNN) has gained its reputation in image processing (Wang
et al., 2019a, 2019b; Manyala et al., 2019). CNN, a multi-layer deep
learning model inspired by biology, uses a single neural network from
training to prediction. The CNN was first introduced in (Fukushima,
1988), improved by Lecun et al. (1998), as well as refined and sim-
plified posteriorly in (Tivive and Bouzerdoum, 2005; Li et al., 2006). A
CNN uses stacked convolution kernels to learn spectral and spatial in-
formation from images, contributing to extract high-level abstract fea-
tures. With the deepening of the neural network, the CNN implements
classification tasks by establishing a connection between input samples
and output labels. Due to the availability of large-scale training data
and the implementation of high-performance workstations, the CNN
outperforms some traditional neural network methods (e.g., Auto En-
coder, Sparse Coding, and Restricted Boltzmann Machine) in many vi-
sion-related tasks, such as image classification (Jaswal et al., 2014),
target detection (Soon et al., 2018), scene marking (Rangel et al.,
2018), and face recognition (Hansen et al., 2018). Moreover, the CNN is
also successfully applied to some non-vision-related tasks, such as
speech recognition (Cai and Liu, 2016) and text classification (Zhu
et al., 2018).

Recently, CNN has made many breakthroughs in high-resolution
remote sensing image classification (Xu et al., 2018; Lu et al., 2018).
Some CNN-based methods achieved better classification results by
piling up a large number of repeated functional layers. Li et al. (2019)
designed a deep CNN, with multiple layers, including four convolu-
tional layers with 2 × 2 convolution kernels, a maximum pooling layer
with 2 × 2 pooling windows, and two fully-connected layers. Experi-
mental results demonstrated that Li’s model outperformed support
vector machine (SVM) in the Indian Pines and Salina dataset. Never-
theless, due to the relative complexity of the model, it took longer time
to train. Moreover, Zhang et al. (2018a), Zhang et al. (2018b) proposed

an innovative object-based CNN (OCNN) method, which combined a
OCNN128 model (a CNN model with the input size of 128 × 128 and
eight layers of alternating convolutional and pooling layers) and a
OCNN48 model (a CNN model with the input size of 48 × 48 and six
layers of alternating convolutional and pooling layers), to label general
and linearly-shaped objects in complex urban environments. Experi-
mental results showed that, compared to the OCNN48 model, although
the OCNN128 model achieved the classification accuracy improvement
of about 3.68%, it required more 1.03 h. Furthermore, to automatically
classify mobile laser scanning (MLS) data, Kumar et al. (2019b), pre-
sented a single CNN (SCN) model (including an input layer, seven
convolutional layers, five fully-connected layers, and an output layer)
and a multi-faced CNN (MFC) model, which used multiple facets of an
MLS sample as inputs to different SCNs for providing additional clas-
sification information. Experiments conducted on the KITTI dataset
demonstrated that the overall accuracy and Kappa index reached 86.0%
and 0.813 for SCN, 94.3% and 0.924 for MFC, respectively. Although
the classification accuracies of the MFC model were obviously higher
than those of the SCN model, the training time of the MFC model was
also correspondingly longer than that of the SCN model due to the more
complex CNN architecture of the MFC model. Therefore, to trade off the
land-cover classification accuracy and computational efficiency, it is
necessary to build an appropriate CNN architecture with the minimum
functional layers, rather than a very complex architecture.

Although the CNN model and its variants have proven their feasi-
bility and applicability in hyper-spectral data classification tasks
(Guidici and Clark, 2017; Li et al., 2018a, 2018b), even in LiDAR data
processing (Gao et al., 2018; He et al., 2019), they are very rarely ap-
plied to multi-spectral LiDAR land-cover classification tasks. Not to
mention that some CNN parameters have not been thoroughly studied
for land-cover classification. The CNN parameters are divided into
hyper-parameters and non-hyper-parameters. Non-hyper-parameters
are continuously adjusted during the model training stage. Hyper-
parameters (e.g., dimension, input size, convolution kernel size,
number of convolution kernels, pooling window size, and learning rate)
determine the model type, which have a significant impact on the
training and final predictions. Therefore, it is highly complicated and
time consuming to build a powerful CNN model and find its appropriate
parameters for land-cover classification tasks. However, at present,
there are no clear rules to optimize the CNN hyper-parameters, and
they are mostly determined by the experience and intuition of a de-
signer (LeCun et al., 1998; Guo et al., 2016; Unnikrishnan et al., 2018).
For example, for the convolution kernel size, all layers were set to the
same value (e.g., 5) in the LeNet-5 architecture, while in the AlexNet
and ZFNet models, different convolutional layers were set to different
values. Dahou et al. (2019) used a differential evolution (DE) algorithm
to optimize five CNN parameters, namely convolution kernel size,
number of convolution kernels, number of neurons in fully-connected
layer, and dropout rate. Experimental results showed that the DE-CNN
model with the five optimal parameters achieved higher classification
accuracy and cost less time than the traditional CNN models. Bergstra
and Bengio, (2012) stated that, to obtain relatively high classification
accuracy and computational efficiency, it is very important to test
various values and select the most appropriate values for the CNN
hyper-parameters.

Thus, to decrease computational complexity in the multi-spectral
LiDAR land-cover classification task, we construct a light CNN model
with seven fundamental layers. Next, to obtain high classification ac-
curacies, we conduct an exploratory study on the CNN model to explore
and discuss its hyper-parameters using the Teledyne Optech’s Titan
multi-spectral LiDAR data. In summary, the main contributions of our
multi-spectral LiDAR land-over classification architecture are high-
lighted as follows:

(1) Our CNN model constructed for the multi-spectral LiDAR land-
cover classification task is composed of only commonly used

S. Pan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

242

functional layers, rather than piling up by a large number of re-
peated functional layers, contributing to the improvement of com-
putational performance.

(2) By using a control variable method, the hyper-parameters of the
constructed CNN model are discussed and optimized to provide
guidelines for multi-spectral LiDAR land-cover classification.

The rest of this paper is organized as follows. Section 2 details the
Titan multi-spectral LiDAR data, followed by data pre-processing.
Section 3 describes our CNN model for the multi-spectral LiDAR land-
cover classification task. Section 4 conducts a set of experiments in-
cluding hyper-parameter optimization and algorithm comparison. Fi-
nally, the concluding remarks are presented in Section 5.

2. Data and data preprocessing

2.1. Multi-spectral LiDAR test data

As shown in Fig. 1, the study area is a small town located in

Whitchurch-Stouffville, Ontario, Canada with an area of
2,052 m × 1,566 m and with the center position at latitude and
longitude of 43°58′00″, 79°15′00″, respectively. The area contains a
rich variety of objects, such as roads, trees, grass, soil, and water, which
contribute to the implementation of our land-cover classification study.

The experimental data were collected using an airborne Titan multi-
spectral LiDAR system, produced by the Teledyne Optech. The detailed
specifications of the multi-spectral LiDAR system are presented in
Table 1. The acquired multi-spectral LiDAR data, containing nineteen
vertically intersecting flights, cover an area of about 25 square

Fig. 1. Illustration of the study area.

Table 1
Specifications of the Titan Airborne System.

Parameters Channel 1 Channel 2 Channel 3

Wavelength(nm) 1550 (SWIR) 1064 (NIR) 532 (GREEN)
Deflection Angle(°) 3.5 (forward) nadir 7 (forward)
Flight Altitude(m) ~1000 ~1000 ~1000
Point Density(/m2) 3.6 3.6 3.6

S. Pan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

243

kilometers. Radiometric correction should be applied to the Titan
multispectral LiDAR data (Briese et al., 2012) before we test them on
land-cover classification tasks. Note that, in this study, because the
system parameters and trajectories were unavailable, the three chan-
nels of intensities were directly used from the LiDAR outputs (as a file
format of ASPRS LAS files) without intensity calibration. Iterative clo-
sest points (ICP) was used to roughly register these strips. Similarly,
without control points or reference points, the geometric quality were
not statistically reported. Thus, we selected the study area from the one
strip for assessing our land cover classification method.

To improve the quality of training sample selection and classifica-
tion accuracy evaluation, a high-resolution remote sensing image cor-
responding to the study area from Google Earth was used (See Fig. 1).

2.2. Data Pre-processing

The Titan multi-spectral LiDAR system generates three independent
point clouds in three channels, i.e., 532 nm, 1064 nm, and 1550 nm. To
improve the efficiency of point cloud data processing, especially for the
Titan multi-spectral LiDAR data, we first merged the three independent
point clouds into a single point cloud, where each point contains three
spectral wavelengths, and then interpolated the merged point cloud
into a set of 2D raster images, considering the elevation and multi-
wavelength intensities. The specific data pre-processing is briefly de-
scribed as follows. Specifically, each of the three single-wavelength
point clouds was taken as the reference data, in which each point was
processed to find its neighbors in the other two wavelengths of point
clouds using a nearest neighbor searching algorithm. Because the
average point density of single wavelength was about 3.6 points/m2,
the searching distance in this study was set to 1.0 m to obtain sufficient
points in the two wavelengths of point clouds. To obtain the intensities
of the two other wavelengths, an inverse-distance-weighted (IDW) in-
terpolation method was used. If there were no neighboring points in the
one of two wavelengths, the intensity value of this wavelength was set
to zero. As such, three wavelengths were merged into a single, multi-
spectral point cloud with higher point density than that of single wa-
velength. To efficiently perform feature extraction in land cover clas-
sification, through the IDW interpolation method, the merged multi-
spectral LiDAR data were rasterized into 2D grid data sets, by using
elevation and intensities from different single wavelength and the
merged multi-wavelength. Based on the fact that the average point
density of each wavelength was 3.6 points/m2, the resolution of the 2D
image was set to 0.5 m. Fig. 2 (a) and (b) show the elevation and multi-
spectral images of the merged point cloud, respectively. To improve the
radiometric quality, the multi-wavelength intensities have been nor-
malized and performed relative radiometric correction.

3. Method

3.1. Preliminaries

A CNN consists of a series of convolutional, pooling, and nonlinear
operations. The CNN, describing the mapping relationship between
different functional layers, contains two important characteristics: local
connectivity and shared weights. Local connectivity simplifies the CNN
model by limiting the number of connected neurons. Shared weights
further reduce the parameters of the model and finally simplify the
model by setting the same connected weights between some neurons in
the same layer. In the following, some basic modules mentioned in the
CNN model will be introduced.

Convolutional layer: the convolutional layer, the core part of a CNN
model, uses convolution kernels to extract features from input images
via a set of convolutional operations. The convolutional operations
convert a local receptive field (the connected region of any convolution
kernel on the input image) into the pixels of the next layer.

Pooling layer: the pooling layer mainly performs down-sampling to
further reduce the dimension of the feature maps and increase the ro-
bustness of feature extraction. To reduce the dimension, the pooling
layer combines a local receptive field into a single neuron. Generally,
there are three forms of pooling (e.g., maximum pooling, mean pooling,
and random pooling).

Fully-Connected layer: the fully-connected layer mainly functions as
an integrator and a classifier. The integrator means that the fully-con-
nected layer integrates the image features in the feature maps through
multiple convolutional layers and pooling layers to obtain high-level
meaning of the features. The classifier means that the feature map
generated by the convolutional layers is mapped to a fixed-length fea-
ture vector, and then the feature vector is used to calculate the score of
the class to which it belongs and the error between the output and real
values.

Batch normalization layer: the batch normalization layer normalizes
activations of a previous layer at each batch to keep the mean activa-
tion value close to 0 and the standard deviation activation value close
to 1. It can greatly increase the convergence speed, reduce over-fitting,
decrease the insensitivity of initial weights, and further allow us to use
a higher learning rate (Li et al., 2018a, 2018b).

Flatten layer: the flatten layer, transforming the input from multi-
dimensional space to one-dimensional space, is commonly used for
conversion from a convolutional layer to a fully-connected layer.

Dropout layer: dropout operation randomly sets the neuron value to
0 with a probability of 50% in each training batch. By this operation,
the CNN becomes less sensitive to specific sets of neurons, which helps
to reduce the interaction among hidden layer neurons, avoids the over-
fitting phenomenon, and improves the generalization ability of the

Fig. 2. 2D raster images, (a) elevation image, and (b) multi-spectral LiDAR image with three wavelengths.

S. Pan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

244

model (Srivastava et al, 2014).

3.2. Constructed CNN model

In this subsection, our CNN architecture is first described. Next, the
learning algorithm is introduced to train the constructed CNN via an
end-to-end training strategy. Finally, the inference stage is presented to
obtain the land-cover classification results by using the Titan multi-
spectral LiDAR data.

3.2.1. Our CNN architecture
For the multi-spectral LiDAR land-cover classification task, we de-

sign a CNN model which contains only seven fundamental hidden
layers, namely, a convolutional layer, a pooling layer, two fully-con-
nected layers, and three other functional layers (i.e., the batch nor-
malization layer, the flatten layer, and the dropout layer), as shown in
Fig. 3.

In the convolutional layer, the convolutional operation is calculated
as follows:

=y n n n(, , ,)m1 2

= = =
x k k k f n k n k n k(, , ,) (, , ,)

k k k
m m m1 2 1 1 2 2

m1 2

(1)

wherem, x , f , and y are the dimension of the model, the input data,
the local receptive field, and the output features, respectively. m can be
set to 1, 2, and 3. For example, m = 1 means a 1D CNN model, in-
dicating that the convolutional operation in this model moves only
along one direction. To label each pixel, the depth direction is selected
as the convolutional direction as shown in Fig. 4(a). Thus, this con-
volutional operation focuses on learning the relationships among only
the input layers of each pixel. m= 2 represents a 2D CNN model, where
the convolutional operation moves in two directions (the height and

width directions) as shown in Fig. 4(b). Therefore, the 2D CNN model
focuses attention on the correlations among pixels of the input layer. In
a 3D CNN, m equals to 3, where the convolutional operation moves
along all three directions (the height, width, and depth directions,
where the depth is set to one in this study) as shown in Fig. 4(c). Thus, a
3D CNN model can better study both the relationships among the input
layers of each pixel and the correlations among pixels of the input layer.

As shown in Fig. 4, CNN models with different dimensions have
different convolutional directions. In order to obtain strong features
from the input data fairly and effectively, it is necessary to adjust the
input size in different dimensions. In the 1D CNN model (m = 1), be-
cause the convolution kernel moves along only one direction, the input
size is defined as (si × si, W), where si must be an odd number and
greater than one to maintain the same pixel values of the input data. In
the 2D CNN model, the input size is defined as (si, si, W) to use the
neighboring information of the pixel to be processed. In the 3D CNN
model, since the convolution kernel moves in three directions, the input
size is defined as (W, si, si, 1), where W is the number of the raster
dataset bands.

In the convolutional layer, convolution kernels are used to extract
features from the input data. The convolution kernel size corresponds to
the size of the local receptive field (f). The larger the convolution kernel
size (the larger the value of f), the heavier the computational burden.
The convolution kernel structures vary with the CNN dimensions. Note
that the convolution kernel sizes are set to be odd and greater than one
in the height, width, and depth dimensions, as well as the convolution
kernel sizes in the height and width dimensions are set to the same
value.

The convolution kernel sizes in the 1D and 2D CNN models are
denoted as (sc) and (sc, sc), respectively. The hyper-parameter, sc is the
kernel size in the height or width dimensions. The convolution kernel
structure for the 3D CNN model is defined as (sc, sc, sc’), where sc’ is the
depth kernel size and the discussion of sc’ is consistent with that of sc.
Moreover, the number of convolution kernels (nc) determines the

Fig. 3. Architecture of the constructed CNN model.

Fig. 4. Different convolutional directions of CNN with different dimensions (m), (a) m = 1, (b) m = 2 and (c) m = 3.

S. Pan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

245

quantity of filters used in the convolutional layers and the number of
feature images derived from these layers.

To ensure nonlinearity in the convolutional layer, we use Rectified
Linear Unit (ReLU) as the activation function. The ReLU activation
function (Cao et al., 2017) is formulated as follows:

= =y x xReLU() max(0,) (2)

The ReLU activation function has the characteristics of uni-
directionality and one-end saturation. It introduces sparsity into the
CNN model to effectively handle disappearance of the gradient, thus
greatly improving the convergence speed of the CNN model. Therefore,
to enhance the feasibility and efficiency of the training process in the
CNN model, we apply the ReLU activation function to the model (Cao
et al., 2017).

The pooling layer is a key feature extraction operation in our CNN
architecture. To reserve the strongest features, this study uses max-
imum pooling operations to down-sample the feature maps, by taking
the maximum value of features in a specified window in each feature
map. The pooling window size determines the amount of feature in-
formation involved and the computational complexity of the training
model. Like the convolution kernel size described above, the pooling
window size in 1D, 2D and 3D CNN models are defined as (sp), (sp, sp),
and (sp, sp, sp’), respectively, where the hyper-parameter, sp is the
window size in the height or width dimensions and sp’ is the depth
window size. Likewise, the discussion of sp’ is consistent with that of sp.

As shown in Fig. 3, our CNN model includes two fully-connected
layers: a dense layer and a softmax layer. The dense layer generates a
1D feature vector for further processing, and then roughly classifies the
features extracted by the convolutional layer and down-sampled by the
pooling layer. The number of the dense units (nd) initially determines
the coarse classification effect of the CNN model, thus it is necessary to
discuss the hyper-parameter, nd, in the dense layer. The softmax layer
returns the original values of predictions. Because there are six types of
land covers (building, tree, road, grass, soil, and water) in the study
area as shown in Fig. 1, six neurons are designed in this layer, for the
training set {(x1, y1), (x2, y2),…, (xn, yn)}, where yiis the sample label,
yi∈{1,2,…,6}. When the input value xi is given, the model calculates a
k-dimensional vector (k = 6) as follows:

=

=
=

=

=
=

O x

p y x
p y x

p y k x
e

e
e

e

()

(1| ;)
(2| ;)

(| ;)

1
i

i i

i i

i i
j
k x

x

x

x1
j
T i

T i

T i

k
T i

1

2

(3)

where = ej
k x

1
j
T i normalizes the probability distribution to add all

probability values up to 1, =[1, 2,……, k] is the parameter that the
CNN model needs to be optimized, and the output value of each node
describes the possibility of an input pixel belonging to a land cover.
Therefore, the softmax layer provides the relative measurement of the
likelihood that the input pixel falls into each target class (Vamplew
et al., 2017).

3.2.2. Learning algorithm
For a CNN model, the parameters are divided into non-hyper-

parameters and hyper-parameters (commonly including dimension,
input size, convolution kernel size, number of convolution kernels,
pooling kernel size, and learning rate, etc.). The non-hyper-parameters,
referred to the weights and biases of the hidden layers, are constantly
adjusted during the training process. The CNN training process aims to
obtain the best combination of the model parameters. The most com-
monly used model training method is the Back Propagation algorithm,
also known as BP algorithm.

The BP algorithm in this study can be divided into three steps:

(1) Forward Propagation, where the sample data are input to the net-
work, and then transferred from the input layer to the output layer

through layer-by-layer calculation to obtain the corresponding
output results.

(2) Partial Derivative Calculation. The error term i
l() of neuron i in the

l-th layer is inversely calculated, which represents the partial de-
rivative of the loss function E of the network to the output value of
the neuron.

(3) Parameters Update. According to the optimization algorithm, the
gradient of each neuron parameter is calculated, and then each
parameter is updated.

Let denote {(x1, y1), (x2, y2), …, (xn, yn)} as the training set, where yi
is the sample label and xiis the input pixel. After forward propagation,
for each input pixel, the output obtained at the softmax layer is the
predicted value, denoted as ȳi . In this study, the loss function E is de-
fined by Mean Squared Error (MSE), which is the sum of squared errors
between the actual and predicted values of the training, as follows:

= =
= =

E w b y y y g h x(,) 1
2

(¯) 1
2

([()])
i

n

i i
i

n

i w b i
1

2

1
,

2

(4)

where h x()w b i, is a function of input pixel xi after forward propa-
gation. The function includes the non-hyper-parameters: weights and
biases.

For a model, the smaller the errors between the predicted and actual
values, the better the prediction of the model. Therefore, a model
training process can be seen as the process that minimizes the loss
function E(W, b). To solve the extreme points of the loss function E(w,
b), a gradient descent optimization method (Alagoz et al., 2016) is most
commonly used. According to this method, the CNN parameter w is
derived as follows. The calculation method of b is similar to w, and is
omitted here.

=w w w w E W b
w

(,)
ij

l
ij

l
ij

l
ij

l

ij
l

() () () ()
() (5)

where wij
l() is the weight of neuron i from the l-th layer to the (l-1)-th

layer, and is a gradient operator, and is the step size, also known as
the learning rate.

The chain derivation rules are presented as follows.

= =

= =

w

a g h a()

ij
l E w b

w
E w b

h

h

w

E W b
a

a

h j
l E W b

a i
l

j
l

() (,) (,)

(,) (1) (,) ' () (1)

ij
l

i
l

i
l

ij
l

i
l

i
l

i
l

i
l

() ()

()

()

()

()

() () (6)

where ai
l() and aj

l(1) are the output values of node i in the l-th layer
and node j in the (l-1)-th layer, respectively. hi

l() is the calculation result
of w for node i in the l-th layer, and g h()i

l() is equal to ai
l() .

Let the error term i
l() of each neuron be:

= E w b
a

g h(,) ()i
l

i
l i

l()
()

' ()

(7)

Substituting Eq. (7) into Eq. (6), we get the following:

= =w E w b
w

a(,)
ij

l

ij
l i

l
j
l()

()
() (1)

(8)

When the l-th layer is the output layer, then:

= ==E w b
a

y a
a

a y(,) [()]

i
l

i
n

i i
l

i
l i

l
i()

1
2 1

() 2

()
()

(9)

Substituting Eq. (9) into Eq. (7), we get the following:

= =E w b
a

g h a y g h(,) () () ()i
l

i
l i

l
i

l
i i

l()
()

' () () ' ()

(10)

Substituting Eq. (10) into Eq. (8), the gradient update value of the
weights in the output layer can be calculated.

When the l-th layer is a hidden layer, function E(w, b) is a function

S. Pan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

246

of h(l+1), where each element is a function of xi
l(). According to the

following derivative formula of the compound function:

= =

= =

=

=
+

=
+

=
+ + +

=
+ + +

+ +

+

+

+

+ +

+ g h w w

w

()

()

E w b
a m

n E w b
h

h
a m

n E w b
a

a
h

h
a

m
n E w b

a m
l

mi
l

m
n

m
l

mi
l

i
l T l

(,)
1

1 (,)
1

1 (,)

1
1 (,) ' (1) (1)

1
1 (1) (1)

(,)
(1) (1)

i
l

m
l

m
l

i
l

j
l

m
l

i
l

m
l

i
l

m
l

() (1)

(1)

() (1)

(1)

()

(1)

()

(1)

(11)

We get the following formulation by substituting Eq. (11) into Eq.
(7):

= = + +E W b
a

g h w g h(,) () () ()i
l

i
l i

l
i
l T l

i
l()

()
' ()

(,)
(1) (1) ' ()

(12)

Similarly, the gradient update value of the weights in the hidden
layer can be calculated by substituting Eq. (12) into Eq. (8).

Generally speaking, the training of a CNN model is mainly based on
the BP algorithm. First, the loss function is defined to measure the
difference between the outputs and the actual labels. Then,W and b are
obtained by the stochastic gradient descent method (SGD) by mini-
mizing the loss function.

3.2.3. Inference
With the constructed CNN model (See Fig. 3), we conduct a pixel-

level classification study on 2D multi-spectral LiDAR feature images.
Note that a large number of training samples are needed. Therefore, for
each land cover class, we select 7680 pixel points, evenly and reason-
ably distributed from the 2D feature image to be classified. For each
pixel, its neighborhood is extracted as a training image block input to
the constructed CNN model. Then, with the features learned from the
training samples, the entire image is to be predicted, and the multi-
spectral LiDAR land-cover classification is performed through the con-
structed CNN model.

4. Experiments and analysis

To evaluate the performance of the constructed CNN based on the
multi-spectral LiDAR data, a series of experiments were conducted. This
section first described the hyper-parameter sensitivity analysis, and
then performed comparative analysis with other traditional CNN
models and our previous methods to demonstrate the feasibility of the
optimal hyper-parameters. All experiments were trained and tested on
the configured computer, with an Intel(R) Core(TM) i5-6500 CPU @
3.20 GHz 3.19 GHz processor, a memory of 16.0G, and a graphics card
for Intel(R) HD Graphics 530.

4.1. Hyper-parameters sensitivity analysis

Our CNN model involves six hyper-parameters in the model con-
struction: dimension (m), input size (si), number of convolution kernels
(nc), convolution kernel size (sc), pooling window size (sp), and number
of dense units (nd). A control variable method was used to obtain their
optimal values for the multi-spectral LiDAR classification task. Table 2
shows the initial values of the six hyper-parameters. In model

implementation, our CNN model also involves two key hyper-para-
meters: data set dividing and learning rate. The data set was divided
into the training set, which was used to train the model, the validation
set, which was used to observe the performance of the model, and the
test set, which was used to verify the effect of the model. The learning
rate affects the speed at which our CNN model converges to a local
minimum (that is, the speed at which the best precision is achieved),
which plays an important role to model training time. Table 3 shows
the default values of these two hyper-parameters in this study. To fa-
cilitate the implementation of our CNN model, some hyper-parameters
(e.g., nc and nd) were set to the positive exponential power of two. A
total of 50 epochs were run for each experiment.

Teo and Wu (2017) and Pan et al. (2018) have proven that the land-
cover classification accuracies of multi-spectral LiDAR data are sig-
nificantly better than those of single-wavelength LiDAR data. There-
fore, we performed the constructed CNN model on the multi-spectral
LiDAR data. The number of raster dataset bands, W, is four.

To achieve the optimal hyper-parameter values, the performance of
our CNN model was evaluated by two metrics: overall accuracy (OA)
and Kappa index (Congalton, 1991; Foody, 2010; Holtz, 2007). In this
section, we designed six groups of experiments to investigate the sen-
sitivity of our CNN model to the selection of m, si, nc, sc, sp and nd. Note
that the model accuracies, obtained by the validation data set, were
higher than the OA value of 95.0% and Kappa coefficient of 0.950,
respectively. With the trained CNN model, the land-cover classification
accuracies (i.e. OA and Kappa coefficient) were reported in the fol-
lowing experiments by using the test data sets.

4.1.1. Dimension, m
As discussed in Subsection 3.2, CNNs with different dimensions lead

to different model structures, generating different convolutional op-
erations in a local neighborhood. To determine the optimal dimension
(m) of our CNN model, we varied m from 1 to 3 with an interval of 1,
and maintained the remaining hyper-parameters si = 9, sc = 3,
nc = 256, sp = 2, and nd = 1024. Table 4 shows the experimental
results of the classification accuracies (i.e., OA and Kappa index) and
the training time for the Titan multi-spectral LiDAR data, and Fig. 5 is
the corresponding chart, where red circles represent the best Experi-
ment 1–1-2 in Table 4.

As shown in Table 4 and Fig. 5, the CNN model with m= 2 (i.e., 2D
CNN model) took the shortest training time, while the model with
m= 3 (i.e., 3D CNN model) took the longest training time. The reason
behind this phenomenon is that convolutional operations were greatly
complex with different dimensions involved in CNN models. Among the
three models, the 3D CNN model reached the highest computational
complexity. Although the 1D CNN model is simplest in convolutional
operations, its computational complexity was higher than that of the 2D
CNN model. Correspondingly, the 3D CNN model achieved the best
classification accuracies with an OA of 96.2% and a Kappa index of

Table 2
Hyper-parameters involved in the model establishment.

Hyper-parameters Implemented Layers Initial Values

Dimension (m) Input Layer 2
Input size (si) Input Layer 9
Number of convolution kernels

(nc)
Convolutional Layer 256

Convolution kernel size(sc) Convolutional Layer 3
Pooling window size(sp) Pooling Layer 2
Number of dense units(nd) the First Fully-Connected

Layer
1024

Table 3
Default hyper-parameters set in the CNN model implementation.

Hyper-parameters Implementation Phase Initial Values

Data set dividing (train: validation: test) Data Preparation 7:1:2
Learning rate Training Process 0.001

Table 4
A comparison of model accuracy and training time for CNNs with different
dimensions.

Experiment m OA (%) Kappa Time(mins)

1–1–1 1 91.6 0.900 149
1–1-2 2 95.5 0.945 74
1–1-3 3 96.2 0.955 1185

S. Pan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

247

0.955, while the 1D CNN model achieved the worst classification ac-
curacies with an OA of 91.6% and a Kappa index of 0.900. Although the
OA accuracy and Kappa index of the 3D CNN model were slight higher
than those of the 2D CNN model, the 3D CNN model took the training
time 16 times that of the 2D CNN model. Therefore, to trade off the
classification accuracy and the model training time, hyper-parameter m
was set to 2 when our CNN model was performed on the Titan multi-
spectral LiDAR data.

4.1.2. Input Size, si
The input size, si, determines the amount of the feature information

used to input the CNN model. In this group of experiments, we varied si
from 3 to 13 with an interval of 2, and maintained the remaining hyper-
parameters m = 2, nc = 256, sc = 3, sp = 2, and nd = 1024. As we
discussed above, the input size was defined as (si, si, W) when m = 2,
that is, the 2D CNN model, where W was set to 4 (the number of raster
dataset bands). Table 5 shows the Titan multi-spectral LiDAR land-
cover classification accuracies (i.e., OA and Kappa) and the training
time. Fig. 6 shows the corresponding chart, where red circles represent
the best Experiment 1–2-4 in Table 5.

As shown in Table 5 and Fig. 6, the classification accuracies of the
2D CNN model smoothly increase when parameter si changed from 3 to
9. However, the classification accuracies decrease when parameter si
varied from 9 to 13. The reason behind this phenomenon might be that
a small value of si means a small neighborhood, leading to insufficient

feature representation of land covers, thus reducing land-cover classi-
fication performance. On the contrary, a very large value of si indicates
the neighborhood including rich and even redundant feature informa-
tion, also leading to a degradation of the land-cover classification ac-
curacies. In terms of time complexity, we found that the training time
dramatically increased as si increased. Therefore, considering the clas-
sification accuracies (i.e., OA and Kappa) and the time consumed in
training the model, the optimal configuration of si was 9.

4.1.3. Number of convolution Kernels, nc
The number of convolution kernels (nc) in the CNN model de-

termines the number of feature images derived from the convolutional
operation. To determine the optimal value of hyper-parameter nc in our
CNN model, we maintained m = 2, si = 9, sc = 3, sp = 2, nd = 1024,
and varied nc from 64 to 1024 with a positive exponential power of two.
Table 6 shows the Titan multi-spectral LiDAR land-cover classification
accuracies (i.e., OA and Kappa) and the training time, and Fig. 7 is the
corresponding chart, where red circles represent the best Experiment
1–3-3 in Table 6.

As shown in Table 6 and Fig. 7, the OA and Kappa values slight
increased when nc changed from 64 to 256, while the classification
accuracies tended to be stable when nc was larger than 256. This is
because when nc becomes smaller, that is, fewer filters are used in
convolutional operations, features cannot be abundantly and compre-
hensively learned, resulting in under-fitting. However, if the value of nc
is set to be excessively large, the training samples are sparse in

Fig. 5. A comparison of model accuracy and training time for CNNs with different dimensions.

Table 5
A comparison of the classification accuracies and training time with the dif-
ferent input size.

Experiment si OA (%) Kappa Time (mins)

1–2-1 3 92.1 0.905 18
1–2-2 5 93.4 0.920 39
1–2-3 7 94.7 0.936 59
1–2-4 9 95.5 0.945 74
1–2-5 11 95.3 0.943 86
1–2-6 13 92.5 0.910 101

Fig. 6. A comparison of the classification accuracies and training time with the different input size.

Table 6
A comparison of model accuracy and training time for CNN models with dif-
ferent number of convolution kernels.

Experiment nc OA (%) Kappa Time(mins)

1–3-1 64 94.8 0.938 24
1–3-2 128 95.2 0.943 50
1–3-3 256 95.5 0.945 74
1–3-4 512 95.4 0.944 138
1–3-5 1024 95.4 0.944 259

S. Pan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

248

convolutional operations, thus leading to over-fitting. In terms of time
complexity, the training time dramatically increased as nc increased.
Therefore, to trade off the classification accuracies (i.e., OA and Kappa)
and the time consumed in training the model, the optimal configuration
of nc was 256.

4.1.4. Convolution kernel Size, sc
In convolutional operations, the convolution kernel size and number

of convolution kernels (nc) are equally important in feature image ex-
traction. To determine the optimal convolution kernel size of our CNN
model, we maintained hyper-parameters m = 2, si = 9, nc = 256,
sp = 2, nd = 1024, and varied sc from 3 to 9 with an interval of 2.
Table 7 shows the Titan multi-spectral LiDAR land-cover classification
results with regard to classification accuracies (i.e., OA and Kappa) and
training time, and Fig. 8 shows the corresponding chart, where red
circles represent the best Experiment 1–4-1 in Table 7.

As shown in Table 7 and Fig. 8, with the increase of sc, both the OA
and Kappa values decreased accordingly. The reason is that a large
amount of noise might be introduced when the value of sc becomes
excessively large. We found that sc has a great influence on the training
time of the CNN model. With the increase of sc, the training time dra-
matically increased. Therefore, to balance the classification accuracies
(i.e., OA and Kappa) and the time cost in model training, the optimal
value of sc is 3.

4.1.5. Pooling window Size, sp
In this group of experiments, we maintained the hyper-parameters

m= 2, si= 9, nc= 256, sc= 3, and nd= 1024, and varied sp from 2 to
5 with an interval of 1. Table 8 shows the experimental results of the
Titan multi-spectral LiDAR classification accuracies (i.e., OA and
Kappa) and the training time, and Fig. 9 shows the corresponding chart,
where red circles represent the best Experiment 1–5-1 in Table 8.

As shown in Table 8 and Fig. 9, both the OA and Kappa values
decreased when sp increased from 2 to 5. Our CNN model achieved the
best land-cover classification accuracies with an OA value of 95.5% and
a Kappa value of 0.945 when sp= 2. When the value of sp is excessively
large, the loss of the useful feature information might occur, resulting in
under-fitting. In addition, with the increase of sp, the model training
time greatly decreased. Although the training time of our CNN model
was about 74 min, when the pooling windows size was set to 2, this
time cost was acceptable and the classification accuracies were sa-
tisfactory. Therefore, the value of sp was set to 2.

4.1.6. Number of dense Units, nd
The number of dense units (nd) in our CNN model determines the

number of neurons involved in rough land-cover classification. To ob-
tain the optimal value of nd of our CNN model, we maintained the
hyper-parameters m = 2, si = 9, nc = 256, sc = 3, and sp = 2, and
varied nd from 256 to 4096 with an interval of the positive exponential
power of two. Table 9 shows the Titan multi-spectral LiDAR land-cover

Fig. 7. A comparison of model accuracy and training time for CNN models with different number of convolution kernels.

Table 7
A comparison of the land-cover classification accuracy and training time
complexity with different convolution kernel size.

Experiment sc OA (%) Kappa Time(mins)

1–4-1 3 95.5 0.945 74
1–4-2 5 94.6 0.935 157
1–4-3 7 94.4 0.932 461
1–4-4 9 94.0 0.928 1286

Fig. 8. A comparison of the land-cover classification accuracy and training time complexity with different convolution kernel size.

Table 8
A comparison of the land-cover classification accuracy and training time
complexity for CNN models with different pooling window size.

Experiment sp OA (%) Kappa Time(mins)

1–5-1 2 95.5 0.945 74
1–5-2 3 94.1 0.930 51
1–5-3 4 93.6 0.923 34
1–5-4 5 93.5 0.922 23

S. Pan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

249

classification accuracies (i.e., OA and Kappa) and the training time, and
Fig. 10 is the corresponding chart, where red circles represent the best
Experiment 1–6-3 in Table 9.

Table 9 and Fig. 10 demonstrate that both the OA and Kappa values
dramatically increased when nd varied from 256 to 1024. When nd
exceeded 1024, the land-cover classification accuracies of our CNN
model greatly fluctuated with a downward trend, and then decreased.
The purpose of the dense layer is to extract the correlation information
between features through nonlinear changes and finally to obtain
classification covers. Thus, if the dense layer contains fewer nodes, the
extracted features might contain less useful information, resulting in
under-fitting. However, if there are excessive nodes in the dense layer,
the extracted features might contain redundant information, resulting
in over-fitting. In terms of time complexity, the training time drama-
tically increased when the value of nd increased. Therefore, to trade off
the classification accuracies (i.e., OA and Kappa) and the training time,
the optimal value of nd was 1024.

4.2. Comparative experiments

After hyper-parameter sensitivity analysis, we obtained the optimal
values of the six hyper-parameters for the multispectral LiDAR land-
cover classification task, that is, m= 2, si= 9, nc= 256, sc= 3, sp= 2,
and nd = 1024. Fig. 11 shows the classification results of our CNN
model with the six optimal hyper-parameters. To evaluate the applic-
ability of our CNN model with the analyzed optimal hyper-parameters,
we compared it with three traditional CNN models (AlexNet, VGG16,

and ResNet50) and our previous study (DBM, Random forest, and
SVM).

These three traditional CNN models – AlexNet (Unnikrishnan et al.,
2018), VGG16 (Zhang et al., 2018a, 2018b), and ResNet50 (Jiang et al.,
2019) - have achieved great success in image classification (Akilan
et al., 2018; Sharma et al., 2018). Because the above classic VGG16
model requires that each pixel of the input training sample must be
interpolated to (48, 48) and must be in three wavelengths, the multi-
spectral LiDAR data were subjected to nearest domain interpolation
(Atamturktur et al., 2015) and principal component analysis (PCA).
Finally, the si in these three classic CNN models (AlexNet, VGG16 and
ResNet50) was set to 48, and W was set to 3. In the AlexNet model, the
configurations of nc and sc in the first convolutional layer are 48 and 11,
and the values of nc and sc in the second convolutional layer are 128 and
5, respectively. The two convolutional layers are followed by the
pooling layer, where sp was set to 3. Then, three identical convolutional
layers are connected, where nc and sc were set to 192 and 3, respec-
tively. In the VGG16 model, the convolutional layer and the pooling
layer appear alternately, where sp is 2, nc in each convolutional layer is
[4, 8, 16, 32], and sc is fixed at 3. The ResNet50 model is deeper, with
two basic blocks (identity block and convolution block), which is a
stack of these two main blocks, and its parameters setting refers to the
article Jiang et al. (2019). To ensure the fairness of the experimental
comparative analysis, based on the same training data in these three
classic CNN models (AlexNet, VGG16 and ResNet50), whose si was set
to 48 and W was set to 3, and other optimal hyper-parameters (m= 2,
nc= 256, sc= 3, sp= 2, and nd= 1024) described in Section 4.1, our
constructed CNN model was used for comparative experiments of land-
cover classification. These classical CNN models and our constructed
CNN model were also iteratively trained by 50 epochs.

Fig. 11 shows the land-cover classification results by using the Titan
multispectral LiDAR data, which is based our constructed CNN model.
Visual inspections demonstrated that our CNN model with the optimal
hyper-parameters is capable of labeling most land covers, especially
land over water. However, our CNN model achieves a poor classifica-
tion performance of distinguishing land cover soil from land cover
building. To clearly demonstrate the comparative classification results,
we selected two small areas (part A and part B) from the whole scene, as

Fig. 9. A comparison of the land-cover classification accuracy and training time complexity for CNN models with different pooling window size.

Table 9
A comparison of the land-cover classification accuracies and training time
complexity with different number of dense units.

Experiment nd OA (%) Kappa Time(mins)

1–6-1 256 93.0 0.916 40
1–6-2 512 94.9 0.939 53
1–6-3 1024 95.5 0.945 74
1–6-4 2048 94.0 0.928 125
1–6-5 4096 94.3 0.931 243

Fig. 10. A comparison of the land-cover classification accuracies and training time complexity with different number of dense units.

S. Pan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

250

Fig. 11. Classification results of our constructed CNN.

Fig. 12. Partial classification results (part A) of CNN models, (a) AlexNet, (b) VGG16, (c) ResNet50, (d) our constructed CNN.

S. Pan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

251

shown in Fig. 12 (part A) and 13 (part B). We found that the AlexNet
model was incapable of distinguishing soil and roads (see Figs. 12(a)
and 13(a)); the VGG16 model achieved a poor classification perfor-
mance on land covers soil, water, and tree (see Fig. 12(b) and 13(b));
the ResNet50 model failed to separate land cover grass from land cover
soil, and accurately extract roads (see Figs. 12(c) and 13(c)).

In our previous study (Pan et al, 2019), we performed random
forests (RF), support vector machine (SVM), and one of deep learning
methods (Deep Boltzmann Machine, DBM) on the multi-spectral LiDAR

data. Our previous studies focused on the land-cover classification
feature analysis and demonstrated that the two-layer DBM model
achieved the best classification accuracies with OA = 89.3% and
Kappa = 0.866. Thus, the DBM model was selected for the comparison.
In the two-layer DBM model, there are three important parameters: the
neighborhood size (Ns = 9×9 pixels), and the numbers of hidden units
NhU

1 = 300 and NhU
2 = 80 for the first and second layers, respectively.

To further quantitatively verify the classification performance of
these comparative methods, we listed their classification accuracies
with regard to the OA and Kappa values and the training time in
minutes in Table 10, and Fig. 14 shows the corresponding chart, where
red circles represent the best Experiment 2–4 in Table 10.

As shown in Table 10 and Fig. 14, in terms of time complexity, the
DBM model (Experiment 2–5) took a longer time of 34.675 h (about
2080 min) to learn the features compared to all CNN models (Experi-
ments 2–1, 2–2, 2–3, and 2–4). This is because the CNN models are
featured by local connectivity and shared weights, which reduce the
model complexity and the number of parameters, and finally simplify
the model. Then, we compared different CNN models (Experiments 2–1,
2–2, 2–3, and 2–4), where the AlexNet model achieved the lowest land-

Fig. 13. Partial classification results (part B) of CNN models, (a) AlexNet, (b) VGG16, (c) ResNet50, (d) our constructed CNN.

Table 10
A comparison of five deep learning models in classification accuracies and time
complexity.

Experiment Model OA (%) Kappa Time(mins)

2–1 AlexNet 91.8 0.902 661
2–2 VGG16 93.0 0.916 1006
2–3 ResNet50 94.2 0.930 1860
2–4 our CNN model 94.9 0.939 523
2–5 our previous method-

DBM
89.3 0.866 34.675 × 60≈2080

Fig. 14. A comparison of five deep learning models in classification accuracies and time complexity.

S. Pan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

252

cover classification accuracy, while our CNN model with the optimal
hyper-parameters achieved the highest classification accuracy with the
OA and Kappa values improved by about 0.7%-3.1% and 0.009–0.037,
respectively. With the most number of the functional layers, the Re-
sNet50 model contains the most number of hyper-parameters and non-
hyper-parameters, leading to the highest training time complexity.
Comparatively, our CNN model has the least computational burden
because the model contains only seven fundamental function layers,
rather than the deeper and repetitive functional layers.

Qualitative and quantitative test results indicate that our CNN
model achieved higher classification accuracies than the classical CNN
models (i.e., AlexNet, VGG16 and ResNet50) and our previous study-
DBM. The main reason is that, (1) our CNN model contains mainly
fundamental function layers, which guarantees the classification ac-
curacies by using the Titian multispectral LiDAR data, and (2) our CNN
model is not piled up by a large number of implementation layers,
which greatly shortens the model training time to improve the land-
cover classification efficiency.

5. Conclusion

To classify the Titan multi-spectral LiDAR data into the six land-
cover types (i.e., building, tree, road, grass, soil, and water), this paper
presented a CNN model with optimized hyper-parameters. The main
contributions of this study can be summarized as follows: (1) by
stacking seven main functional layers and maintaining the optimized
hyper-parameters, the time complexity of our CNN model is obviously
reduced to 74 min, and (2) in our CNN model, six hyper-parameters,
including dimension, input size, number of convolutional kernels,
convolutional kernel size, pooling window size, and number of dense
units, were investigated to obtain the optimal values by the control
variable method; with the optimal values of the hyper-parameters, we
obtained the satisfactory classification results with the OA of 95.5% and
Kappa index of 0.945. Comparative experiments showed that, our CNN
model achieved the classification accuracies with OA increased by
0.7%-3.1% and Kappa index increased by 0.009–0.037 better than the
traditional CNN models (e.g., AlexNet, VGG16, and ResNet50), and our
CNN model’s time performance is significantly better than these tradi-
tional CNN models and the DBM. Therefore, our CNN model with the
optimal hyper-parameters is practical and feasible for the multispectral
LiDAR land-cover classification task. However, because the test Titan
multispectral LiDAR data were provided without system parameters,
trajectory data, and control points, their data preprocessing, such as
fine strip registration and radiometric correction, cannot be done in our
study. In future, the feasibility and applicability of our CNN model
should be tested on different multispectral LiDAR data sets with a
complete set of meta data, covering different rural and urban en-
vironments.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

This research was supported by the National Natural Science
Foundation of China under Grants 41671454, 61603146, and
41971414. We would like to thank the anonymous reviewers for their
careful reading and thorough comments.

References

Akilan, T., Wu, Q.M., Zhang, H., 2018. Effect of fusing features from multiple DCNN
architectures in image classification. IET Image Proc. 12 (7), 1102–1110.

Alagoz, B.B., Alisoy, H.Z., Koseoglu, M., Alagoz, S., 2016. Modeling and Analysis of
Dielectric Materials by Using Gradient Descent Optimization Method. Int. J. Model.
Simul. Scient. Comput. 08 (1).

Atamturktur, S., Egeberg, M.C., Hemez, F.M., Stevens, G., 2015. Defining coverage of an
operational domain using a modified nearest-neighbor metric. Mech. Syst. Sig.
Process. 349–361. https://doi.org/10.1016/j.ymssp.2014.05.040.

Bakuła, K., Kupidura, P., Jełowicki, Ł., 2016. Testing of Land Cover Classification from
Multispectral Airborne Laser Scanning Data. ISPRS-Int. Arch. Photogram., Remote
Sens. Spatial Inform. Sci. 161–169. https://doi.org/10.5194/isprs-archives-XLI-B7-
161-2016.

Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization. J. Mach.
Learn. Res. 13 (1), 281–305.

Briese, C., Pfennigbauer, M., Lehner, H., Ullrich, A., Wagner, W., Pfeifer, N., 2012.
Radiometric calibration of multi-wavelength airborne laser scanning data. ISPRS
Annals Photogram., Remote Sens. Spatial Inform. Sci. 1, 335–340. https://doi.org/
10.5194/isprsannals-I-7-335-2012.

Cai, M., Liu, J., 2016. Maxout neurons for deep convolutional and LSTM neural networks
in speech recognition. Speech Commun. 77, 53–64.

Cao, J.L., Pang, Y.W., Li, X.L., Liang, J.K., 2017. Randomly translational activation in-
spired by the input distributions of ReLU. Neurocomputing 275, 859–868.

Chen, X.Q., Ye, C.M., Li, J., Chapman, M.A., 2018. Quantifying the carbon storage in
urban trees using multispectral ALS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 11 (9), 3358–3365.

Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely
sensed data. Remote Sens. Environ. 37 (1), 35–46.

Dahou, A., Elaziz, M.A., Zhou, J.W., Xiong, S.W., 2019. Arabic sentiment classification
using convolutional neural network and differential evolution algorithm. Comput.
Intell. Neurosci. 1–16.

Ekhtari, N., Glennie, C., Fernandez-Diaz, J.C., 2018. Classification of Airborne
Multispectral Lidar Point Clouds for Land Cover Mapping. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 11 (6), 2068–2078.

Fernandez-diaz, J.C., Carter, W.E., Glennie, C., Shrestha, R.L., Pan, Z.G., Ekhtari, N.,
Singhania, A., Hauser, D., Sartori, M., 2016. Capability assessment and performance
metrics for the Titan multispectral mapping Lidar. Remote Sensing 8 (11), 936–970.

Foody, G.M., 2010. Assessing the Accuracy of Remotely Sensed Data: Principles and
Practices. Photogram. Rec. 25 (130), 204–205.

Fukushima, K., 1988. Neocognitron: A hierarchical neural network capable of visual
pattern recognition. Neural Networks 1 (2), 119–130.

Gao, H.B., Cheng, B., Wang, J.Q., Li, K.Q., Zhao, J.H., Li, D.Y., 2018. Object classification
using CNN-based fusion of vision and LiDAR in autonomous vehicle environment.
IEEE Trans. Ind. Inf. 14 (9), 4224–4231.

Guidici, D., Clark, M.L., 2017. One-dimensional convolutional neural network land-cover
classification of multi-seasonal hyperspectral imagery in the San Francisco Bay area,
California. Remote Sens. 9 (629), 1–25.

Guo, Y.M., Liu, Y., Oerlemans, A., Lao, S.Y., Wu, S., Lew, M.S., 2016. Deep learning for
visual understanding. Neurocomputing 187, 27–48.

Hansen, M., Smith, M.L., Smith, L.N., Salter, M., Baxter, E.M., Farish, M., Grieve, B., 2018.
Towards on-farm pig face recognition using convolutional neural networks. Comput.
Ind. 145–152.

He, X., Wang, A.L., Ghamisi, P., Li, G.Y., Chen, Y.S., 2019. LiDAR data classification using
spatial transformation and CNN. IEEE Geosci. Remote Sens. Lett. 16 (1), 125–129.

Holtz, T.S., 2007. Introductory Digital Image Processing: A Remote Sensing Perspective.
Third Edition. Environ. Eng. Geosci. 13 (1), 89–90.

Hopkinson, C., Chasmer, L., Gynan, C., Mahonry, C., Sitar, M., 2016. Multisensor and
multispectral LiDAR characterization and classification of a forest environment.
Canad. J. Remote Sens. 42 (5), 501–520.

Jaswal, D., Sowmya, Soman, K. P., 2014. Image classification using convolutional neural
networks. Int. J. Scient. Eng. Res., 5(6), 1661-1668.

Jiang, Y.N., Li, Y., Zhang, H.K., 2019. Hyperspectral image classification based on 3-D
separable ResNet and transfer learning. IEEE Geosci. Remote Sens. Lett. https://doi.
org/10.1109/lgrs.2019.2913011.

Kang, Z.Z., Yang, J.T., 2018. A probabilistic graphical model for the classification of
mobile LiDAR point clouds. ISPRS J. Photogramm. Remote Sens. 143, 108–123.

Kumar, B., Lohani, B., Pandey, G., 2019a. Development of deep learning architecture for
automatic classification of outdoor mobile LiDAR data. Int. J. Remote Sens. 40 (9),
3543–3554.

Kumar, B., Pandey, G., Lohani, B., Misra, S.C., 2019b. A multi-faceted CNN architecture
for automatic classification of mobile LiDAR data and an algorithm to reproduce
point cloud samples for enhanced training. ISPRS J. Photogramm. Remote Sens. 147,
80–89.

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to
document recognition. Proc. IEEE 86 (11), 2278–2323.

Li, J.J., Zhao, X., Li, Y.S., Du, Q., Xi, B., Hu, J., 2018a. Classification of hyperspectral
imagery using a new fully convolutional neural network. IEEE Geosci. Remote Sens.
Lett. 15 (2), 292–296.

Li, Q.D., Yang, X.S., Yang, F.Y., 2006. Hyperchaos in a simple CNN. Int. J. Bifurcation
Chaos 16 (08), 2453–2457.

Li, W., Chen, C., Zhang, M.M., Li, H.C., Du, Q., 2019. Data augmentation for hyperspectral
image classification with deep CNN. IEEE Geosci. Remote Sens. Lett. 16 (4), 593–597.

Li, Y.H., Wang, N.Y., Shi, J.P., Hou, X.D., Liu, J.Y., 2018b. Adaptive batch normalization
for practical domain adaptation. Pattern Recogn. 80, 109–117.

Liu, W. P., Sun, J., Li, W. Y., Hu, T., Wang, P., 2019. Deep learning on point clouds and its
application: a survey. Sensors, 19(19), 4188, DOI.10.3390/s19194188.

Lu, C., Yang, X.M., Wang, Z.H., Li, Z., 2018. Using multi-level fusion of local features for
land-use scene classification with high spatial resolution images in urban coastal
zones. Int. J. Appl. Earth Obs. Geoinf. 70, 1–12.

S. Pan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

253

http://refhub.elsevier.com/S0924-2716(20)30148-9/h0005
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0005
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0010
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0010
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0010
https://doi.org/10.1016/j.ymssp.2014.05.040
https://doi.org/10.5194/isprs-archives-XLI-B7-161-2016
https://doi.org/10.5194/isprs-archives-XLI-B7-161-2016
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0025
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0025
https://doi.org/10.5194/isprsannals-I-7-335-2012
https://doi.org/10.5194/isprsannals-I-7-335-2012
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0035
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0035
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0040
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0040
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0045
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0045
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0045
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0050
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0050
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0055
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0055
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0055
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0060
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0060
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0060
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0065
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0065
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0065
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0070
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0070
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0075
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0075
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0080
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0080
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0080
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0085
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0085
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0085
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0090
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0090
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0095
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0095
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0095
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0100
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0100
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0105
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0105
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0110
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0110
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0110
https://doi.org/10.1109/lgrs.2019.2913011
https://doi.org/10.1109/lgrs.2019.2913011
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0125
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0125
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0130
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0130
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0130
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0135
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0135
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0135
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0135
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0140
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0140
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0145
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0145
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0145
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0150
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0150
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0155
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0155
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0160
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0160
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0170
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0170
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0170

Manyala, A., Cholakkal, H., Anand, V., Kanhangad, V., Rajan, D., 2019. CNN-based
gender classification in near-infrared periocular images. Pattern Anal. Appl. 22 (4),
1–12.

Matikainen, L., Karila, K., Hyyppä, J., Litkey, P., Puttonen, E., Ahokas, E., 2017. Object-
based analysis of multispectral airborne laser scanner data for land cover classifica-
tion and map updating. ISPRS J. Photogramm. Remote Sens. 128, 298–313.

Miller, C.I., Thomas, J.J., Kim, A.M., Metcalf, J.P., Olsen, R.S., 2016. Application of image
classification techniques to multispectral lidar point cloud data. Proc. SPIE 9832.

Morsy, S., Shaker, A., El-Rabbany, A., 2017. Multispectral LiDAR data for land cover
classification of urban areas. Sensors 17 (5), 958–979.

Pan, S.Y., Guan, H.Y., 2018. Object classification using airborne multispectral LiDAR
data. Acta Ueodaetica et Cartographica Sinica 47 (2), 198–207.

Pan, S.Y., Guan, H.Y., Yu, Y.T., Li, J., Peng, D.F., 2019. A comparative land-cover clas-
sification feature study of learning algorithms: DBM, PCA, and RF using multispectral
LiDAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12 (4), 1314–1326.

Rangel, J.C., Martinezgomez, J., Romerogonzalez, C., Garciavarea, I., Cazorla, M., 2018.
Semi-supervised 3D object recognition through CNN labeling. Appl. Soft Comput. 65,
603–613.

Scaioni, M., Hofle, B., Kersting, A.P., Barazzetti, L., Previtali, M., Wujanz, D., 2018.
Methods from information extraction from LiDAR intensity data and multispectral
LiDAR technology. ISPRS Archives XLII-3 1503–1510, DOI.10.5194/isprs-archives-
XLII-3-1503-2018.

Shaker, A., Yan, W.Y., LaRocque, P.E., 2019. Automatic land-water classification using
multispectral airborne LiDAR data for near-shore and river environments. ISPRS J.
Photogramm. Remote Sens. 152, 94–108.

Sharma, N., Jain, V., Mishra, A., 2018. An analysis of convolutional neural networks for
image classification. Proc. Comput. Sci. 132, 377–384.

Soon, F.C., Khaw, H.Y., Chuah, J.H., Kanesan, J., 2018. Hyper-parameters optimization of
deep CNN architecture for vehicle logo recognition. IET Intel. Transport Syst. 12 (8),
939–946.

Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, L., Salakhutdinov, R., 2014.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15 (1), 1929–1958.

Teo, T., Wu, H., 2017. Analysis of land cover classification using multi-wavelength LiDAR

system. Appl. Sci. 7 (7), 663–683.
Tivive, F.H., Bouzerdoum, A., 2005. Efficient training algorithms for a class of shunting

inhibitory convolutional neural networks. IEEE Trans. Neural Networks 16 (3),
541–556.

Unnikrishnan, A., Sowmya, P, S. K., 2018. Deep AlexNet with reduced number of train-
able parameters for satellite image classification. Proc. Comput. Sci., pp. 931–938.

Vamplew, P., Dazeley, R., Foale, C., 2017. Softmax exploration strategies for multi-
objective reinforcement learning. Neurocomputing 263, 74–86.

Wang, A.L., Wang, Y., Chen, Y.S., 2019a. Hyperspectral image classification based on
convolutional neural network and random forest. Remote Sens. Lett. 10 (11),
1086–1094.

Wang, C.S., Shu, Q.Q., Wang, X.Y., Guo, B., Liu, P., Li, Q.Q., 2019b. A random forest
classifier based on pixel comparison features for urban LiDAR data. ISPRS J.
Photogramm. Remote Sens. 148, 75–86.

Wichmann, V., Bremer, M., Lindenberger, J., Rutzinger, M., Georges, C.,
Petrinimonteferri, F., 2015. Evaluating the potential of multispectral airborne LiDAR
for topographic mapping and land cover classification. ISPRS Annals II-3/W5
113–119, DOI:10.5194/isprsannals-II-3-W5-113-2015.

Xu, X.D., Li, W., Ran, Q., Du, Q., Gao, L.R., Zhang, B., 2018. Multisource remote sensing
data classification based on convolutional neural network. IEEE Trans. Geosci.
Remote Sens. 56 (2), 937–949.

Yan, W.Y., Shaker, A., Larocque, P.E., 2018. Water mapping using multispectral airborne
LiDAR data. ISPRS Archives XLII-3, 2047–2052. https://doi.org/10.5194/isprs-
archives-XLII-3-2047-2018.

Zhang, C., Sargent, I., Pan, X., LI, H. P., Gardiner, A., Hare, J., Atkinson, P. M., 2018. An
object-based convolutional neural network (OCNN) for urban land use classification.
Remote Sens. Environ., vol. 261, pp. 57-70.

Zhang, R., Li, G.Y., Li, M.L., Wang, L., 2018b. Fusion of images and point clouds for the
semantic segmentation of large-scale 3D scenes based on deep learning. ISPRS J.
Photogramm. Remote Sens. 143, 85–96.

Zhu, Y.H., Gao, X., Zhang, W.L., Liu, S.K., Zhang, Y.Y., 2018. A bi-directional LSTM-CNN
model with attention for aspect-level text classification. Future Internet 10, 116.
https://doi.org/10.3390/fi10120116.

S. Pan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 241–254

254

http://refhub.elsevier.com/S0924-2716(20)30148-9/h0175
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0175
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0175
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0180
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0180
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0180
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0185
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0185
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0190
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0190
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0195
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0195
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0200
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0200
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0200
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0205
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0205
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0205
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0210
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0210
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0210
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0210
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0215
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0215
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0215
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0220
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0220
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0225
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0225
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0225
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0230
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0230
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0230
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0235
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0235
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0240
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0240
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0240
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0250
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0250
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0255
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0255
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0255
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0260
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0260
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0260
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0265
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0265
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0265
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0265
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0270
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0270
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0270
https://doi.org/10.5194/isprs-archives-XLII-3-2047-2018
https://doi.org/10.5194/isprs-archives-XLII-3-2047-2018
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0285
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0285
http://refhub.elsevier.com/S0924-2716(20)30148-9/h0285
https://doi.org/10.3390/fi10120116

	Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters
	Introduction
	Data and data preprocessing
	Multi-spectral LiDAR test data
	Data Pre-processing

	Method
	Preliminaries
	Constructed CNN model
	Our CNN architecture
	Learning algorithm
	Inference

	Experiments and analysis
	Hyper-parameters sensitivity analysis
	Dimension, m
	Input Size, si
	Number of convolution Kernels, nc
	Convolution kernel Size, sc
	Pooling window Size, sp
	Number of dense Units, nd

	Comparative experiments

	Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References

