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A B S T R A C T

Random Forest (RF) is a machine learning technique that has been proved to be highly accurate in several
agricultural applications. However, to yield prediction, how much this technique may be improved with the
adoption of a ranking-based strategy is still an unknown issue. Here we propose a ranking-based approach to
potentialize the RF method for maize yield prediction. This approach is based on the correlation parameter of
individual vegetation indices (VIs). The VIs were individually ranked based on a merit metric that measures the
improvement on the Pearson’s correlation coefficient by using RF against a baseline method. As a result, only the
most relevant VIs were considered as input features to the RF model. We used 33 VIs extracted from multi-
spectral UAV-based (unmanned aerial vehicle) imagery. The multispectral data were generated with two dif-
ferent sensors: Sequoia and MicaSense; during the 2017/2018 and 2018/2019 crop seasons, respectively.
Amongst all the evaluated indices, NDVI, NDRE, and GNDVI were the top three in the ranking-based analysis,
and their combination with RF increased the maize yield prediction. Our approach also outperformed other
known machine learning methods, like support vector machine and artificial neural network. Additive regres-
sion, using the RF as the base weak learner, provided a higher accuracy with a correlation coefficient and MAE
(Mean Absolute Error) of 0.78 and 853.11 kg ha−1, respectively. We conclude that the ranking-based strategy of
VIs is appropriate to predict maize yield using machine learning methods and data derived from multispectral
images. We demonstrated that our approach reduces the number of VIs needed to determine a high accuracy and
relative low MAE, and the approach may contribute to decision-making actions, resulting in accurate man-
agement of maize fields.
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1. Introduction

Machine learning techniques associated with UAV-based (un-
manned aerial vehicle) images are been continuously applied for dif-
ferent areas, including precision agriculture. A critical topic in agri-
cultural applications refers to crop yield prediction due to its
dependence on multiple factors, such as crop genotype, environmental
factors, and management practices (Khaki et al. 2020). Adopting ma-
chine learning methods to support this task is currently a promising
strategy since information derived from analyses may support farmers
to decide, for example, which crop management provides the maximum
yield. This could be achieved by considering multiple factors, like
temperature, rainfall, area, among others.

Yield prediction with machine learning techniques is a recent topic
in literature, and was considered for multiple cultivars, like a cherry
tree (Amatya et al., 2016); sugar-cane (Vani et al. 2015); wheat (Jeong
et al. 2016; Pantazi et al. 2016; Hunt et al., 2019); potato (Jeong et al.
2016); tomatoes (Senthilnath et al., 2016); coffee (Ramos et al. 2017);
rice (Su et al. 2017; Zhang et al., 2019); groundnut (Shah and Shah,
2018 ). In this regard, maize (Zea mays L.) is an important economic
crop for multiple countries that could also benefit from this type of
approach. On a world scale, Brazil is the third market producer pre-
ceded only by United States (US) and China (Conab, 2020). In Brazil,
the states of Mato Grosso do Sul, Paraná, and Goiás are responsible for
most of the maize-production rates. For the 2019/2020 crop season, the
estimated rate is to achieve record production of 100.6 million tons
(Conab, 2020). Technological solutions may contribute to improving
yield rates, and the artificial intelligence area, combined with remote
sensing data, has an essential role in this context.

Performing grain-yield prediction with only the spectral informa-
tion of a plant is a challenging scientific task. Related to maize-crops,
the existing literature presents some information about the yield esti-
mation with machine learning techniques and remote sensing imagery
(Serele et al., 2000; Uno et al. 2005; Khanal et al. 2018). One research
(Serele et al., 2000) tested four ANN (Artificial Neural Networks)
models in aerial images with a spatial resolution of 1.5 m to predict
maize yield. The input variables of the ANN models consisted of the
topographic data (elevation, slope, and aspect), vegetation indices - VIs
(NDVI - Normalized Difference Vegetation Index, SAVI - Soil Adjusted
Vegetation Index, TSARV - Transformed Soil Atmospherically Resistant
Vegetation Index, and WDVf - Weight Difference Vegetation Index), and
textural indices - TIs (homogeneity, contrast, entropy, and ASM - An-
gular Second Moment). When combined with VIs, TIs, and topographic
data, the investigated ANN models presented better accuracy to predict
maize yield.

Another related study (Uno et al. 2005), adopting hyperspectral
images (spectral range of 408–947 nm and spatial resolution of 2 m),
acquired with a Compact Airborne Spectrographic Imager, estimated
maize yield prediction using machine learning techniques with multi-
spectral data. The authors explored three VIs (NDVI, SR - Sample Ratio,
and PRI - Photochemical Reflectanceindex), and determined that ANN
models were efficient in capturing the complex relationship between
crop yield and spectral reflectance values. A more recent research
(Khanal et al. 2018) integrated five field-based soil properties (soil
organic matter, cation exchange capacity, magnesium, potassium, and
pH) with multispectral aerial images and topographic data (digital
elevation model) to predict soil properties and maize yield applying
multiple machine learning algorithms (Random Forest; Neural Net-
work; Support Vector Machine with Radial and Linear Kernel Func-
tions; Gradient Boosting Model; and Cubist). For maize yield, they de-
termined that Random Forest (RF) consistently outperformed other
models.

In recent years, machine learning techniques such as deep neural
networks (known as deep learning) have also been applied to estimate
crop yield (Nevavuori et al. 2019; Barbosa et al. 2020; Khaki et al.
2020). Even so, it should be highlighted that these approaches required

an extensive number of datasets to return high performances on the
aforementioned papers. Besides, deep learning can be a high-compu-
tational cost technique, which may not be the best alternative to be
implemented in some of the agriculture applications. A recent study
(Barbosa et al. 2020), aiming to estimate maize yield production based
on deep learning approach, adopted five input variables (nitrogen rate,
seed rate, elevation map, soil’s electroconductivity, and the NDVI
index), and the results were compared with shallow machine learning
methods. Although it was verified a reduction in the RMSE (Root Mean
Square Error) up to 29%, compared to the Random Forest, it should be
mention that a total of 1800 plots was necessary to define the deep
learning model, while related research (Sérélé et al. 2003; Uno et al.
2005; Khanal et al. 2018) used fewer data to perform the same task.

A revision study (Liakos et al. 2018) on applications of machine
learning in agricultural production systems concluded that, by applying
machine learning to sensor data, farm management systems provide
rich recommendations and insights for farmer decision support and
action. Another revision study (Chlingaryan et al., 2018), specifically
about machine learning approaches for crop yield prediction, concludes
that the rapid advances in sensing technologies and artificial in-
telligence techniques will provide a cost-effective, efficient and com-
prehensive solution for better crop management and decision-making
tasks shortly. As mentioned, yield inference using only remote sensing
data is a challenging task. Offering farmers both novel and low-cost
computational and simpler in-field data collection applications is still a
high topic in the current literature. A possible approach to this is to get
the maximum potential of machine learning algorithms, to perform
such tasks. As an alternative for improving accuracy, combining ma-
chine learning techniques with vegetation spectral indices (VIs) ex-
tracted from multispectral images appears to offer the potential for
precision agriculture-related practices. Osco et al. (2019a) analyzed the
individual contribution of multiple VIs for the Random Forest model to
estimate canopy nitrogen (N2) content in citrus-trees context.

Random Forest is a machine learning technique that has been
proved to be highly accurate in several agricultural applications, in-
cluding maize prediction (Jeong et al. 2016). When evaluated to predict
the yield of different crops (wheat, maize, and potato) with climate and
biophysical variables, at global and regional scales, the Random Forest
algorithm outperformed multiple linear regressions models, adopted as
a benchmark, in all considered performance statistics (Jeong et al.
2016). Random Forest is an effective and versatile machine-learning
method for crop yield predictions because of its high accuracy and
precision, ease of use, and utility in data analysis (Jeong et al. 2016).
However, specifically in the precision agriculture context, how much of
this technique may be improved with the adoption of a ranking-based
strategy is an unsolved issue.

In previous research (Osco et al., 2019a; Osco et al., 2019b) we
evaluated the importance of different inputs into remote sensing data-
sets related to plant analysis. Still, to the best of our knowledge, no
literature evaluated the impact on the performance of a ranking-based
strategy to estimate yield-prediction in maize or a similar culture. To
help fulfill this gap, we propose a Random Forest ranking-based ap-
proach to predict maize yield using only multispectral UAV-imagery. A
ranking strategy using the correlation parameter was initially applied,
considering a group of VIs. As a result, only the most relevant indices
were considered as input to the Random Forest model. We compared
our approach with state-of-the-art machine learning algorithms,
showing its potential to maize yield prediction. The main contribution
of this study is to propose an alternative to help in potentialize the
Random Forest technique to crop yield prediction tasks. To the best of
our knowledge, this is the first tentative in the precision agriculture
domain using remote sensing imagery. Our paper is organized as fol-
lows: Section 2 describes the proposed method; Section 3 and Section 4
presents and discusses the results, respectively; and Section 5 concludes
this research.
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2. Materials and methods

2.1. Field trials

We experimented with 11 maize cultivars grown under two doses of
Nitrogen (60 and 180 kg ha−1) in top dressing for two crop seasons
(2017/18 and 2018/19), with four replicates of each experimental unit.
Each plot was 5 m long with five rows spaced at 0.45 m each. Fig. 1
shows the location of the experimental area on the campus of the
Federal University of Mato Grosso does Sul, in the municipality of
Chapadão do Sul. The grain yield of each experimental unit was ob-
tained by harvesting, tracing the three central rows, and correcting for
13% humidity. The values were extrapolated to kg ha−1.

2.2. Aerial multispectral image acquisition and vegetation indices

A total of 33 Vegetation indices (VIs) was calculated from aerial
multispectral orthoimages. These orthoimages were generated from
aerial scenes acquired by the Sensefly Parrot Sequoia ® and MicaSense ®
multispectral sensors during the 2017/2018 and 2018/2019 crop sea-
sons, respectively. VIs represent the mean of each plot (5 m × 0.45 m).
Therefore, firstly, for each spectral band, we computed the mean values
of each plot. Later, using these bands, the VIs were computed with the
formulations presented in Table 1. The group of VIs included in this
work is based on the Osco et al. (2019a) approach. A MicaSense Red-
Edge multispectral sensor was installed on the rotary-wing UAV model
X800 manufactured by the company XFly ®. The Sequoia multispectral
sensor was embedded on the Sensefly eBee ® RTK fixed-wing developed
by the company Sensefly. The spectral regions registered by both sen-
sors are similar and correspond to green (550 nm), red (660 nm), red-
edge (735 nm), and near-infrared (NIR) (790 nm). MicaSense Red-Edge
sensors also register a blue-band, however, to perform our tests ap-
propriable, we did not consider it since we aimed to produce a similar
data-set for both periods. Furthermore, both multispectral sensors have
a luminosity sensor allowing for an in-field calibration of the registered
values. The flyover was carried out with the crop at 50 days after
emergence (DAE) during the first crop season (2017/2018). In the
second crop season, the overflight was carried out by the eBee RTK.

2.3. Statistical analysis

Pearson's correlation coefficients were initially estimated to verify
the association between grain yield (GY) and vegetation indices (VIs),
and we used the correlation network to graphically express these results
(Fig. 2). In this procedure, green lines link variables with positive
correlation, and red lines join negatively correlated variables. The line
thickness is proportional to the magnitude of the correlation. We choose
to present Fig. 2 and discuss the outcomes of this procedure into the
manuscripts’ next sections.

To rank the VIs, a Random Forest learner was trained using each
vegetation index individually. The performance for each trained
Random Forest using only one VI at a time was compared against a
simpler regression method using the same VI. The percentual gain in
performance of the Random Forest compared to the simpler regression
method, using each VI, was used as a reference to rank the VIs. This
performance was measured using Pearson’s correlation coefficient. To
achieve a less biased rank, this process was repeated 10 times using 10-
fold cross-validation, and the mean rank position of each VI was used as
the final position. The simpler regression method used in the experi-
ments was the ZeroR (0-R) that only uses the mean value of the target
variable, calculated using the training set, as a predictor. After that, n
sets of VIs are created, where n is the number of available VIs. The first
set contains all the n VIs and the other sets are formed by removing one
VI at a time, always the last in the merit ranking among the available
VIs. Mean Absolute Errors (MAE) and Pearson’s correlation coefficients
(r) were then obtained over randomized 10-fold cross-validation with
10 repetitions for each set using the RF model. This ranking strategy has
also been applied to the other two learners: Support Vector Machines
(SVM) and Artificial Neural Networks (ANN).

We also compared the RF overall performance against four other
machine learning models (Table 2): SVM using Sequential Minimal
Optimization (SMO) and a polynomial Kernel, Linear Regression (LR)
with Akaike information criterion for attribute selection; k-Nearest
Neighbors (KNN) with k = 5, and an ANN using sigmoid as the acti-
vation function for the hidden neurons and a linear activation function
for the output neuron. The hidden layer has 17 neurons (Weka’s default
heuristic value that corresponds to the number of classes plus outputs
divided by 2). For the RF approach, we also tested two meta learners;

Fig. 1. Location of the study area in Chapadão do Sul, Brazil.
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Table 1
The vegetation indices used in the experiments.

Index Equation

ARVI2 (Atmospherically Resistant Vegetation Index 2) + +R R R R0.18 1.17 [( )/( )]nir red nir red
ATSAVI (Ajusted Transformed soil-ajusted VI)

+ + +
1.22 R nir R red

R nir R red

( 1.22 0.03)
(1.22 1.22 0.03 0.08(1 1.222)

BWDRVI (Blue-wide dynamic range vegetation index) +R R0.1 ( )nir red
CCCI (Canopy Chlorophyll Content Index) +

+
R nir R rededge R nir R rededge

R nir R red R nir R red

( ) / ( )
( ) / ( )

CIgreen (Chlorophyll Index Green) R R( / ) 1nir green
CIrededge (Chlorophyll Index RedEdge) R R( / ) 1nir rededge
CVI (Chlorophyll Vegetation Index) R R R( / )nir red green2

DVI (Difference Vegetation Index) R R/nir red
EVEI2 (Enhanced Vegetation Index 2) + +R R R R2.5 ( )/( 2.4 1)nir red nir red
GDVI (Difference NIR/Green Difference Vegetation Index) R Rnir green
GEMI (Global Environment Monitoring Index) R R2 (1 0.25 2) (( 0.125)/(1 ))red red
GNDVI (Green Normalized Difference Vegetation Index) +R R R R( )/( )nir red nir red
GRNDVI (Green-Red NDVI) + + +R R R R R R[ ( )]/[ ( )nir green red nir green red
GRVI (Green-Red Vegetation Index) +R R R R( )/( )green red green red
GSAVI (Green Soil Adjusted Vegetation Index) + +R R R R[( )/( 0.5)] 1.5nir green nir green
GTVI (Green Triangle Vegetation Index) + + +NDVI NDVI NDVI( 0.5)/( 0.5) [( 0.5)]
IPVI (Infrared Percentage Vegetation Index) + +R R R NDVI/(( )/2) ( 1)nir nir red
LogR (Log Ratio) Log(R R/nir red)
MSAVI (Modified Soil Adjusted Vegetation Index) + +R R R R[2 1 (2 1) 8 ( ) ]/2nir nir nir red2

MSRNir_Red (Modified Simple Ratio NIR/RED) +R R R R( / 1)/ ( / 1nir red nir red
NDRE (Normalized Difference Red-Edge Index) +R R R( )/nir rededge nir rededge
NDVI (Normalized Difference Vegetation Index) +R R R R( )/( )nir red nir red
NGRDI (Normalized Green-Red Difference Index) + +R R R R R R( )/ /( )green red green nir red green
NormR1 (Normalized G) + +R R R R/( )green nir red green
NormR2 (Normalized NIR) + +R R R R/( )nir nir red green
NormR3 (Normalized R) + +R R R R/( )red nir red green
RGR (Red Green Ratio Index) R R/red green
RI (Redness Index) +R R R R/red green red green
RRI 1 R R/nir rededge
SAVI (Soil-Adjusted Vegetation Index) II + + +R R R R[(1 0.5) ( )]/( 0.5)nir red nir red
SRQT_IR_R R R/nir red
SRRed_NIR R Rred nir/
WDRVI (Wide Dynamic Range Vegetation Index) +R R R R(0.1 )/(0.1 )nir red nir red

NIR = near-infrared.

Fig. 2. Pearson’s correlation coefficient improvement using Random Forest against a baseline method to predict maize production with each vegetation index
individually. VIs is ordered by the average ranking position achieved over 10-fold cross-validation using the merit metric.
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the Bagging algorithm (RF + BAG) and the Additive Regression
(RF + AR), using RF as the base weak learner. We organized the test
order of each machine learning model according to Table 2.

Comparisons were made using all available VIs (33 in total) and
using the best set of VIs found for RF with the ranking-based approach.
Additionally, we tested the best set of VIs against three other sets: (1)
the VIs that use only visible bands – (thus, referring to it as RGB); (2)
the VIs using RGB plus NIR bands, and finally; (3) the VIs calculated
over RGB, NIR and Red-Edge spectral bands groups, that correspond to
all of the available indices in this study.

The experiments were run on an Intel® Core™ i7 CPU with 12 Gb
RAM and all hyperparameters were set according to Weka 3.9.4 default
library. Boxplots for all the configurations evaluated are presented to-
gether with the Scott-Knott test results.

3. Results

3.1. Ranking of Vegetation indices

Fig. 2 shows the merits and rank positions of each VI with the
standard deviation over the 10-fold cross-validation, ordered by the
average rank position. NDVI is the highest-ranked VI, followed by
NDRE and GNDVI, whereas NormR3 is the last-ranked VI. Among all
tested VIs, twelve (36%) presented a higher than 10% improvement
over the baseline method (average merit > 0.1), and three from this
subgroup was able to provide an improvement upper to 50% (average
merit > 0.5) compared to the baseline method in the maize yield
prediction task using RF. According to Figs. 2, 5 VIs showed a proximal
to zero improvements (average merit also negative) over the baseline,
indicating that besides not helping to improve performance in this task
they may be disturbing the algorithm’s performance.

Fig. 3 shows the correlation coefficient (r) and MAE variations as
the size of the VI sets is reduced, one VI at a time, using the ranking
shown in Fig. 2. The increase in r and decrease in MAE is not steady and
a peak happens with the best 3 VIs: NDVI, NDRE, and GNDVI. The same
strategies were applied to SVM and ANN methods (Figs. 4 and 5).

When RF adopts these three VIs (NDVI, NDRE, and GNDVI) to
perform the maize yield prediction task, the model can explain> 72%
(MAE = 950 kg ha−1 approximately) of GY, whereas this estimation
decrease to 65% (MAE above 1000 kg ha−1) when GNDVI is removed
from the model. The results for both SVM (Fig. 4) and ANN (Fig. 5)
models, using the VIs ranking-based strategy to maize yield prediction,
are extremely poor when compared to the RF.

In this sense, RF seems to be potentialized the with VIs ranking
strategy application, but the same was not observed for the other ma-
chine learning algorithms; SVM and ANN. The best result for the SVM
(Fig. 4) model occurs when 8 VIs (r = 0.35 and MAE = 1450 kg ha−1

approximately) are adopted. For the ANN model, it was necessary 11
VIs for it to achieve the best performance in predicting maize-yield,
with a correlation coefficient of 0.5 and MAE equals 1550 kg ha-1 ap-
proximately (Fig. 3). Nonetheless, these results are at least 31% worse
than those obtained with RF in the same task.

3.2. Machine learning Models’ performances

Table 3 shows the results of grouping the Scott-Knott test for
Pearson’s correlation coefficient (r) and Mean Absolute Error (MAE)
obtained with machine learning models using all VIs and the three best
VIs. The meta-learner RF + AR, using RF as the base machine learning
model, was the technique that stood out; statistically presenting the
highest averages of r (0.78) and the lowest MAE (853.11 kg ha−1). It is
important to mention that the usage of the three best VIs provided
satisfactory results only for the AR and RF techniques. The other
techniques only showed better results when considering all VIs.

Pearson’s correlation coefficient and MAE obtained with machine
learning models using all VIs and three best VIs are displayed in Figs. 6
and 7, respectively. When using all VIs (Fig. 4), the RF, RF + AR, and
RF + BAG techniques stand out for presenting the highest average for r
and the lowest for MAE. Although ANN is one of the techniques that
provided the highest value for r, the ones obtained for MAE were higher
with also high variability.

When we used the proposed ranking strategy to select the three best
VIs (NDVI, NDRE, and GNDVI) (Fig. 8), the AR and RF techniques stood
out for presenting the highest median values for r and the lowest for
MAE. The boxplots comparing RF in four different configurations of VI
sets are shown there (Fig. 8). The set automatically constructed with the
ranking-based approach returned the highest average values for r and
the lowest MAE.

Fig. 8 shows that, by using only the RGB group of indices, a low
accuracy is achieved in predicting grain yield. An improvement occurs
when considering NIR and Red-edge indices in the RF model. However,
the higher accuracy was obtained considering only the three indices
(NDVI, NDRE, and GNDVI). These indices use Red, Green, NIR, and
Red-Edge bands.

4. Discussion

The potential of the Random Forest (RF) ranking-based approach for
predicting maize yield using multispectral UAV-imagery was evaluated
with a robust dataset composed of 11 maize cultivars, under two rates
of N2 fertilization rates (60 kg ha−1 and 180 kg ha−1) in four replicates
of each plantation plot. These aerial images represent two crop seasons
(2017/2018 and 2018/2019) acquired by two different multispectral
sensors (MicaSense Red-Edge ® and Sensefly Parrot Sequoia ®) em-
bedded in UAVs, characterizing more robustness to our experimental
setup. The use of a vast number of vegetation spectral indices (VIs)
(total of 33) in the maize yield prediction task was important to eval-
uate different configurations of sets using 7 distinct machine learning
techniques. Additionally, the analysis with two meta learners, Bagging
and Additive Regression, using the RF as the base weak learner, was
essential to identify how much the RF algorithm can be potentialized
with the ranking-strategy presented here.

Based on Pearson’s correlation coefficient and Mean Absolute Error
(MAE) values, our study demonstrates how feasible machine learning is
to predict maize-yield using only VIs. In this manner, the strategy to
individually rank each of the 33 VIs based on a merit metric that
measures the improvement on the Pearson’s correlation coefficient
using RF against a baseline method was essential to improve the per-
formance of the machine learning algorithms at the aforementioned
task. When the seven learners were explored with all VIs, we identified
a similar performance among the models. Two exceptions, however,
were found to the SVM and KNN models, returning the lower correla-
tions identified with the grain yield variable. Nonetheless, the use of the
only the three best VIs found by the RF ranking-strategy reveals that
machine learning algorithms do not present similar performance, being
RF the best option, which was even better when the meta learner
Additive Regression was implemented with. In this regard, the config-
urations were an indicator of the importance of this ranking-strategy to
be applied before the machine learning method being applied for the

Table 2
Machine learning and meta-learning (#5 and #6) algorithms used in this study.

Test Order ML Model Reference

#1 Random Forests - RF Belgiu and Drăgu (2016)
#2 Support Vector Machine - SVM Nalepa and Kawulok (2019)
#3 Linear Regression - LR Štepanovský et al. (2017)
#4 K-Nearest Neighbours - KNN Ali et al. (2019)
#5 Bagging - RF + BAG Breiman (1996)
#6 Additive Regression - RF + AR Friedman (2002)
#7 Artificial Neural Networks - ANN Egmont-Petersen et al. (2002)
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yield prediction.
Concerning the accuracy of our model, it achieved similar metrics as

others obtained by similar research. One study (Serele et al., 2000)
adopted aerial multispectral imagery and demonstrated that the ANN

model presented high performance (r = 0.95, RMSE = 365 kg ha−1)
for the maize-yield estimation, but this metric was achieved only when
a total of 11 variables (three topographic features, four vegetation
index, and four textural indices) were included as input data in the ANN

Fig. 3. Pearson’s correlation coefficient (r) and mean absolute error (MAE) variation as the number of VIs is reduced, for the random forest model, using the VI
ranking strategy proposed in this work.

Fig. 4. Pearson’s correlation coefficient (r) and mean absolute error (MAE) variation as the number of VIs is reduced, for the SVM model, using the VI ranking
strategy proposed in this work.
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model. Another research (Uno et al. 2005) used hyperspectral images in
the aforementioned task and stated that the ANN model was also effi-
cient (r = 0.76, RMSE = 19.7%). Nonetheless, the authors argued that
the expected prediction errors of approximately 20% (RMSE for the test
datasets) appear to be high for the creation of yield maps for precision
agriculture, requiring new experiments. A more recent study (Khanal
et al. 2018) also related to maize yield prediction using the RF algo-
rithm combined multispectral aerial images with topographic data and
stated that the RF consistently outperformed (r = 0.73,
RMSE = 970 kg ha-1) other machine learning models.

Our experiment section using only UAV-images corroborates that
the meta-learner RF + AR, using RF as the base machine learning
model, (r = 0.78, MAE = 853.11 kg ha-1) has a high potential to
support the maize yield prediction task. Moreover, it should be argued
that when we adopted the RF ranking approach, only three VIs (NDVI,
NDRE, and GNDVI) were required to execute this prediction-task with
high performance, implying that our solution is a low-cost and simpler
method than most approaches. Additionally, it is worth mentioning that
when the ranking-based approach was applied with other machine
learning algorithms, like SVM and ANN, we discovered that only the RF
method strongly benefited from this strategy. We found out that the

ranking-based approach potentialized the algorithm performance, in-
creasing the correlation coefficient, and decreasing the MAE, but the
same situation did not occur when other machine learning methods
were tested.

Our analysis of the ranking-based approach demonstrates that some
VIs contribute more and positively to improve the performance of
machine learning algorithms in maize-yield prediction tasks, whereas
other VIs are disturbing the RF algorithm’s performance. We verified
that among the three VIs that presented a higher than 50% improve-
ment over the baseline (average merit > 0.5), two are calculated using
the Red or Green and NIR spectral bands. Moreover, we noted that the
contribution of both NDRE (that requires Red-Edge spectral band in its
calculation) and GNDVI (that uses the Green band) are similar ac-
cording to the merits and rank positions analysis (Fig. 2). This could be
interpreted that the VIs extracted from RGB and NIR images may be
enough to perform the maize-yield prediction task. However, when we
analyzed the RF’s performance including the NDRE (that uses the Red-
Edge band) index, we discovered that the correlation coefficient with
grain yield increased from 65% to 78%. Studies (Abdel-Rahman et al.
2013; Ramoelo et al. 2015) have demonstrated that, in the RF model,
VIs developed considering red-edge bands generally outperform other
VIs for predicting crops' nutrients, like Nitrogen, which is related to
crops yield rates.

The performance of each machine learning algorithm was, as pre-
sented, evaluated with a multiple set of configurations. This analysis
returned interesting outcomes because while some learners improved
their performance with the ranking strategy, other models had their
performances degraded (Table 3; Figs. 6 and 8). Among all the explored
algorithms, the RF was the only one that significantly improved its
performance with the ranking-strategy. This finding was observed for
all RF variations used in this study, such as RF + AF (r = 0.78;
MAE = 853.11 kg ha−1), RF + BAG (r = 0.69;
MAE = 1026.34 kg ha−1), and RF (r = 0.72; MAE = 953.86 kg ha−1),
compared to SVM (r = 0.31; MAE = 1431.37 kg ha−1) or ANN
(r = 0.31; MAE = 1666.79 kg ha−1). It should be highlighted that our
strategy to combine RF + AF (r = 0.78; MAE = 853.11 kg ha−1) re-
sulted in an improvement in MAE value of 100% approximately

Fig. 5. Pearson’s correlation coefficient (r) and mean absolute error (MAE) variation as the number of VIs is reduced, for the ANN model, using the VI ranking
strategy proposed in this work.

Table 3
Grouping of means by the Scott-Knott test for Pearson’s correlation coefficient
(r) and mean absolute error (MAE) obtained with machine learning models
using all VIs and the three best VIs identified using the ranking-based approach.

ML model r MAE
all VIs three best VIs all VIs three best VIs

RF 0.48 a 0.72b 1332.47 d 953.86 d
RF + AR 0.51 a 0.78 a 1274.05 d 853.11 e
RF + BAG 0.47 a 0.69b 1373.30 d 1026.34 d
SVM 0.34c 0.31 d 1423.56b 1431.37b
LR 0.41b 0.31 d 1416.92c 1477.46b
KNN 0.21 d 0.54c 1502.71b 1224.16c
ANN 0.46 a 0.31 d 1691.14 a 1666.79 a

Note: Means followed by different letters in the same column differ by the Scott-
Knott test at 5% probability.
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compared to the value obtained with the ANN model (r = 0.31;
MAE = 1666.79 kg ha−1) which has been adopted frequently by re-
lated studies (Serele et al., 2000; Uno et al. 2005). The highest per-
formance with RF possibly occurred due to the internal structure of the
algorithm which is based on decision tree sets. Other studies that im-
plemented not only spectral information but also soil variables, clima-
tological data, among others to estimate yield in their RF models, could

be potentialized with the proposed ranking-based approach, achieving
even higher accuracies.

The approach presented here may be implemented with different
datasets over diverse cultivars. Here, our particular interest was to in-
vestigate whether a ranking-based approach can potentialize the RF
algorithm to predict maize yield using VIs calculated from multispectral
UAV-imagery since this learner is classified as an effective and versatile

Fig. 6. Boxplots for Pearson’s correlation coefficient (r) and mean absolute error (MAE) for different machine learning models evaluated using all VIs.

Fig. 7. Boxplots for Pearson’s correlation coefficient (r) and mean absolute error (MAE) for different machine learning models evaluated using the three best VIs.
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machine-learning method for crop yield predictions (Jeong et al. 2016).
The main advantage of our proposed procedure is that it allowed esti-
mating maize yield with high accuracy, using a rapid and cost-efficient
manner, which is essential to support the recurrent monitoring of the
agricultural landscapes. In this regard, precision agriculture practices
could benefit from our finding framework, supporting agricultural
system management, and helping decision-making actions.

5. Conclusions

This study investigated whether the ranking-based strategy of ve-
getation indices (VIs) can potentialize the Random Forest (RF) algo-
rithm to predict maize yield using only multispectral UAV-imagery. Up
to the best of our knowledge, this refers to the first exploration of its
kind, mainly in the precision agriculture context. Here, we tested sev-
eral combinations of VIs using a group of machine learning techniques,
and we pointed out which of the implemented learners is more suitable
to predict maize-yield with VIs calculated from multispectral UAV-
imagery. Our findings showed that the RF algorithm performed better
in all of the configuration scenarios, especially for the ranking-based
approach of VIs. Besides, we detected that some VIs contributed more to
maize yield prediction than others. The integration between the three
best VIs and a meta-learner, Additive Regression, using the RF as the
base learner, improved maize yield prediction accuracy even more. The
procedure developed during our analysis refers to a simpler strategy to
estimate maize-yield prediction considering only UAV-based imagery.
We conclude that the RF ranking-based approach is appropriate to
predict this agronomic variable (grain yield). We suggest our method to
be adopted in future research to evaluate different types of crop yield,

as to assist proper management and be used in decision-making models
in the precision agriculture domain.

Funding
This research was funded by CNPq, grant number 303559/2019–5,

433783/2018–4, 314902/2018–0, and 304173/2016–9; CAPES - Print,
grant number 88881.311850/2018–01, and Fundect, grand number
59/300.066/2015, and 59/300.095/2015.

Declaration of Competing Interest

The authors declared that there is no conflict of interest.

Acknowledgments

The authors acknowledge the support of UFMS (Federal University
of Mato Grosso do Sul), UCDB (Dom Bosco Catholic University), CNPq
(National Council for Scientific and Technological) and CAPES
(Coordination for the Improvement of Higher Education Personnel -
Finance code 001).

References

Abdel-Rahman, E.M., Ahmed, F.B., Ismail, R., 2013. Random forest regression and
spectral band selection for estimating sugarcane leaf nitrogen concentration using
EO-1 Hyperion hyperspectral data. Int. J. Remote Sens. 34 (2), 712–728. https://doi.
org/10.1080/01431161.2012.713142.

Ali, N., Neagu, D., Trundle, P., 2019. Evaluation of k-nearest neighbour classifier per-
formance for heterogeneous data sets. SN Appl. Sci. 1, 1–15. https://doi.org/10.
1007/s42452-019-1356-9.

Amatya, S., Karkee, M., Gongal, A., Zhang, Q., Whiting, M.D., 2016. Detection of cherry
tree branches with full foliage in planar architecture for automated sweet-cherry

Fig. 8. Boxplots for Pearson’s correlation coefficient (r) and mean absolute error (MAE) when comparing different sets of VIs using random forest. The sets compared
are the ones resulting from the proposed approach, 3_BEST, and 3 other configurations: only RGB based VIs, RGB + NIR, and RGB + NIR + Rededge VIs.

A.P. Marques Ramos, et al. Computers and Electronics in Agriculture 178 (2020) 105791

9

https://doi.org/10.1080/01431161.2012.713142
https://doi.org/10.1080/01431161.2012.713142
https://doi.org/10.1007/s42452-019-1356-9
https://doi.org/10.1007/s42452-019-1356-9


harvesting. Biosyst. Eng. 146, 3–15. https://doi.org/10.1016/j.biosystemseng.2015.
10.003.

Barbosa, A., Trevisan, R., Hovakimyan, N., Martin, N.F., 2020. Modeling yield response to
crop management using convolutional neural networks. Comput. Electron. Agric.
170, 105197. https://doi.org/10.1016/j.compag.2019.105197.

Belgiu, M., Drăgu, L., 2016. Random forest in remote sensing: A review of applications
and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31. https://doi.
org/10.1016/j.isprsjprs.2016.01.011.

Breiman, L., 1996. Machine Learning 24 (2), 123–140. https://doi.org/10.1023/
a:1018054314350.

Chlingaryan, A., Sukkarieh, S., Whelan, B., 2018. Machine learning approaches for crop
yield prediction and nitrogen status estimation in precision agriculture: A review.
Comput. Electron. Agric. 151, 61–69. https://doi.org/10.1016/j.compag.2018.05.
012.

Zhang, J, Yuhang, He, Lian, Yuan, Peng, Liu, Xianfeng, Zhou, Yanbo, Huang, et al., 2019.
Machine learning-based spectral library for crop classification and status monitoring.
Agronomy 9 (9), 496. https://doi.org/10.3390/agronomy9090496. https://www.
mdpi.com/2073-4395/9/9/496#cite.

CONAB, C.N. de A. Monitoring of the Brazilian harvest, Grains; Brasília, DF, 2020; ISBN
2318-6852. Available from https://www.conab.gov.br/info-agro/safras/graos/bo-
letim-da-safra-de-graos.

Egmont-Petersen, M., de Ridder, D., Handels, H., 2002. Image processing with neural
networks—a review. Pattern Recogn. 35 (10), 2279–2301. https://doi.org/10.1016/
s0031-3203(01)00178-9.

Friedman, J.H., 2002. Stochastic gradient boosting. Comput. Stat. Data Anal. 38 (4),
367–378. https://doi.org/10.1016/s0167-9473(01)00065-2.

Hunt, M.L., Blackburn, G.A., Carrasco, L., Redhead, J.W., Rowland, C.S., 2019. High re-
solution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 233, 111410.
https://doi.org/10.1016/j.rse.2019.111410.

Jeong, J.H., Resop, J.P., Mueller, N.D., Fleisher, D.H., Yun, K., Butler, E.E., Kim, S.-H.,
2016. Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE 11
(6), e0156571. https://doi.org/10.1371/journal.pone.0156571.

Khaki, S., Wang, L., Archontoulis, S.V., 2020. A CNN-RNN Framework for Crop Yield
Prediction. Front. Plant Sci. 10. https://doi.org/10.3389/fpls.2019.01750.

Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N., Shearer, S., 2018. Integration of high
resolution remotely sensed data and machine learning techniques for spatial pre-
diction of soil properties and corn yield. Comput. Electron. Agric. 153, 213–225.
https://doi.org/10.1016/j.compag.2018.07.016.

Liakos, K., Busato, P., Moshou, D., Pearson, S., Bochtis, D., 2018. Machine Learning in
Agriculture: A Review. Sensors 18 (8), 2674. https://doi.org/10.3390/s18082674.

Nalepa, J., Kawulok, M., 2019. Selecting training sets for support vector machines: a
review. Artif. Intell. Rev. 52, 857–900. https://doi.org/10.1007/s10462-017-
9611-1.

Nevavuori, P., Narra, N., Lipping, T., 2019. Crop yield prediction with deep convolutional
neural networks. Comput. Electron. Agric. 163, 104859. https://doi.org/10.1016/j.
compag.2019.104859.

Osco, L.P., Paula, A., Ramos, M., Pereira, D.R., Akemi, É., Moriya, S., Matsubara, E.T.,

2019. Predicting canopy nitrogen content in citrus-trees using random forest algo-
rithm associated to spectral vegetation indices from UAV-imagery. Remote Sensing
11 (24), 2925–2942. https://doi.org/10.3390/rs11242925.

Osco, L.P., Ramos, A.P.M., Moriya, É.A.S., Bavaresco, L.G., de Lima, B.C., Estrabis, N.,
Pereira, D.R., Creste, J.E., Júnior, J.M., Gonçalves, W.N., Imai, N.N., Li, J.,
Liesenberg, V., de Araújo, F.F. Modeling hyperspectral response of water-stress in-
duced lettuce plants using artificial neural networks. 2019b. Remote Sensing, 11(23).
https://doi.org/10.3390/rs11232797.

Pantazi, X.E., Moshou, D., Alexandridis, T., Whetton, R.L., Mouazen, A.M., 2016. Wheat
yield prediction using machine learning and advanced sensing techniques. Comput.
Electron. Agric. 121, 57–65. https://doi.org/10.1016/j.compag.2015.11.018.

Ramos, P.J., Prieto, F.A., Montoya, E.C., Oliveros, C.E., 2017. Automatic fruit count on
coffee branches using computer vision. Comput. Electron. Agric. 137, 9–22. https://
doi.org/10.1016/j.compag.2017.03.010.

Ramoelo, A., Cho, M.A., Mathieu, R., Madonsela, S., van de Kerchove, R., Kaszta, Z.,
Wolff, E., 2015. Monitoring grass nutrients and biomass as indicators of rangeland
quality and quantity using random forest modelling and WorldView-2 data. Int. J.
Appl. Earth Obs. Geoinf. 43, 43–54. https://doi.org/10.1016/j.jag.2014.12.010.

Senthilnath, J., Dokania, A., Kandukuri, M.K.N.R., Anand, G., Omkar, S.N., 2016.
Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images
captured by UAV. Biosyst. Eng. 146, 16–32. https://doi.org/10.1016/j.
biosystemseng.2015.12.003.

Serele, C.Z., Gwyn, Q.H.J., Boisvert, J.B., Pattey, E., McLaughlin, N., Daoust, G., 2000.
Corn yield prediction with artificial neural network trained using airborne remote
sensing and topographic data. International Geoscience and Remote Sensing
Symposium. https://doi.org/10.1109/igarss.2000.860527.

Shah, Vinita, Shah, Prachi, 2018. Groundnut crop yield prediction using machine learning
techniques. Int. J. Scient. Res. Comput. Sci. Eng. Inform. Technol. 3 (5), 1093–1097.
https://www.researchgate.net/profile/Vinita_Shah/publication/326112319_
Groundnut_Crop_Yield_Prediction_Using_Machine_Learning_Techniques/links/
5c4e9d9b458515a4c74584c7/Groundnut-Crop-Yield-Prediction-Using-Machine-
Learning-Techniques.pdf.

Štepanovský, M., Ibrová, A., Buk, Z., Velemínská, J., 2017. Novel age estimation model
based on development of permanent teeth compared with classical approach and
other modern data mining methods. Forensic Sci. Int. 279, 72–82. https://doi.org/10.
1016/j.forsciint.2017.08.005.

Su, Y., Xu, H., Yan, L., 2017. Support vector machine-based open crop model (SBOCM):
Case of rice production in China. Saudi Journal of Biological Sciences 24 (3),
537–547. https://doi.org/10.1016/j.sjbs.2017.01.024.

Uno, Y., Prasher, S.O., Lacroix, R., Goel, P.K., Karimi, Y., Viau, A., Patel, R.M., 2005.
Artificial neural networks to predict corn yield from Compact Airborne
Spectrographic Imager data. Comput. Electron. Agric. 47 (2), 149–161. https://doi.
org/10.1016/j.compag.2004.11.014.

Vani, S., Sukumaran, R.K., Savithri, S., 2015. Prediction of sugar yields during hydrolysis
of lignocellulosic biomass using artificial neural network modeling. Bioresour.
Technol. 188, 128–135. https://doi.org/10.1016/j.biortech.2015.01.083.

A.P. Marques Ramos, et al. Computers and Electronics in Agriculture 178 (2020) 105791

10

https://doi.org/10.1016/j.biosystemseng.2015.10.003
https://doi.org/10.1016/j.biosystemseng.2015.10.003
https://doi.org/10.1016/j.compag.2019.105197
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1023/a:1018054314350
https://doi.org/10.1023/a:1018054314350
https://doi.org/10.1016/j.compag.2018.05.012
https://doi.org/10.1016/j.compag.2018.05.012
https://doi.org/10.3390/agronomy9090496
https://www.mdpi.com/2073-4395/9/9/496#cite
https://www.mdpi.com/2073-4395/9/9/496#cite
https://doi.org/10.1016/s0031-3203(01)00178-9
https://doi.org/10.1016/s0031-3203(01)00178-9
https://doi.org/10.1016/s0167-9473(01)00065-2
https://doi.org/10.1016/j.rse.2019.111410
https://doi.org/10.1371/journal.pone.0156571
https://doi.org/10.3389/fpls.2019.01750
https://doi.org/10.1016/j.compag.2018.07.016
https://doi.org/10.3390/s18082674
https://doi.org/10.1007/s10462-017-9611-1
https://doi.org/10.1007/s10462-017-9611-1
https://doi.org/10.1016/j.compag.2019.104859
https://doi.org/10.1016/j.compag.2019.104859
https://doi.org/10.3390/rs11242925
https://doi.org/10.1016/j.compag.2015.11.018
https://doi.org/10.1016/j.compag.2017.03.010
https://doi.org/10.1016/j.compag.2017.03.010
https://doi.org/10.1016/j.jag.2014.12.010
https://doi.org/10.1016/j.biosystemseng.2015.12.003
https://doi.org/10.1016/j.biosystemseng.2015.12.003
https://doi.org/10.1109/igarss.2000.860527
https://www.researchgate.net/profile/Vinita_Shah/publication/326112319_Groundnut_Crop_Yield_Prediction_Using_Machine_Learning_Techniques/links/5c4e9d9b458515a4c74584c7/Groundnut-Crop-Yield-Prediction-Using-Machine-Learning-Techniques.pdf
https://www.researchgate.net/profile/Vinita_Shah/publication/326112319_Groundnut_Crop_Yield_Prediction_Using_Machine_Learning_Techniques/links/5c4e9d9b458515a4c74584c7/Groundnut-Crop-Yield-Prediction-Using-Machine-Learning-Techniques.pdf
https://www.researchgate.net/profile/Vinita_Shah/publication/326112319_Groundnut_Crop_Yield_Prediction_Using_Machine_Learning_Techniques/links/5c4e9d9b458515a4c74584c7/Groundnut-Crop-Yield-Prediction-Using-Machine-Learning-Techniques.pdf
https://www.researchgate.net/profile/Vinita_Shah/publication/326112319_Groundnut_Crop_Yield_Prediction_Using_Machine_Learning_Techniques/links/5c4e9d9b458515a4c74584c7/Groundnut-Crop-Yield-Prediction-Using-Machine-Learning-Techniques.pdf
https://doi.org/10.1016/j.forsciint.2017.08.005
https://doi.org/10.1016/j.forsciint.2017.08.005
https://doi.org/10.1016/j.sjbs.2017.01.024
https://doi.org/10.1016/j.compag.2004.11.014
https://doi.org/10.1016/j.compag.2004.11.014
https://doi.org/10.1016/j.biortech.2015.01.083

	A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices
	1 Introduction
	2 Materials and methods
	2.1 Field trials
	2.2 Aerial multispectral image acquisition and vegetation indices
	2.3 Statistical analysis

	3 Results
	3.1 Ranking of Vegetation indices
	3.2 Machine learning Models’ performances

	4 Discussion
	5 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References




