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A B S T R A C T

Mobile LiDAR systems (MLS) are rapid and accurate technologies for acquiring three-dimensional (3D) point
clouds that can be used to generate 3D models of road environments. Because manual extraction of desirable
features such as road traffic signs, trees, and pavement markings from these point clouds is tedious and time-
consuming, automatic information extraction of these objects is desirable. This paper proposes a novel automatic
method to extract pavement lane markings (LMs) using point attributes associated with the MLS point cloud
based on fuzzy inference. The proposed method begins with dividing the MLS point cloud into a number of small
sections (e.g. tiles) along the route. After initial filtering of non-ground points, each section is vertically aligned.
Next, a number of candidate LM areas are detected using a Hough Transform (HT) algorithm and considering a
buffer area around each line. The points inside each area are divided into “probable-LM” and “non-LM” clusters.
After extracting geometric and radiometric descriptors for the “probable-LM” clusters and analyzing them in a
fuzzy inference system, true-LM clusters are eventually detected. Finally, the extracted points are enhanced and
transformed back to their original position. The efficiency of the method was tested on two different point cloud
datasets along 15.6 km and 9.5 km roadway corridors. Comparing the LMs extracted using the algorithm with
the manually extracted LMs, 88% of the LM lines were successfully extracted in both datasets.

1. Introduction

Within the last two decades, airborne Light Detection and Ranging
(LiDAR) scanning technologies have been widely used to acquire three-
dimensional (3D) coordinates in the form of dense point clouds for
various applications such as 3D city modeling and Digital Elevation
Model (DEM) generation (Guan et al., 2014; Liu, 2008; Yang et al.,
2017). Similarly, Mobile Laser Scanning (MLS) systems provide an ef-
ficient, cost-effective, and reliable data source in the form of 3D point
clouds for corridors, which is useful in roadway analysis (Guan et al.,
2014; Hatger and Brenner, 2003; Shams et al., 2018; Wang et al., 2017;
Yan et al., 2016; Zai et al., 2017). An MLS includes an integration of
several devices including a laser scanner, a Global Navigation Satellite
System (GNSS), an Inertial Measurement Unit (IMU), high-resolution
cameras, and a computer control device (Kumar et al., 2017).

Due to the tremendous number of the points within the resultant
point cloud, the manual extraction of useful data is tedious; therefore,

researchers have been working on developing automatic techniques for
filtering, segmentation, and classification of point clouds to extract
desirable objects (Habib et al., 2005; Jiang, 2017; Ma et al., 2018; Serna
et al., 2014; Wen et al., 2019; Zai et al., 2017).

This paper proposes a novel automatic method to extract pavement
LMs using point attributes associated with the MLS point cloud based
on fuzzy inference. A potential benefit of using fuzzy inference is that it
may address limitations of other methods that are prone to uncertainty.
One of the objectives of this research is to explore the benefits of using
fuzzy inference in dealing with the uncertainty associated with ex-
tracting roadway markings automatically.

2. Literature review

2.1. Extraction of street features from LiDAR point clouds

There have been numerous studies focused on extracting street
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features and roadway assets from point clouds. For example Wang et al.
(2017) proposed a feature matching algorithm for automatic street
object recognition in an MLS point cloud. Their algorithm used shape
descriptors of complete objects to match repetitive objects in large
point clouds to identify and extract traffic signs, lamp poles, roadside
furniture, and other objects. Many studies have investigated the ex-
traction of curbs and road surfaces by using differences in height or
projected density thresholds (Jaakkola et al., 2008; Guan et al., 2014;
Rodríguez-Cuenca et al., 2015; Yang and Dong, 2013). Further, the
point clouds can be used to extract roadway geometry elements such as
horizontal alignment (Holgado-Barco et al., 2015) and cross sections
including cross slope and super-elevation data that is relatively accurate
for highway safety applications (Holgado‐Barco et al., 2017; Shams
et al., 2018).

The intensity of point data facilitates the automatic extraction of
pavement markings from MLS point clouds in all of the studies identi-
fied in the literature (Guan et al., 2014; Kumar et al., 2014; Shams
et al., 2018; Yang et al., 2012). Olsen et al. (2018) investigated the
effectiveness of using MLS to evaluate pavement marking and highway
sign retro-reflectivity according to the intensity value of the points.
Moreover, Ai and Tsai (2016) developed an automated system to de-
termine the condition of traffic signs using MLS. One benefit of using
MLS to determine retro-reflectivity of pavement marking and sign is
that the data can be collected during the daytime and nighttime.

2.2. Methods of extraction of pavement markings from MLS point clouds

Based on the literature, LM extraction algorithms can be divided
into two groups: (1) points-based; and (2) raster-based. These methods
are discussed in the following sub-sections.

2.2.1. Points-based methods
In the points-based methods, an algorithm directly applies the raw

points and their available information to extract road markings. For
instance, Vosselman (2009) extracted road markings points by a range
of dependent thresholds and grouped them by connected component
analysis. The road markings were extracted by fitting predefined shapes
to the grouped segments (Yang and Dong, 2013) used support vector
machine (SVM) classification techniques to classify point clouds ac-
cording to calculated geometric features of each point in a specified
neighborhood. Soilán et al. (2017) applied a curb-based approach to
segment the raw point cloud, and then directly extract road markings
from road surface points through multi-segment thresholding and spa-
tial density filtering. Yang et al. (2017) applied a binary kernel de-
scriptor (BKD) consisting of Gaussian kernel density estimation and
binarized components to encode the shape and intensity of the 3D point
clouds to extract road information from MLS point clouds. This in-
formation was used in a random forest classifier to extract curbs and
markings on the road with a 94.5% level of accuracy. Zai et al. (2018)
used geometric, intensity and spatial distance information to generate
super-voxels from point clouds, and then 3D road boundaries were
extracted using the α-shape algorithm and the graph cuts-based energy
minimization algorithm. In this method, average completeness over
95% and average correctness over 98% were reported.

2.2.2. Raster-based methods
In raster-based methods, the point’s intensity and range data are

converted into a raster format to create a 2D image, and image pro-
cessing algorithms are used to extract road markings. For example,
Jaakkola et al. (2008) corrected LiDAR intensity data using a second
order curve fitting function and then applied threshold and morpho-
logical filtering to extract road markings. Other variations of raster-
based methods to extract road markings were used by Chen et al.
(2009), Smadja et al. (2010), Yang et al. (2012), Kumar et al. (2014),
and Guan et al. (2015). Soilán et al. (2018) applied Artificial Neural
Network (ANN) for extraction and classification of pavement markings

based on Geometry Based Feature (GBF) vectors including area,
bounding ellipse measurements, shape measurement, and pixel dis-
tribution. An average accuracy of 92% for three different datasets was
reported for this algorithm.

A state-of-the art raster-based method was recently proposed in
Jung et al. (2019) to extract road pavement markings from MLS point
clouds. In this method, using the MLS trajectory information, the point
cloud was divided into smaller sections. Then, the road surface was
extracted via constrained RANSAC and the segments were converted to
a 2D intensity image to apply image segmentation to separate the LMs
from the road pavement. The algorithm was tested on a variety of da-
tasets and F1-score measures from 89 to 97% were reported for a wide
range of road scene types. Moreover, Wen et al. (2019) developed a
deep learning-based framework for automated extraction and classifi-
cation of road markings. In their technique, a pixel-level U-net seg-
mentation network was trained using a series of raster patches from the
road surface. The precision, recall, and F1-score obtained using the low-
quality point cloud datasets achieved 95.97%, 87.52% and 91.55%,
respectively.

2.3. Proposing a combined approach

Generally, converting the points into a raster format enables using
numerous image processing techniques which can be highly efficient in
terms of simplicity and speed of processing. However, raster conversion
may result in a loss of information. In contrast, working with points
directly prevents this drawback but requires complex computation. In
this paper, we propose a new method by taking advantage of the
strengths of both point-based and raster-based methods to extract LMs.
We first use a raster format to estimate the primary location of LMs to
increase the speed of computation. Then, the points are extracted and
processed to detect LMs.

To date, intensity of the points is the only attribute used to extract
LMs in most extraction methods. Other attributes such as trajectory
data, Number of Returns (NOR), and Return Number (RN) can also be
useful. NOR shows the maximum number of individual returns (up to
five) that can be extracted from a single beam. RN refers to the rank of a
return among those generated from one beam and it is meaningful only
in a system that supports multiple returns per beam (Gatziolis and
Andersen, 2008). As part of our research we explored the benefits of
using RN information to detect LMs. This is one of the unique aspects of
this research based on the literature review. Moreover, similar to many
MLS data processing studies it is assumed that vehicle trajectory is
available. While MLS vehicle trajectory data may not be provided to the
end user, it is always initially collected via GNSS/IMU.

In our approach, LMs within each tile are assumed to be straight
lines because the curvature of the road is minimal if the tile size is
small. Fusing the linearity assumption with the intensity information
leads to defining a new descriptor that we call Lane Marking Index
(LMI). However, using an intensity threshold as the only attribute to
identify pavement markings may return erroneous results depending on
the condition of the markings. On the other hand, high-intensity values
of the reflected lasers may come from other objects such as adjacent
vehicles in the traffic stream or guardrail. Thus, there is clearly un-
certainty in a threshold based extraction process. One approach to
minimize uncertainty is to use a fuzzy inference system that is designed
to analyze and address this uncertainty. As stated previously, one ob-
jective of this research is to design a fuzzy inference system that ad-
dresses thresholding uncertainty. In the next section, we identify and
discuss the novel workflow methodology used for automatically ex-
tracting pavement markings. This is followed by a discussion of ex-
perimental results, and conclusions.

3. Method

The workflow of the proposed method is shown in Fig. 1. According
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to this workflow, pavement markings are extracted from the point cloud
and trajectory data in five main phases: (1) data sectioning, (2) pre-
processing, (3) lane marking areas extraction, (4) lane markings de-
tection, and (5) regularization.

In this workflow, after dividing the MLS point cloud into small
sections (e.g., tiles) along the route, each section is vertically aligned.
The initial traveling LM areas are detected using the HT algorithm and
considers a buffer area where all points outside the road are omitted
from the selected section. In each LM area, candidate pavement
marking points are separated from other points. Then, by analyzing
their geometric and intensity descriptors in a fuzzy inference system,
LMs of each section are detected. Eventually, the points in each LM are
refined and transformed back to their original position in the regular-
ization step. Further details of these phases are described in the

following sections.

3.1. Data sectioning

An MLS point cloud contains numerous objects with a variety of
shapes and sizes. The sectioning step will result in faster processing by
dividing the data into a number of small tiles and reducing redundant
points from the point cloud. Section length is an important parameter to
fulfill the shape of an LM in each section–especially sections of a small
radius curve. Although a fixed length in the sectioning step is simple, it
may result in a curved LM assumed to be a straight line depending on
section length. On the other hand, a tangent section of the road could be
over-segmented. Therefore, the size of the tiles should be varied de-
pending on roadway geometry and curve radii.

Fig. 1. Flowchart of the proposed method for automatic LM points extraction from MLS point clouds.

Fig. 2. Sample section areas based on the trajectory data of the vehicle.
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Varying tile size based on roadway curvature can be done auto-
matically in some instances if MLS vehicle trajectory data is available.
For curved sections, smaller tiles can be specified as a function of curve
radius that can be easily extracted from the vehicle trajectory. Road
curvature may cause gaps between adjacent sections due to the differ-
ence between their azimuths. To account for these gaps, overlapping of
two adjacent tiles is necessary to prevent gaps during sectioning. The
overlap distance can be user specified based on curve radii. A fixed
overlap distance of 1 m was used in this research and was found to be
suitable for most of the sections.

If vehicle MLS trajectory data is not available, a manual polyline
that replicates the trajectory can be drawn. Fig. 2 shows the corre-
sponding parameters in sectioning, where Sl is the section length, and So
is the overlapping distance between two adjacent sections. Although
the sectioning step reduces the volume of data, many redundant points
remain in each tile. In this regard, buffering distances across the tra-
jectory line as shown by Wl and Wr in Fig. 2, can help to eliminate
undesirable points. If the road width changes along the vehicle path,
this parameter can be manually changed. However, for automatic
processing during this step one can consider the maximum road width
to define a fixed Sw. After finding the section area based on the
abovementioned parameters, the overlap area can easily be added to
the resulting boundary along the Sl and based on the So.

3.2. Preprocessing

The preprocessing phase includes non-ground filtering and section
alignment steps which help to simplify the LM extraction process. In the
non-ground filtering step, tree branches, poles, utility cables, traffic
signs, and bridges above the road surface are eliminated. A variety of
research for ground surface extraction from point clouds is available in
the literature such as a RANSAC-based method proposed by Jung et al.
(2019). While these approaches are effective, they were deemed in-
efficient and unnecessary for the level of filtering needed in the pre-
processing step. Thus, a fast and easy-to-implement approach is pro-
posed for removing objects that uses a two-dimensional plane fitted to a
number of selected points on the road surface. Any points whose dis-
tance to the fitted plane beyond predefined thresholds are considered as
non-ground points.

To fit a surface to the points, first six 0.5 × 0.5 sq.m. areas are
selected according to Fig. 2: areas 1, 2 and 3 are from the start, middle,
and end of trajectory line, respectively. Similar areas are selected on a
parallel line with a 5 m offset to the left (areas 4, 5, and 6). For areas on
the trajectory line (areas 1, 2, and 3) the road surface height (Hrs) can
be obtained from trajectory elevation if it is provided. This assumes that
the trajectory elevation has been adjusted for the height of the GNSS
antenna above the road surface. Alternatively, if the trajectory does not
have accurate elevation data, sampled points from the point cloud are
used to determine the Hrs for areas 1, 2, and 3. To do this, the sampled
points within each area are sorted and divided into four groups with
similar elevations, then the median height of the 2nd lowest group is
selected as the Hrs. The two highest groups will usually include assets
above the roadway such as overpasses, and the lowest group is removed
due to its potential to be noisy points. Since the road surface on the
trajectory path will always have the highest density of points it is ex-
pected that the 2nd lowest group or, at least, the majority of its points
represent the points on the road surface. A similar procedure is used for
areas 4, 5, and 6, however only groups of points within± 1 m of the Hrs
points of area 1, 2, and 3 are considered. Once the Hrs heights are ob-
tained in all six areas, the points in each area whose heights are similar
to the corresponding Hrs are extracted and selected for plane fitting.

After filtering the non-ground points each candidate section is
aligned either in the X or Y direction to reduce the complexity of
computation. The main direction of the candidate section is detected
using the HT algorithm, and then a rotation transformation is per-
formed. To that end, first, a low-resolution intensity image of each

section is generated and edited using the “Closing” morphological op-
erator based on a disk-shaped structural element (SE) with a 2 pixels
radius. All lines on the image are extracted by first extracting edge
pixels of the image and then performing the HT algorithm. To avoid
extracting inconvenient lines as well as speed up the process a specified
angle range based on the azimuth of the trajectory data of the candidate
section is considered. Thus, if the azimuth of the trajectory line is α,
then the angle intervals that can be considered are [α-θ, α+θ]. After
extracting all lines, the most frequent rotation of the extracted lines is
deliberated as the main direction of that section. Eventually, by gen-
erating a 2D rotation matrix based on this direction, all points are
transformed into a new position.

3.3. Lane marking areas extraction

In this step, a higher resolution intensity image is initially created
using the rotated points. Then, the possible vegetation areas are
eliminated by applying an RN mask on the obtained image. The RN
usually varies from 1 to 6 and can make a bright differentiation be-
tween vegetation area and other areas in a point cloud (Gatziolis and
Andersen, 2008). To generate the RN mask, each pixel that includes
points with an RN value equal to or larger than 2 may be labeled as a
vegetation area. The generated RN mask is modified using morpholo-
gical operators Dilation and Erosion to fill the gaps and delete noisy
pixels considering line-shaped SE shown by Eqs. (1) and (2). In these
equations, v is half of the section length and h is the minimum distance
to a vegetation area from the road surface.

= ×SE [1 1 1 1] v
T
1 (1)

= ×SE [1 1 1 1] h1 (2)

The resulting masked image with the RN mask is further modified
using the Closing operator considering a disk-shaped SE with a 2 pixels
radius. Then, the Sobel edge extraction operator can extract the edges
along the edited image section. Once the edges are detected, the HT
algorithm is executed to extract proper lines that may help to detect the
LM areas. Due to the alignment of the section, a small angle interval [-θ,
+θ] in the HT can be considered to reduce the computation time.
Finally, by considering a buffer space around each line larger than the
standard LM width, the LM area can be obtained, and then all points
inside this area are extracted. These points are then analyzed in the next
step to find the LM points.

3.4. Lane markings detection

After filtering the object points in each LM area, a group of “prob-
able-LM” cluster points is separated. After extracting descriptors from
the point cloud, the true-LM points are detected based on a designed
fuzzy lane marking detection system. These steps are discussed in the
following subsections.

3.4.1. Probable-lane markings extraction
In this step, cars and trees related points that might not have been

deleted during the preprocessing step are initially filtered. For this
purpose, the minimum elevation in the neighborhood of each point is
considered as the assumed ground surface. Then, all points with height
differences from this elevation greater than a threshold will be re-
moved. This technique is similar to applying the Normalized Digital
Surface Model (nDSM) to point clouds to generate DTMs, which have
been used in number of LiDAR point cloud studies (Bartels and Wei,
2010; Höfle et al., 2009; Rastiveis, 2015).

After eliminating noisy points, all remaining points will fall in
“probable-LM” and “non-LM” groups. Due to difference in intensity, the
“probable-LM” group can be differentiated from the “non-LM” group by
various thresholding methods such as Otsu’s algorithm, Entropic
methods, or Minimum Error methods (Morse, 2000; Sahoo et al., 1988).
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However, due to its high speed of computation in addition to its per-
formance, the k-means algorithm is applied. The main drawback of this
algorithm is the possibility of converging to a local minimum based on
poor initial cluster centroids (Jain, 2010). To overcome this weakness,
the best result may be selected after running the algorithm a few times
and comparing the final cost function. The Sum of the Squared Errors
(SSE) over two clusters of “non-LM” and “probable-LM” is calculated as
a cost function that is shown by Eq. (3).

= +
= =

SSE C I µ I µ( )
i

N

i
NL

NL
j

N

j
PL

PL
1

2

1

2
NL PL

(3)

In each “probable-LM” cluster, a number of isolated points may
appear which are eliminated based on a density-based analysis. Here,
instead of using a cube- or sphere- shape when applying density-based
filtering algorithms, a narrow rectangular-shape along the lane direc-
tion (Y axis) with a small thickness across the Z axis may be more ap-
propriate. Otherwise, some of the probable-LM points, specifically on
damaged LMs, may be mistakenly filtered. The minimum number of
points in the neighboring window can be assigned according to the
resolution of the LiDAR scanner.

3.4.2. Descriptor extraction
Although the intensity of the remaining points is higher than the

eliminated cluster, there is a possibility that these points are not LMs.
To minimize the possibility of non-LMs being classified as true-LMs, the
remaining points should be checked further. In this study, the true-LMs
are detected by extracting a number of geometric and radiometric de-
scriptors for each “probable-LM” cluster and analyzing them in a fuzzy
inference decision-making system. A perfect descriptor indicates a clear
difference between the true-LM cluster and non-LM cluster. The very
first descriptor for detecting true-LMs can be obtained based on the
contrast between the intensity of the “probable-LM” clusters and its
background or the “non-LM” clusters. Here, the Normalized Difference
Lane Marking Index (NDLMI) computed by Eq. (4) is defined to measure
this contrast.

=
+

µ µ
µ µ

NDLMI PLM NLM

PLM NLM (4)

This measure is higher for the true-LM clusters that have a greater
intensity in comparison to the asphalt points, and is lower for false-LM
clusters. However, the intensity of damaged LM points may be lower
than expected values. Further, LM retro-reflectivity degrades over time
and their intensity values may vary greatly as the LM age and reflective
beads are dislodged (Sarasua et al., 2003; Thamizharasan et al., 2003).
Thus, there is not a consistent boundary or threshold between the
NDLMI of the true-LM clusters and false ones. This fact proves that not
only is there uncertainty in using this NDLMI but also necessitates the
use of other descriptors as well.

In addition to the NDLMI obtained based on the intensity informa-
tion, geometric properties of traffic pavement LMs may be useful. Here,
Linearity and RMSEyz values are defined and applied as geometric de-
scriptors for detecting true-LM. Linearity can be measured using
Principal Component Analysis (PCA). PCA can be defined as an ortho-
gonal linear transformation that transforms the data to a new co-
ordinate system such that the greatest variance lies on the first co-
ordinate (called the first principal component), the second greatest
variance on the second coordinate, and so on (Jolliffe, 2011). The

principal components of points Pare the eigenvectors of =C P PP n

T1 ,

which P is the vector of points after subtracting centroid coordinates.
After computing the eigenvalues and eigenvectors of CP, where eigen-
values are sorted as > >1 2 3, the Linearity (L) value for the points is
computed using normalized eigenvalues ( ¯) from Eq. (5):

=
+

Linearity
¯

¯ ¯
1

2 3 (5)

A higher linear distribution of points results in a bigger first ei-
genvalue, and consequently greater Linearity. Therefore, in comparison
to a false-LM cluster, a higher value of Linearity for the true-LM cluster
is expected. Nonetheless, similar to the NDLMI measure there is not a
clear threshold for this measure.

Due to the short length of the sections, another geometric property
can be defined based on the assumption that the LM points are located
on a plane or, more accurately, a parabolic surface with small variation
in height information. Assuming a 3D coordinate system that the Y and
X axes are in the direct of section length and width respectively, each
point group may be fitted to a 2D polynomial in the YZ direction. The
Root Mean Square Error of the points (RMSEyz) shown by Eq. (6) is used
to determine fitness of the polynomial in LM detection phase.

= =RMSE
Z Z
N

( ~)
yz

i
N

1
2

(6)

In this equation, Z and Z
~
are the original height and the calculated

height using the fitted 2D polynomial respectively, and N is the number
of points in each “probable-LM” cluster. This measure has a small value
for true-LM clusters, and a higher value for false-LM clusters such as
guardrail or possible passing vehicles.

To apply the abovementioned descriptors in detecting true-LM, one
can define a Lane Markings Index (LMI) as shown by Eq. (7) to make a
distinct boundary between true- and false-LM. Because of the higher
value of NDLMI and Linearity, and the lower value of the RMSEyz a high
value of this index is expected in the case of true-LM.

=LMI NDLMI Linearity
RMSE

.
yz (7)

Although this index may be a powerful descriptor to find true-LMs,
because of the uncertainty or fuzziness of the values used to calculate
LMI, it may not be robust enough to successfully identify all LMs. Thus,
this measure along with other descriptors are applied in a fuzzy rule-
base inference system to detect true-LMs.

3.4.3. Fuzzy lane marking detection system
Fuzzy theory introduced by Zadeh (1978), which is similar to

human reasoning to approximate information to generate decisions, is a
useful tool in dealing with problems involving uncertainty (Cox et al.,
1998; Zimmerman, 1996). In this research, the Mamdani fuzzy rule-
based system is introduced to analyze the extracted features to detect
true-LMs. Any fuzzy rule base system is comprised of three main parts
of fuzzification, inference, and defuzzification (Rastiveis et al., 2013).
The overall view of the designed fuzzy system is illustrated in Fig. 3.

In the first step, fuzzification, the input/output features are divided
into fuzzy spaces, specified by fuzzy membership functions that maps
the inputs onto the range of [0, 1]. Monotonic, triangular, trapezoidal,
and bell-shaped functions are the most frequently used in fuzzy rule
based experiments (Mather and Tso, 2016). In this LM detection algo-
rithm, extracted measures (NDLMI, RMSEyz, Linearity and LMI) are ap-
plied as input variables and the LM-Probability is considered as the

Fig. 3. Overall view of the proposed rule-based fuzzy LM detection system.
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output variable. Considering trapezoidal- and triangular-shaped func-
tions, an expert has accurately defined them. Fig. 4 illustrates the de-
signed membership functions and linguistic labels for both input and
output variables. In this figure, the range of NDLMI and LM-Probability
limited to [0, 1], but RMSEyz, Linearity, and LMI can be greater than the
displayed range. In other words, the upper bound of “Extreme” lin-
guistic label in these features is limitless.

A number of IF-THEN rules must be defined in order to import user
knowledge in the fuzzy reasoning system. A single fuzzy IF–THEN rule

can be formulated according to: IF x is A; THEN y is B. In this statement,
A and B are the linguistic labels defined by fuzzy sets on the range of all
possible values of x and y, respectively. The IF part of the rule “x is A” is
called antecedent and the THEN part of the rule “y is B” is called con-
sequent. The antecedent may integrate several inputs using logical AND
and OR operators. For estimating the probability of a Probable-LM
cluster based on the NDLMI, RMSEyz, and Linearity, one of the IF–THEN
fuzzy rules might be the following: IF NDLMI is High AND Linearity is
High AND RMSEyz is Low THEN LM-Probability is true-LM. Moreover, the

Fig. 4. Assigned membership functions for the linguistic labels of the input and output linguistic variables.

Fig. 5. Overview of the examined datasets: (a) the I-85 BL dataset about 15.6 km; (b) the EWPkwy dataset about 9.5 km.
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strength of these IF-THEN rules can be considered by a weight value in
the range of [0, 1]. For instance, since the above example is very reli-
able, this rule can get a weight equal to one. Here, 42 rules are con-
structed in order to make a decision about a LM cluster based on the
input variables. For example, four selected sample rules and their
considered weight are as follows:

• If (NDLMI is Extreme) and (LMI is Extreme) then (LM-Probability is
true-LM) (1)

• If (NDLMI is High) and (RMSEyz is Low) and (Linearity isMedium) and
(LMI is High) then (LM-Probability is true-LM) (1)

• If (NDLMI is Medium) and (RMSEyz is Low) and (Linearity is Low) and
(LMI is Medium) then (LM-Probability is false-LM) (0.7)

• If (NDLMI is Low) and (LMI is Low) then (LM-Probability is false-LM)
(1)

The result of all triggered rules can be aggregated using a sum
function. Therefore, a defuzzification process has to be implemented in
order to obtain a deterministic value. The most conventional defuzzi-
fication method is to calculate the center of gravity, which determines
the center of the area under the aggregated output function
(Zimmerman, 1996). Considering n as the number of elements of the
sampled membership function, and µ s( ) as the membership grade of the
measurement, the center-of-gravity (CoG) method for discrete data can
be calculated from Eq. (8).

= =

=
CoG

s µ s
µ s
. ( )

( )
s
n

s
n

1

1 (8)

The obtained center-of-gravity gets a value in the range of [0, 1].
The probable-LM cluster will be considered as the true-LM cluster if this
value is greater than 0.5. Conversely, in the case of small probability,
the cluster will be labeled as false-LM points and will be eliminated. In
this paper, the theoretical background of the Fuzzy Inference System is
not fully described. Readers are referred to Cox et al. (1998), Klir and
Yuan (1996) and Yuan and Shaw (1995) for further discussion on fuzzy
systems.

All extracted probable-LM clusters in each section are analyzed in
the fuzzy LM detection system based on their input descriptors and
false-LM clusters are deleted from the section. The output of this step is
the extracted true-LM clusters in the candidate section that is refined in
the next step.

3.5. Regularization

Two regularization processes are performed on each true-LM
cluster: gap-filling and realignment. Since the LM points and the non-
LM points have been differentiated based on the intensity information,
a number of LM points with low intensity might not have been located
in the probable-LM cluster. This may cause gaps in the LM. In the gap-
filling process, all points inside the boundary of the current LM points
are added to the LM points. Here, the boundary is detected based on the
α-shape concept, developed by Edelsbrunner and Mücke (1994). For a
defined set of points S, the α-shape for α= 0 is identical to the original
set of points S, and, α=∞, results in all triangles in an α-shape, which is
equal to the convex hull of S (Cholewo and Love, 1999). A proper value
of α can be considered based on the minimum distance between lane
pavement markings on the road and the resolution of the MLS point
cloud. Eliminated points of “non-LM” clusters located inside the

Table 1
Specification of the MLS systems in this research.

I-85 BL EWPkwy

LiDAR Brand Optech Riegl
Model SG1 VMX450
Single / Dual laser Dual Dual
Measurement rate 600 kHz/

sensor
1.1 MHz

DMI Brand Applanix Applanix
Model HS35F BEI HH5

IMU Brand Applanix Applanix
Model FMU P301 AP50
Roll/pitch accuracy 0.005° 0.005°
Heading Accuracy 0.015° 0.015°

Camera Type Point Grey
360°

NIKON/RIEGL

No. of Cameras 6 4
Focal Points of
Cameras

N/A 2 front, 2 rear

Resolution 5 MP 5 MP
Vehicle Mounted GPS/

GNSS
Brand Trimble Trimble
Model AT1675-

540TS
Zepher model
2

Accuracy 0.02′ H; 0.04′
V

10 mm

Fig. 6. The result of preprocessing step for two sample section. Red points are the omitted points after buffering. Blue and Green points are extracted points for two
sample sections of 280 and 281 from I-85 BL dataset.

Table 2
Statistical information and parameter setting in preprocessing step.

Dataset I-85 BL EWPkwy

Parameters Overlap(m) 1 1
Wr(m) 10 5
Wl(m) 20 10

Total number of points 508,336,599
(100%)

428,321,603 (100%)

Number of deleted points after
buffering

78,863,763 (16%) 153,246,160 (36%)

Number of extracted points in all
sections

429,472,836 (84%) 275,075,443 (64%)

Number of sections 842 633
Number of valid sections 792 631
Section length (m) Min 9.89 9.50

Max 24.52 29.50
Mean 19.77 14.96
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obtained boundary based on this α value are added back to the LM
cluster. After filling the gaps in each LM, the true-LM points can be
transferred back to their original coordinates in the realignment step. In
this case, a rotation mapping on each section must be performed based
on its main direction angle. To avoid this computation cost, keeping the
original coordinates of the points may be helpful. Moreover, the re-
petitive points in the overlapping areas are eliminated from the final
lane marking points.

4. Experiments and results

4.1. Dataset

The efficiency of the proposed algorithm and methodology was
evaluated with two point clouds, which were collected by several MLSs.
The first point cloud includes 508 million points, which were collected
along 15.6 km of Interstate 85 Business Loop (I-85 BL) in Spartanburg,
South Carolina, USA. The second point cloud includes 428 million
points collected along 9.5 km of East West Parkway (EWPkwy) in
Anderson, South Carolina, USA. An overview of each study area is

Fig. 7. Initial non-ground filtering and section alignment step for the sample 280 from I-85 BL.

Fig. 8. Lane markings area detection process for the sample section 280.
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shown in Fig. 5. Both datasets include a variety of geometric design
elements, such as merging and diverging sections, tangent sections,
horizontal and vertical curves, and bridges. Data collection specifica-
tions of the MLS vendors are summarized in Table 1.

4.2. Data processing

In this subsection the processes and parameter settings of different
steps of the algorithm are presented and discussed. In the sectioning
stage, the interval between two consecutive images were considered as
section length (Sl) with 1 m overlap (So) between tiles. Each observed
section spanning less than 2 m was considered “short” and was merged
with its preceding section. A final sectioning and buffering of two
sample sections of I-85 BL are shown in Fig. 6.

The parameter settings and basic statistics of the datasets are illu-
strated in Table 2. In the case of extracting two sample sections with IDs
280 and 281 from the I-85 BL dataset unnecessary points are shown in
red in Fig. 6 and have been eliminated from the point cloud. After
sectioning the whole data about 16% and 36% of points were deleted in
I-85 BL and EWPkway, respectively.

In the initial non-ground filtering, points were filtered to include

those located 2 m above or below a fitted plane to the road surface. The
filtered points for section 280 are depicted by the red color in Fig. 7. An
intensity image of the candidate sections was generated and modified
using Closing morphological operators by applying a disk-shaped SE
with a 2-pixel radius using a 0.1 m pixel size during section alignment.
Edge images were extracted with the Sobel edge detection filter, and all
lines were extracted through the HT algorithm. The search space of the
HT algorithm was limited based on a calculated azimuth of the section
Azt as [Azt-10°, Azt+10°], where Azt can be obtained using trajectory
information. The minimum number of pixels required to accept an
extracted line was considered equal to the approximate length of da-
shed lane marks, about 2 m or 20 pixels on the image. For example, in
the sample section 280, the HT algorithm extracted all of the lines on
the edge with length greater than 20 pixels and a difference between
their azimuth and the section azimuth of less than 10°. Among the
extracted lines, the most frequent azimuth was assigned as the primary
direction of the section which was −37° for sample section 280. The
step-by-step process of section alignment of this sample section is
shown in Fig. 7.

All points were mapped in the Y direction according to the rotation
matrix, and a new intensity image with 0.05×0.05 m pixel size was
generated. The generated grid format for the selected sample section is
shown in Fig. 8. The vegetation areas were filtered using an RN-mask
obtained from the RN information. For this purpose, an RN image was
generated to create the RN-mask and modified using Dilation and Ero-
sion morphological operators by considering v=113 (equal to the half
of the length of this section) and h=10 in Eqs. (1) and (2). After fil-
tering the intensity image with this mask, the resulting image was
modified using the Closing operator and based on a disk-shaped SE with

Fig. 9. LM areas detection, LM detection and enhancement steps for the sample section 280 from the I-85 BL dataset.

Table 3
The result of true-LM detection step using the fuzzy LM detection system for the sample 280 from I-85 BL dataset.

LM Numbera 1 2 3 4 5 6 7 8 9 10 11

NDLI 0.73 0.43 0.47 0.41 0.72 0.77 0.72 0.42 0.39 0.35 0.37
RMSEyz 0.12 0.71 0.99 0.41 0.10 0.10 0.09 0.49 2.82 1.34 0.91
Linearity 109.39 64.37 43.40 63.19 133.21 90.39 132.16 59.13 24.51 30.56 26.68
LMI 654.98 38.96 20.50 64.20 920.21 672.89 1000.60 51.13 3.37 8.05 10.87
Fuzzy Output 0.68 0.34 0.33 0.33 0.67 0.71 0.68 0.33 0.31 0.33 0.32

a The LM numbers are shown in Fig. 9.

Table 4
Statistical information of the gap-filling step considering α = 0.1.

I-85 BL EWPkwy

Average number of LM points in each section 34,582 147,250
Average number of added points by α-shape 508 1489
Percentage of the added points 2.22% 1.01%
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a 2 pixels radius. Next, the vertical Sobel edge extraction operator was
applied to extract the edge pixels. All candidate LM areas can be ex-
tracted using the HT algorithm considering [−15°, +15°] with a 0.1°
sampling interval as the angle search interval. In sample section 280, 11
LM areas were detected that are shown in Fig. 8.

A 3D view of all extracted points from LM areas and the filtered non-
ground points for the sample section 280 are shown in Fig. 9. The figure
shows that MLS objects such as tree branches and guardrail not of in-
terest were successfully eliminated after the original non-ground fil-
tering process. The k-means clustering algorithm was used to consider 5
initial values for the two cluster centers (probable-LM and non-LM
clusters) based on Eq. (3). Higher intensity clusters are labeled as
probable-LM cluster that are depicted in blue in Fig. 9 and the detected
isolated points in each probable-LM cluster are shown in red. In this
case, dX, dY, dZ and the minimum number of points were considered

0.1 m, 2 m, 0.1 m and 5, respectively. The radiometric and geometric
features and the output of the fuzzy LM detection system for the
probable-LM clusters are shown in Table 3. In this table, there is a
spectacular similarity between the descriptors in the 1st, 5th, 6th and
7th probable-LM clusters, which are true-LM clusters. Consequently, the
fuzzy output of these clusters is far from the other clusters. A com-
parison between the values shown in Table 3 and the fuzzy output of
the probable-LM clusters for the sample section is an indication that the
process works well in terms of detecting true-LM clusters. These clusters
were further regularized in the gap filling process through the α-shape
algorithm assuming α=0.1. The newly added points in the gap filling
process are highlighted in pink in Fig. 9.

The potential gaps within the true-LMs are filled through regular-
ization with a 0.1 α value. This resulted in 2.22% of the extracted LM
points in I-85 BL and 1.01% in EWPkwy datasets being added, as

Fig. 10. The results of LM detection process using the proposed method for three selected sample sections.

Table 5
Extracted values, and the result of fuzzy LM detection system for sample sections shown in Fig. 10.

Section ID LM Number 1 2 3 4 5 6 7 8 11 12 13 14 15 16

287 (I-85 BL) NDLMI 0.7 0.8 0.7 0.8 0.8 0.7 0.8 0.8 0.4 0.4 0.4 0.4 0.6 0.5
RMSEyz 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 1.2 3.1 3.5 2.8 3.2 1.7
Linearity 101.7 30.3 43.0 39.3 44.8 47.4 38.0 137.2 41.9 33.4 40.6 39.2 29.0 20.6
LMI 244.9 116.9 158.6 153.5 154.1 195.7 202.8 960.7 14.4 4.4 4.6 6.0 5.2 5.7
Fuzzy Output 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.3 0.3 0.3 0.3 0.4 0.3

313 (I-85 BL) NDLMI 0.8 0.8 0.7 0.7 0.8 0.7 0.4 0.3 0.4
RMSEyz 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.2 0.2
Linearity 160.4 165.3 88.5 77.1 128.1 144.3 51.1 83.5 49.1
LMI 1805.6 2642.5 783.3 499.3 2034.2 2361.1 95.2 122.8 93.3
Fuzzy Output 0.7 0.7 0.7 0.7 0.7 0.7 0.3 0.3 0.3

280 (EWPkwy) NDLMI 0.7 0.8 0.7 0.7 0.4 0.1
RMSEyz 0.1 0.0 0.0 0.0 0.2 0.2
Linearity 40.3 170.0 189.2 133.9 37.7 40.1
LMI 307.7 3581.6 3900.3 3070.5 96.3 24.0
Fuzzy Output 0.7 0.7 0.7 0.7 0.3 0.3

119 (EWPkwy) NDLMI 0.7 0.8 0.8 0.8 0.8 0.8 0.7 0.7
RMSEyz 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0
Linearity 41.6 10.4 3.8 5.8 8.2 176.2 33.3 158.4
LMI 465.4 198.9 37.5 76.3 131.0 3760.5 689.8 2881.9
Fuzzy Output 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
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illustrated in Table 4. The repetitive points due to the overlap of the
sections are taken into account in this table. This α was determined
through a test of several α values which gave the best results, particu-
larly in the zebra-shaped markings and word markings.

4.3. Results

The algorithm was performed on all sections for both datasets and
the results of four sample sections are shown in Fig. 10. As can be seen
from this figure, the algorithm has successfully extracted all lane
marking points.

Table 5 illustrates the value of the geometric and radiometric fea-
tures and the fuzzy result of these sections. As shown in this table, the
LMI value of the 8th probable-LM cluster of section 313 from the I-85
BL dataset is 122.8 even though it is not a true-LM cluster. Conversely,
in the 3rd and 4th probable-LM clusters of section 119 from the
EWPkwy dataset the LMI value is small even though it is a true-LM

cluster. This uncertainty between true-LM clusters and false-LM clusters
can also be observed for other descriptor values in these four sections.
Each value was successfully handled through the application of all
values in the fuzzy inference system.

The extracted LMs for all sections for both datasets are shown in
Fig. 11 along with zoomed views of sections with varied markings in-
cluding text markings, turn arrows, turn bay markings, dashed long-
itudinal markings, and painted islands.

4.4. Accuracy assessment

To evaluate the reliability of the proposed method, a comparison
was made between the extracted LMs from the algorithm and the
manually extracted LMs. Considering the LM process as a two-class
classification problem, in which the outcomes are labeled as LM point
or non-LM point, there are four possible outcomes. If a point from the
method is labeled as LM and is included in a manually extracted LM,

Fig. 11. Final extracted LM from MLS point cloud using the proposed fuzzy LM detection system. (a) I-85 BL dataset; (b) EWPkwy dataset.
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then it is classified as a True Positive (TP), otherwise it is called a False
Positive (FP). Conversely, for a non-LM point in a manually processed
section, a True Negative (TN) and a False Negative (FN) will occur if the
algorithm labels the point as non-LM point and LM point, respectively.
Based on these parameters, a number of derivations such as True
Positive Rate (TPR), False Negative Rate (FNR), Accuracy, and F1-score
can be calculated (Powers, 2007; Zaboli et al., 2019). These parameters
can also be calculated to assess the performance of the fuzzy LM de-
tection step by visually checking the correctness of the detected true-
LMs.

In this study, all LM points of the five sample sections (280, 287 and
313 from I-85 BL, and 119 and 280 from the EWPkwy) were manually
extracted by plotting top-view of the section and considering a polygon
around each LM area in the section. This process was labor intensive
and time-consuming, whereas extracting pavement LMs take fifteen
minutes for each section on average under the proposed new method.
Fig. 12 shows the extracted polygons of the LM areas for sample sec-
tions overlaid on the top view of the point cloud.

Manually extracted LM points were compared to the algorithm LM
points, and the evaluation measures of each section are shown in
Table 6. The high value of the F1-score, TPR and ACC measures in all

sections plus the low rate of the FPR value indicates that the proposed
method to extract traveling LM works well. The maximum and
minimum TPR measures among these five sample sections were re-
ported 0.902 for section 280 from the EWPkwy dataset and 0.836 for
section 287 from I-85 BL dataset, respectively. Section 119 from
EWPkwy performed the best based on its F1-score of 0.895 while sec-
tion 280 from the I-85 BL dataset had the lowest F1-score. The slight
difference between TPR, FPR, F1-score and ACC in these five sections
shows the stability and reliability of the performance of the proposed
method. Although FPR and ACC parameters are important in the eva-
luation of any classification, they may not show the exact differentia-
tion between the performance of the algorithm on different sections due
to a large number non-LM points.

The performance of the fuzzy LM detection system was checked by
observing the obtained true-LMs along with the route. All obtained
true-LM clusters were plotted (Fig. 11) for accuracy and mistaken de-
cisions. The true-LM clusters were counted to estimate the confusion
matrix. Table 7 shows the obtained confusion matrix and the estimated
parameters for both datasets (25 km). As can be observed in this table,
the obtained parameters for both datasets indicate that the proposed
fuzzy LM detection system can successfully detect true-LM markings
clusters at a very high level of accuracy.

Considering the lengthy datasets tested in this study, the evaluation
parameters, such as TPR and F1-Score shown in Tables 6 and 7, indicate
the efficiency of the proposed algorithm in extracting LM. The reported
F1-Score and TPR in Table 7 of nearly 99% for fuzzy LM detection
shows a great deal of promise. However, points with low intensity va-
lues may not be detected as probable-LM clusters due to the weight of k-
means clustering. The manually extracted LM were obtained by con-
sidering a number of polygons around the LM and selecting all of the
points inside those polygons (see Fig. 12). This must be considered
when evaluating the performance of the system.

Fig. 12. Manually extracted LMs from point cloud; (a) sample sections of the I-85 BL dataset; (b) sample sections of the EWPkwy dataset.

Table 6
Evaluation of the extracted LM points in the five selected sample sections shown in Fig. 12.

S.ID. Length (m) #LM #Pts. FP FN TP TN TPR FPR F1 ACC

I-85 BL 280 27.3 11 672,152 10,008 1344 1643 659,157 0.859 0.002 0.870 0.996
287 28.47 16 698,211 16,336 789 3215 677,871 0.836 0.001 0.891 0.994
313 24.21 11 529,793 12,746 1690 1657 513,700 0.885 0.003 0.884 0.994

EWPkwy 119 20.40 8 434,514 10,039 686 1674 422,115 0.857 0.002 0.895 0.995
280 18.34 6 434,741 9139 1371 995 423,236 0.902 0.003 0.885 0.995

Average 0.868 0.002 0.885 0.995

Table 7
Performance of the fuzzy inference system in distinguishing true-LM clusters
from false-LM clusters (25 km).

S.ID. #P.L. FP FN TP TN TPR FPR F1 Accuracy

I-85 BL 9984 3516 9 34 6425 0.990 0.001 0.994 0.996
EWPkwy 4360 2764 25 11 1560 0.996 0.016 0.994 0.992
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5. Discussion

5.1. Input data

This method assumes that MLS vehicle trajectory data is available. If
this is not the case, a roadway centerline downloaded from a digital
map or a manually drawn trajectory can be substituted. Further, the
proposed method uses the RN value for vegetation area filtering in
order to increase the computation speed during the LM areas detection
process. This information may not be an available attribute of the MLS
point cloud. The necessity of the RN values for the point clouds was
tested in many sections. It was observed that in the sections with vast
vegetation area, a large area was filtered by the RN-mask and the
number of extracted lines using HT algorithm was reduced. When the
RN value was not used for those sections, a few extra LM areas were
detected by the HT algorithm. However, all of the extracted probable-
LMs in these areas were successfully detected as false-LM in the fuzzy
inference system. Therefore, it can be concluded that the RN value is
not essential in our proposed algorithm, and in the case where RN value
is not available the algorithm still remains effective and provides pro-
mising results.

5.2. Selection of parameters

Object filtering in this research was performed in two steps: the
coarse filtering in the preprocessing step and the fine filtering in the
probable-LM detection phase. Since the proposed initial filtering works
based on a few selected points in six areas (see Fig. 1), it is a fast and
easy-to-implement algorithm. In this case, the predefined threshold
(2 m above or below) was selected based on performing various tests on
the sections. Note that the number of point selection areas can be in-
creased depending on the road width. Fig. 13 shows the performance of
the initial non-ground filtering based on this threshold. As can be seen
from this figure, the proposed initial filtering methods have successfully
filtered unwilling objects as well as noisy points.

The statistical information of the preprocessing step in Table 2

shows that a large number of unneeded points (16% in the I-85 BL
dataset and 36% in the EWPkway dataset) were filtered in the buffering
step. The buffering space parameters (Wr and Wl) were selected based
on the previous knowledge about these datasets. For a different project,
they should be set based on the maximum road width of the survey path
to include all LMs. Limiting the parametric space of the HT algorithm
helps to increase the processing speed of both section alignment and
initial LM areas detection steps. In the section alignment step, the azi-
muth of the trajectory line could influence the results. Therefore, if the
available trajectory line is not smooth nor parallel to the road’s LMs, a
larger threshold must be considered. Otherwise, extracting the lines in
all possible directions,± 90°, may need further verification, especially
in sections with damaged LMs. In this research,± 10° was an appro-
priate value due to the smoothness of the trajectory lines. If trajectory
smoothness is a concern, the use of a± 15° angle search interval may
help to compensate for possible trajectory alignment errors and can
facilitate the extraction of LMs at road exits.

The number of clusters in the k-means clustering algorithm may not
be a challenging parameter because the problem of extracting probable-
LM clusters has been considered as a thresholding problem thus, 2
clusters is a perfect choice. Moreover, as mentioned previously, the α
value in the regularization step was determined through a test of sev-
eral α values which gave the best results. Therefore, due to the standard
and fixed width of the LMs, it is expected that this value provides
promising results for other projects. Note, this parameter fills the gaps
between points of a specific LM. Therefore, in the case of studying and
assessing the degree of damage of LMs, this step may not be necessary
because the damaged area inside the lane markings may be ignored.

5.3. Descriptors analysis

A strong correlation between the intensity values from mobile laser
scanning and pavement marking retro-reflectivity was found by Olsen
et al. (2018). Since the retro-reflectivity of lane markings diminish over
time detecting lane markings based only on intensity may not be pos-
sible. However, by analyzing geometric and radiometric descriptors in

Fig. 13. The performance of the proposed initial object filtering method in four sample sections presented many challenges including: (a) Information sign above the
road; (b) tree branches, wires, and cars; (c) power pole, traffic signs, tree branches, noisy points below and above ground surface, and high-level ground surface on
the road side; (d) non-planer intersection, noisy points below and above ground surface, tree branches, and cars.
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the proposed fuzzy inference system low quality lane markings were
also extracted successfully. These descriptors as input vectors are im-
portant to the performance of the applied fuzzy LM detection system.
Fig. 14, depicts the distribution of these descriptors for the final de-
tected true-LM and false-LM clusters.

As shown in Fig. 14, there is a clear difference between NDLMI, in
both datasets, and the Linearity, in the I-85 BL dataset. However, the

Linearity of the true-LM points in the EWPkwy dataset can be seen along
most of the range of this descriptor. This may be due to the large
number of short probable-LM clusters in this dataset where their Line-
arity value is small (see the Linearity values of section 119 in the
EWPkway dataset in Table 5). The trend of the RMSEyz and the LMI
values in the I-85 BL dataset are approximately the same as that of the
EWPkwy dataset.

Fig. 14. Distribution of applied descriptors for true-LM and false-LM clusters.
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5.4. Comparative study

Table 8 illustrates the size of the dataset and quantitative evaluation
results in comparison to other studies. According to the higher TPR, the
proposed method is superior to most of the previous similar studies.

Note, in our study as well as Guan et al. (2014), the informative road
markings (text, arrows, zebras, etc.) have also been extracted from the
test area, while not included in other studies. In our method, the LM
areas are detected using HT algorithm which extracts lines from the
intensity image. Therefore, every linear LM along the road can be de-
tected by our proposed algorithm. For informative markings such as
text and elongated turning arrows, the edge extraction algorithms can
extract their corresponding edges, and consequently, the HT algorithm
extracts the LM areas around them. Since a buffer is considered around
each line, the entire text, or turn arrow is extracted. Moreover, in a
number of studies such as Wen et al. (2019) the extracted road mark-
ings were classified into different classes based on their types. Al-
though, this information may be useful for many applications, the main
goal of this research was to extract the road markings.

Table 8
Quantitative evaluation results of different lane marking extraction methods.

Methods Datasets Number of points (million points) TPR (%) F1-Score (%)

Kumar et al. (2014) 140 m – 88 –
Guan et al. (2014) Data#1: 105 m

Data#2: 63 m
Data#1: 8.4
Data#2: 5.4

83 89

Soilán et al. (2017) 1510 m 69 82–90 92–93
Yang et al. (2017) Data#1: 5.3 km

Data#2: 79.8 km
Data#1: 377.3
Data#2: 564.2

94.5 > 90

Soilán et al. (2018) Data #1: 2.5 km
Data #2: -
Data 3#: -

Data #1: 129
Data #2: 82
Data #3: 50

91.7 93.9

Wen et al. (2019)cGAN-based Data #1: -
Data #2: -

Data #1: -
Data #2: -

76–82 79–86

Wen et al. (2019)U-net-based Data #1: -
Data #2: -

Data #1: -
Data #2: -

81–87 85–92

Jung et al. (2019) Data #1: 460 m
Data #2: 2.1 km
Data #3: 4.7 km

Data #1: 19.6
Data #2: 115.0
Data #3: 96.0

74–95 89–97

Our method Data #1: 15.6 km
Data #2: 9.5 km

Data #1: 508
Data #2: 428

84–90 87–90

Table 9
Processing time of executing the proposed method on each dataset.

I-85 BL EWPkwy

Point Cloud Volume (GB) 13.2 11.1
Sectioning time (h) 2.68 1.34
Average LM extraction time per section (s) 9.4 6.05
Total LM extraction time (h) 2.1 1.06

Fig. 15. Appeared gap areas due to the tangent changing from a quadrant to another during sectioning. (a) and (b) Gap areas in I-85 BL data; (c), (d) and (e) Gap
areas in EWPkwy data.
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Due to the variation of shape and retro-reflectivity of LMs along a
road, an algorithm may not be efficient and robust throughout the
entire path. Therefore, a lengthy corridor with various LMs in terms of
shape and reflectivity would be vital for testing purposes. According to
Table 8, the length and the size of the point cloud of our study are
comparable to Yang et al. (2017) but not comparable to the previous
LM extraction studies that used much smaller point clouds and shorter
roadway lengths.

5.5. Processing time

Processing time is a key element in each algorithm. Our algorithm
includes two main processing phases of sectioning and LM extraction.
Table 9 illustrates the processing time of each phase for the two data-
sets. The algorithm was developed in MATLAB 2015a and executed on a
normal computer with 8 GB of RAM and an Intel(R) Core(TM) i7-4770K
CPU @3.50 GHz. Therefore, improving the hardware as well as the
programming environment will decrease computation time.

One of the most important advantages of this algorithm is that the
LM extraction process is largely unsupervised with only minimal user

interaction. The majority of the parameters are constant for different
projects, and parameter tuning may only be necessary for sectioning
parameters (Wr, Wl, and So) due to differences in road width. With the
addition of a user-friendly user interface and a simple to follow work-
flow from a human interaction standpoint, this method can be more
efficient for LM extraction projects.

It should be noted that our algorithm detects and extracts all LM
points based on their intensity. In this case, the low density points or
the small width of the extracted LMs could be symptoms of their da-
mage that can be considered for future studies. Nonetheless, manually
extraction of such information based on visual inspection of the data
may be much more time-consuming than the merely LM extraction.

For projects where trajectory data is not available, the required time
for manually collecting a simulated trajectory or extracting a roadway
centerline from a digital map should be added to the total processing
time for this method. The user may add a post-processing step for
further modification after executing the algorithm to achieve more re-
liable results which may require additional time.

Additionally, the potential for simultaneously processing various
sections apart from each other is an added benefit. Thanks to the par-
allel processing techniques, processing speed can be significantly in-
creased. Although the algorithm in this research was executed non-
parallel, 1 to 2 h automatic processing is still unattainable with even
short manual extraction time periods.

5.6. Challenges and future work

Even though an overlap distance was used between tiles on curve
sections to account for gaps, due to the tangent changing from a
quadrant to another during sectioning some short gaps were still dis-
covered. This occurred in sections 494 and 508 in the I-85 BL dataset
and caused a 4.3 m loss. This also occurred in sections 142, 205, 394,
428, and 491 from the EWPkwy dataset totaling a 7.6 m loss. Fig. 15
illustrates appeared gap areas in both I-85 BL and EWPkwy datasets.
While, a fixed value for overlap distance was considered during the
sectioning, an adaptive distance based on roadway curvature is most
suitable to eliminate gaps.

Adjacent vehicles may either hide LMs or reduce the density of the
points in a tile. Our proposed algorithm is unable to detect hidden lane
markings where few or no points exist however it successfully detected
lane markings in areas with low point density. The problem of occlusion
can be minimized by controlling traffic during the data collection
process. This can be accomplished by having trailing vehicles driving
side by side to prevent other vehicles from passing the MLS vehicle.

Fig. 16. Examples of occluded areas by passenger car.

Fig. 17. Two samples of the short LM which is not extracted during HT algo-
rithm.
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Fig. 16 show sample occluded areas caused by a passenger car.
The proposed method can successfully extract information markings

such as turn arrows. However, due to the minimum line length of the
HT algorithm in the LM area detection step, very short lines, such as the
tip of the direction arrows on the road surface, may not be extracted.
Fig. 17 shows the detected LM points in sections 458 to 460 from the
EWPkwy dataset overlaid on the main point cloud to illustrate this
error.

6. Conclusions

This study proposed a state-of-the-art method to automatically ex-
tract highway pavement markings from MLS point clouds. In the pro-
posed method, the trajectory data is applied in order to divide the
whole dataset into a number of sections (e.g., tiles). In each tile, the
candidate LM point groups identified as probable-LM are initially ex-
tracted. Additional processing using a fuzzy inference system gives a
final extraction of true-LM points. The algorithm was tested on two
datasets with lengths of 15.6 km and 9.5 km, and promising results
were obtained. Reported average 88% F1-score and 87% TPR in five
different sample sections from two study areas in addition to the im-
pressive performance of the fuzzy LM detection system over the 25 km
prove the reliability of the proposed algorithm in extracting road
markings.

Using trajectory data and considering a buffer size in the sectioning
step eliminated a large number of points. This step resulted in a dra-
matic reduction of the data volume and an increase of speed of the
computation process. Switching between a point cloud format to raster
format prevented the mistaken deletion of the LM points. Extracting the
candidate LM areas, defining the LMI and NDLMI measures, and ap-
plying a fuzzy inference system to handle the uncertainty in recognizing
true-LM clusters are key steps to the proposed method. Although the
results of this algorithm were promising, the membership functions of
the designed fuzzy LM detection system were assigned by an expert by
observing many probable-LM clusters, which can be one of the draw-
backs of the proposed method. Therefore, automatic detection of these
membership functions by powerful algorithms such as Adaptive Neuro-
Fuzzy Inference System (ANFIS) (Jang, 1993) may help to overcome
this problem.
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