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Estimating Carbon Sequestration Potential in
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Abstract— This letter proposes a distance-constrained (DC)
zonal analysis approach to quantify how much more carbon
could be further sequestrated by vegetation in mainland China
based on multiple data sources. Our approach first segments
the area into homogeneous landform–vegetation–soil (LVS) zones.
Good land management practice (GLMP) corresponding to high
sequestrated carbon (target carbon level) is identified at the
locations in the same LVS zone. The target carbon level is set as
the 90th percentile of the historically sequestrated carbon using
the proxy of net primary productivity (NPP) at the locations
within the LVS zone. When GLMP is realized over the entire
LVS zone, more carbon could be sequestrated. Our results show
that on average about 1/4 of more carbon could be added to
the existing amount given the selected “good” land management
practices are adopted by neighboring locations where lower car-
bon sequestration levels exist. The carbon sequestration potential
for different land cover types differs significantly.

Index Terms— Carbon sequestration, Google Earth Engine
(GEE), land management, remote sensing, vegetation, zonal
analysis.

I. INTRODUCTION

GLOBAL warming due to increased emissions of carbon
dioxide (CO2) and other greenhouse gases into the

atmosphere has called for an urgent response to moderate
possible ways to stop the continually rising global temperature,
which is extensively debated among academicians and govern-
mental agencies [1]–[3]. Limiting carbon fuel consumption
and its atmospheric output, as a direct measure, has been
proposed for decades, but the implementation of the proposal
has not been widely recognized due to the fact that the current
economy in many countries is powered by fossil fuels [4], [5].
Applying a biotic strategy to sequestrate more atmospheric
CO2 provides a promising method to respond to global warm-
ing [6]. Vegetation-dominated terrestrial ecosystems, including
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forests, grasslands, croplands, shrublands, or savannas, absorb
substantial greenhouse gases from the atmosphere through a
carbon sequestration process called photosynthesis [7], [8].
The factors affecting carbon sequestration include climate,
landform variations [9], vegetation cover [10], land cover/use
patterns [11], and natural environmental conditions such as
soil properties [12], [13]. The amount of sequestrated carbon
is changeable depending on those factors. Precipitation and
temperature, for example, have been found to closely link to
carbon sink from vegetation [14]–[16].

Human-related land/vegetation management practices
such as land conservation [17], rotation [18], irrigation/
drainage [19], fertilization, or tillage [20] can alter vegeta-
tion health and thus recuperate carbon sequestration.
Converting land cover from agricultural land to forestry can
promote vegetation cover density and help sequestrate more
carbon [21]. However, the conversion of economic land use
to natural land cover is not readily implementable due to
the concerns from socioeconomic development, for example,
food production. Thus, it is more advisable to resolve other
inexpensive strategies for decreasing the CO2 level in the
atmosphere [22].

The carbon sequestration potential can be assessed in a
variety of methods. First, carbon sequestration potential may
be realized by land cover conversions. However, strength-
ening carbon sequestration through land cover conversions
is of limited value because such practices are restrained by
other factors and land covers might not be freely convertible.
Second, the carbon potential can be estimated by projecting
future climate changes. Carbon sequestration from vegetation
could increase from 1/5 to 1/3 under a few scenarios of climate
changes [15]. The future climate projection methods inherit
some critical uncertainties from the projected climate data,
and thus provide limited value for policy-making at current.
Relying on the power of human intervention to improving
climatic conditions seems unreasonable especially within a
short period. Third, carbon potential could be assessed by
differential analysis between the potential carbon sequestration
level and its current level [23]. In such models, the theoretical
carbon level defines the maximum value of carbon that vegeta-
tion can sequester. However, it is unknown whether the poten-
tial could be really reached given that the vegetation growth
is constrained from varieties of environmental conditions.

This letter proposes a distance-constrained (DC) zonal
analysis to assess carbon sequestration potential. This model
assesses how much more carbon (carbon gap hereafter) could
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be sequestered by evaluating the influence of human-related
land management practice. The model also outputs the areas
showing the most sensitive to land management optimization
in terms of the space in extra carbon sequestration. The
result from the assessment provides ready-to-implement policy
decision guidance in response to future climate changes.

II. STUDY AREA AND DATA

A. Study Area

The mainland China has been selected as the study
area. According to the International Geosphere-Biosphere
Programme (IGBP) land cover classification system, there
are 17 classes, of which 13 are closely related to veg-
etation cover types [except for 13. Urban and built-up
lands, 15. Snow and ice, 16. Barren, and 17. Water bodies].
Thus, the 13 land cover classes play a vital role in sinking CO2

from the atmosphere. The carbon gap for the whole region and
for each land cover type is highlighted by the proposed model.

B. Data

The majority of the data sources come from Google Earth
Engine (GEE) and all the computing processes are based on
the GEE platform. There are three groups of data sources
involved, namely, climate-related variables, nonclimate vari-
ables, and net primary productivity (NPP). Those data sets,
if not at the scale of 500 m, will uniformly be resampled to a
resolution at 500 m.

Precipitation and temperature are the most important ele-
ments in the climate-related variables because both of them
were confirmed to alter NPP and thus carbon uptake [23].
Theoretical NPP has been modeled purely from climatic
conditions; the empirical Miami model is considered to be the
first one that computes potential NPP (PNPP) using monthly
precipitation and temperature and often used as a baseline
for model comparison [24]. TerraClimate derived from cli-
matically aided interpolation by combining WorldClim and
Climate Research Unit (CRU) data set has been widely applied
for mapping regional and global ecological parameters [25]
and is used to assess the variation in the climate impact on
observed NPP (ONPP). It contains monthly precipitation and
maximum and minimum temperatures at the spatial resolution
of 2.5 arcmin.

Nonclimate variables include soil type, landform, and veg-
etation type. Soil type strongly affects the vegetation growth
and is included as a key element in the nonclimate group.
Harmonized World Soil Database (www.fao.org/soils-portal) is
the most up-to-date world soil map which incorporates a data
table of 48 148 soil profile descriptions related to the various
soils associated with each mapping unit, at a spatial resolution
of about 1 km [26]. Soil type class using FAO-90 code is used
as the soil mapping unit. A region covered by the same soil
type is believed to have a limited internal variation in the
soil property. The topography is found to affect vegetation
NPP [27]. Landform cover, as a comprehensive indicator
of topographic attributes, is taken as the second nonclimate
element. Landform cover from European Soil Data Centre
(https://esdac.jrc.ec.europa.eu) is used, which is dynamically
classified using an unsupervised nested-means algorithm based

Fig. 1. Flowchart of assessing carbon gap by DC zonal analysis. Spatio-
temporal dynamics of carbon gap achiveable by adjusting human-related
practices from distance-constrained (DC) zonal analysis as opposed to that
by pixel-based assessment.

on three geometric signatures (slope, surface texture, and local
convexity) from SRTM30 Digital Elevation Model (DEM)
[28]. Finally, IGBP land cover from MODIS MOD12Q1 is
taken to map vegetation distribution.

NPP data set provides a direct indicator of carbon sequestra-
tion from vegetation. The MODIS MOD17A2H product (V6)
is a cumulative eight-day composite at 500-m spatial resolu-
tion. The data set includes time series of net photosynthesis,
an indicator of NPP that reflects the spatiotemporal variations
in vegetation carbon uptake. The product is based on a
wide range of observed parameters (e.g., normalized differ-
ence vegetation index) and radiation-use efficiency modeling.
Annually accumulated NPP from MOD17A2H is referred to as
ONPP hereafter.

III. METHOD

A. Workflow Description

The factors affecting carbon sequestration from vegetation
can be broadly grouped as the following three categories:
1) climate impact (including precipitation and temperature);
2) human-related land-use practices (HUMAN); and 3) other
nonclimatic (nonclimate) environmental conditions such as
soil property, landforms, and vegetation types. DC zonal
analysis isolates the impact of both climate and nonclimate
and quantifies the impact on vegetation carbon sequestration
from HUMAN. Fig. 1 shows the workflow to assess the
achievable carbon gap.

First, region segmentation is performed to derive homo-
geneous zones in terms of landform, vegetation, and soil
type cover so that the internal ONPP variation within an
LVS zone due to nonclimatic factors will be minimized,
meaning that there is no within-zone ONPP variation from
nonclimate impact. Furthermore, climatic factors also affect
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ONPP variation in an LVS zone. To offset the climate impact,
we apply PNPP, which captures the climate difference based
on the climate-driven Miami model, to rectify the impact of
climate variations on ONPP. Within each LVS zone, the spatial
variation in the climate-rectified ONPP (ONPPCR) will be
attributed solely to HUMAN variation because both climate
and nonclimate impact has been accounted for. We then apply
DC zonal analysis to estimate the carbon gap for all locations
(pixels) controlled by the LVS zones.

B. Region Segmentation and ONPP

To account for the spatially varied nonclimate impact
on ONPP, the landform (L), vegetation (V) cover, and soil (S)
type layers are taken as the key environmental factors, geo-
registered to World Geodetic System (WGS)-84, and overlaid
to segment the study region into areal patches (landform–
vegetation–soil (LVS) units). LVS units labeled by the same
LVS# are featured by identical nonclimate conditions. ONPP
variation within LVS units having the same LSV label (referred
as LVS group/zone hereafter) is thus attributed to differed
climate and HUMAN impacts. To further discriminate varied
climate impact on ONPP in an LVS group, PNPP, which is
mapped by the Miami model, is applied to derive a location-
dependent relative contribution (RC) value from the climate
impact. The Miami NPP model takes the form [23]

PNPP =λ̄ × min{3000/(1 + e1.315−0.119t), 3000

×(1 − e−0.000664 p)} (1)

where t is the annual average temperature (◦C), p is the
annual precipitation (mm), min is a function that selects
the minimum value from the two values in the brackets,
andλ̄ is the conversion coefficient (0.50 for woody ecosystems
and 0.45 for herbaceous) that converts dry matter into carbon
unit (gC/m2/yr). RC at location i in an LVS group g is defined
as the difference between PNPP at location i and the averaged
PNPP of g

RC(i, g) = PNPP(i, g) − PNPPMean(g) (2)

where PNPPMean(g) in (2) is the mean PNPP of all locations
in g, PNPP(i,g) is PNPP at i in g, and RC(i, g) is the
difference between PNPP at i and the mean PNPP in g
[i.e., PNPPMean(g)] due to within-group variation in the cli-
mate impact. Clearly, more favorable climate conditions will
result in positive and higher PNPP and vice versa. The NPP
difference due to the climate variations can be reflected from
RC at each location in an LVS group. To offset the difference
in the climate impact within an LVS group g, ONPPCR at
location i in g can be derived using the function

ONPPCR(i, g) = ONPP(i, g) − RC(i, g). (3)

The internal variation in ONPPCR in an LVS group is
attributed to HUMAN impact only.

C. Carbon Gap by DC Zonal Analysis

Zonal analysis can derive a set of statistics (e.g., maxi-
mum or minimum value) from the input values of a variable
within a zone. The carbon gap for a given location is computed

Fig. 2. Example of carbon gap assessment by DC zonal analysis. #RC(i, g) =
PNPP(i, g)− PNPPMean(g) and ONPPCR(i, g) = ONPP(i, g)− RC(i, g),
where i means the current examined grid (pixel) and g is the group of the
eight grids in the red boundaries [see (2) and (3)]. ∗PCT90 is computed by
DC zonal analysis on ONPPCR; in this example, 93 is the PCT90 of the eight
ONPPCR values.

as the difference from its current ONPPCR to a target value that
could be realistically achieved. For any given location i , such
a target value is derived by zonal analysis on ONPPCR input
within the colocated LVS zone containing i and a predefined
window centered at i , or termed as DC neighborhood. In this
study, a zonal statistic, defined as the 90th percentile (PCT90)
from the input vector of ONPPCR (ONPPCR values) located
in the DC neighborhood, is computed as the target level for
ONPPCR at each location.

The assessment of the carbon gap by DC zonal analysis
depends on computing the target reference for a location
that its ONPPCR can reach. Two parameters, namely, a zonal
statistic and a window size defining the zone, have to be
predefined for the analysis. A few zonal statistics could be
considered. For example, the maximum zonal statistic from
the ONPPCR inputs of a zone is the highest ONPPCR that
corresponds to the good land management practice (GLMP)
leading to the maximum ONPPCR. GLMP can then be adopted
by all other locations, resulting in the highest overall ONPPCR

in the LVS zone. Rather than taking the maximum statistic,
our selection of PCT90 is decided to remove few exceptional
ONPPCR values possibly introduced from noisy data (e.g., LVS
input or ONPP), which might not be resulted from HUMAN
impact. Instead, using PCT90 as the target is likely to exclude
such exceptions and will provide a more robust reference that
ONPPCR is expected to reach if GLMP from the neighborhood
is transferred to the currently examined location.

The window size is another parameter that given a location i
in an LVS zone constrains the input of ONPPCR from the full
LVS zone to only a local window during computing the target
ONPPCR for the location. This modification makes sure that
only HUMAN practices at locations close to i will be referred
to as the candidate for GLMP. The sensitivity of PCT90 to
the window size, defined as PCT90 changes along a series of
varied window sizes, is mapped. A stratified random selection
of 5000 points, with the sample size allocated by the area of
each vegetation type, found that the window size for the peak
PCT90 was less than 20 km. In the end, the widow size is
decided to be 20 km. Fig. 2 shows the steps of an example
assessing the carbon gap by DC zonal analysis.
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Fig. 3. Distribution patterns of the carbon gap from the DC zonal analysis.
(a) Carbon gap flux. (b) Ratio of the carbon gap flux to ONPP (%).

For the location (gray grid) under examination, a 3 × 3 sized
window is used to confine the underlying LVS zone, leaving
only eight grids (within the red boundaries) as the input for
deriving the target ONPPCR from the DC zone. All the other
grids intersecting and located in the circular window without
filled numbers indicate that they do not have the same LVS
label as that of the currently examined grid and thus are not
used for computing PCT90 (because they belong to another
LVS zone). The RC from the climate impact is derived from
the PNPP. ONPPCR is obtained by offsetting RC from ONPP.
In the end, the zonal statistic, PCT90, is derived and the carbon
gap for the location is assessed.

IV. RESULTS AND DISCUSSION

Fig. 3 shows the spatial variation in the carbon gap (flux)
and the ratio of the carbon gap to ONPP from DC zonal
analysis. The total carbon gap flux/density showed highest in
the north-eastern part (1#) which was dominated by deciduous
broadleaf forests and southern China (2# and 3#) where the
land cover types were much complex [Fig. 3(a)]. The relative
carbon gap, defined as the ratio (or gap ratio) of the carbon
gap to ONPP at each location, presented a different distribution
pattern to the carbon gap flux. For example, the west-southern
part of the study area (4#), most of which was covered by
grassland on high elevation mountains, demonstrated peak
ratio value [Fig. 3(b)]. The grassland in the northern China,
however, did not show a high relative carbon gap, indicat-
ing that the carbon gap varied not only between vegetation
cover types but also with other nonclimate environments
(e.g., landforms). The carbon gap distribution helps locate the

Fig. 4. Carbon gap statistics (mean with error bar from standard deviation)
for different land (vegetation) cover types during 2001–2018.

regions where more carbon could be sequestrated from vege-
tation cover by simply updating HUMAN practices without
converting land cover types. Fig. 4 shows the carbon gap
statistics on land cover types during 2001–2018.

After excluding the nonvegetated areas, the 13 vegetation
cover types averaged an ONPP density of 487.0 gC/m2/yr,
although a significant difference was observed between them.
The average carbon gap flux for all the 13 land cover types
was 118.8 gC/m2/yr, suggesting the potential of adding about
1/4 of extra carbon uptake on the existing ONPP. Evergreen
broadleaf forests showed the highest ONPP (1166.8 gC/m2/yr);
however, its carbon gap density was only 187.2 gC/m2/yr
(gap ratio = 16%). Permanent wetlands presented the highest
carbon gap flux, reaching up to 316.3 gC/m2/yr, in contrast to
its low ONPP which was less than 200 gC/m2/yr, suggesting
the high sensitivity of wetlands to HUMAN impact. Grass-
lands occupied the largest land area, totaling 30.23% out of
all. Grassland averaged an ONPP density of 231.9 gC/m2/yr,
much lower than that of evergreen broadleaf forests. The
carbon gap density from grasslands was only 81.5 gC/m2/yr
on average with a much higher gap ratio of 35% than that
of evergreen broadleaf forests. The total carbon gap from
grasslands took 26.87% of all, significantly higher than that
of any others. Savannas and woody savannas took the second-
largest potential to capture more carbon given their relatively
high gap flux (219.3 and 157.6 gC/m2/yr, respectively) and
high ratio of the land cover area (7.98% and 9.83%), reaching
up to 19.08% and 16.89% out of the total carbon potential,
respectively. Cropland occupied 13.14% of the total land
area, the second-largest following grasslands. The potential to
capturing more carbon from croplands is substantial, totaling
14.00% out of all the carbon gap. Because of the small land
cover area, the total carbon gap from deciduous needle leaf
forests, shrublands (open and closed), and permanent wetlands
was minimal.

Intensive verification of the carbon gap is limited due to
data unavailability. Nevertheless, we found that the carbon gap
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is fairly consistent (R2 = 0.37) with the improvement space
of above-ground biomass (AGB) computed from on-site data
comparably collected outside of and within over 400 protected
vegetation areas across the grassland in Inner Mongolia, China,
where long-term fencing and grazing exclusion programs were
implemented in the past two decades. The AGB outside the
fenced areas experienced HUMAN impact showing significant
gap compared with that of the fenced areas where the HUMAN
impact was excluded. Future work needs to focus more on
direct verification of the carbon gap.

V. CONCLUSION

This letter has proposed a model called DC zonal analysis
to assess how much more carbon could be practically captured
from vegetation by improving human-related (HUMAN) land
management practices supported by multiple remote sensing
data sources. Our model differs from any of the existing ones
in that the proposed model maps the potential that could be
realistically sequestrated simply by identifying and adopting
GLMP from the neighborhood with similar environmental
properties. ONPP variations come from three aspects, that
is, climate, nonclimate, and HUMAN impact. The spatial
variation in ONPP, after leveling off the impact from the
climate and nonclimate, is attributed solely to HUMAN differ-
ence. Thus, the HUMAN practices proved to have historically
produced high ONPPCR could be copied to locations showing
a lower ONPPCR and with comparable environmental condi-
tions. DC zonal analysis is applied to compute the PCT90 that
ONPPCR expects to reach for segmented zones having similar
environmental conditions within a distance of 20 km.

The computed carbon gap illustrates that on average,
about 1/4 of carbon is expected to be added to the current
carbon sequestration level if identified GLMP is implemented
at all respective locations where vegetation does not sequester
full carbon of the target level. Grassland had the highest
potential for capturing more carbon, followed by savannas
(including woody savannas) and cropland. The study also
located the most sensitive regions that have the most potential
space of carbon sequestration improvement.
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