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Abstract

Semantic segmentation of large-scale outdoor point

clouds is essential for urban scene understanding in vari-

ous applications, especially autonomous driving and urban

high-definition (HD) mapping. With rapid developments of

mobile laser scanning (MLS) systems, massive point clouds

are available for scene understanding, but publicly acces-

sible large-scale labeled datasets, which are essential for

developing learning-based methods, are still limited. This

paper introduces Toronto-3D, a large-scale urban outdoor

point cloud dataset acquired by a MLS system in Toronto,

Canada for semantic segmentation. This dataset covers ap-

proximately 1 km of point clouds and consists of about 78.3

million points with 8 labeled object classes. Baseline ex-

periments for semantic segmentation were conducted and

the results confirmed the capability of this dataset to train

deep learning models effectively. Toronto-3D is released 1

to encourage new research, and the labels will be improved

and updated with feedback from the research community.

1. Introduction

Accurate and efficient scene perception of urban envi-

ronments are crucial for various applications, including HD

mapping, autonomous driving, 3D model reconstruction,

and smart city [3]. In the past decade, the largest portion of

research in urban mapping is using 2D satellite and airborne

imagery [5, 15], and autonomous driving researches also re-

lied heavily on 2D images captured by digital cameras [24].

Compared with 2D images that are short of georeferenced

1https://github.com/WeikaiTan/Toronto-3D

3D information, 3D point clouds collected by Light Detec-

tion and Ranging (LiDAR) sensors have become desirable

for urban studies [16, 23]. However, point clouds are un-

structured, unordered and are usually in a large volume [20].

Deep learning algorithms have shown advantages tackling

these challenges in point cloud processing in various tasks,

including semantic segmentation [2, 22], object detection

[4, 35], classification [14, 21], and localization [6, 31].

Mobile platforms that integrate MLS sensors, location sen-

sors (e.g. Global Navigation Satellite Systems (GNSS)),

and 2D cameras (e.g. panoramic and digital cameras) are

gaining popularity in urban mapping and autonomous driv-

ing due to the flexibility of data collection [11, 34], but

training effective deep learning models is not feasible with-

out high-quality labels of the point clouds [1]. The de-

velopment of deep learning has always been driven by

high-quality datasets and benchmarks [29]. They allow re-

searchers to focus on improving performance of algorithms

without the hassle of collecting, cleaning and labeling large

amount of data. They also ensure the performance of the

algorithms are comparable with each other.

In this paper, Toronto-3D, a new large-scale urban outdoor

point cloud dataset acquired by a MLS system is presented.

This dataset covers 1km of streets and consists of about 78.3

million points. A sample of the proposed dataset is shown

in Fig. 1. The main contributions of this paper are to:

• present a large-scale point-wise labeled urban outdoor

point cloud dataset for semantic segmentation,

• investigate an integrated network for point cloud se-

mantic segmentation,

• provide an extensive comparison on the performance

of state-of-the-art deep learning semantic segmenta-

tion methods on the proposed dataset.
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Figure 1. Part of our dataset. Top: dataset with natural color (RGB). Bottom: class labels

2. Available point cloud datasets for 3D Seman-

tic Segmentation

With the advancement of LiDAR and RGB-D sensors,

and the development of autonomous driving and 3D vision,

point cloud data has become more and more accessible.

However, such datasets usually have a very large volume of

data and contain lots of noise, making it difficult and time-

consuming to produce high-quality manual labels. Popular

accessible outdoor point cloud datasets for semantic seg-

mentation are as follows:

Oakland 3-D [18] is one of the earliest outdoor point cloud

datasets acquired by a MLS system mounted with a side-

looking SICK LMS sensor. The sensor is a mono-fiber Li-

DAR, and the point density is relatively low. This dataset

contains about 1.6 million points and was labeled into 44

classes. However, only 5 classes: vegetation, wire, pole,

ground, and facade, were evaluated in literature. This

dataset is relatively small so that it is more suitable for de-

veloping and testing lightweight networks.

iQmulus [30] dataset comes from the IQmulus & TerraMo-

bilita Contest acquired by a system called Stereopolis II [19]

in Paris. A monofiber Riegl LMS-Q120i LiDAR was used

to collect the point clouds. The full dataset has over 300

million points labeled into 22 classes, but only a small part

of the dataset of 12 million points in a 200 m range with 8

valid classes was publicly available for the contest dataset.

This dataset suffers unsatisfactory quality of classification

due to occlusion from the monofiber LiDAR sensor and the

annotation process [25].

Semantic3D [8] is collected by terrestrial laser scanners,

and it has much higher point density and accuracy compared

with the other datasets. 8 class labels were included in this

dataset. However, only very limited viewpoints are feasible

for static laser scanners, and similar datasets are not easily

acquired in practice.



Table 1. Recent urban outdoor point cloud datasets for semantic segmentation

Dataset Year Primary fields Length # points
# classes

labeled

# classes

evaluated

LiDAR

Sensor

Oakland [18] 2009 x, y, z, label 1510 m 1.6 M 44 5 SICK LMS

iQmulus [30] 2015

x, y, z, intensity,

GPS time, scan origin,

# echoes, object ID, label

200 m 12 M 22 8
Riegl

LMS-Q120i

Semantic3D [8] 2017
x, y, z, R, G, B,

intensity, label
- 4 B 8 8

Terrestrial

Laser Scanner

Paris-Lille-3D [25] 2018 x, y, z, intensity, label 1940 m 143.1 M 50 9
Velodyne

HDL-32E

SemanticKITTI [1] 2019 x, y, z, intensity, label 39.2 km 4.5 B 28 25
Velodyne

HDL-64E

Toronto-3D (Ours) 2020

x, y, z, R, G, B,

intensity, GPS time,

scan angle rank, label

1000 m 78.3 M 8 8

Teledyne

Optech

Maverick

Paris-Lille-3D [25] is one of the most popular outdoor point

cloud datasets in recent years. The dataset was collected

with a MLS system using Velodyne HDL-32E LiDAR, with

a point density and measurement accuracy closer to point

cloud data acquired by autonomous driving vehicles. The

dataset covers close to 2km with over 140 million points,

and very detailed labels of 50 classes were provided. For

benchmarks, the dataset uses 9 classes for the purpose of

semantic segmentation.

SemanticKITTI [1] is one of the most recent and largest

publicly available datasets serving the purpose of seman-

tic segmentation. The dataset was further annotated on the

widely used KITTI dataset [7]. This dataset contains about

4.5 billion points covering close to 40 km, and it is labeled

by each sequential scan with 25 classes for the evaluation

of semantic segmentation. This dataset is more focused on

algorithms towards autonomous driving.

Development and validation of deep learning algorithms de-

mand more datasets with various object labels. Toronto-3D

is introduced in this paper to provide an additional high-

quality point cloud dataset for 3D semantic segmentation

with new labels. Table 1 shows a comparison of compre-

hensive indicators with the above-mentioned datasets.

3. New dataset: Toronto-3D

3.1. Data acquisition

The point clouds in this dataset were acquired with a

vehicle-mounted MLS system: Teledyne Optech Maver-

ick2. The system consists of a 32-line LiDAR sensor, a La-

dybug 5 panoramic camera, a GNSS system, and a Simul-

taneous Localization and Mapping (SLAM) system. The

2http://www.teledyneoptech.com/en/products/

mobile-survey/maverick/

LiDAR sensor can capture point clouds at up to 700,000

points per second at a vertical field of view covering from

-10◦to +30◦, with an accuracy of better than 3 cm. The col-

lected point clouds were further processed with LMS Pro3

software. Natural color (RGB) was assigned to each point

with reference to the imaging camera.

3.2. Description of the dataset

This dataset was collected on Avenue Road in Toronto,

Canada, covering approximately 1 km of road segment with

approximately 78.3 million points. This dataset is divided

into four sections, and each section covers a range of about

250 m. An overview of the approximate boundary of each

section is illustrated in Fig. 2. This dataset is collected

using a 32-line LiDAR sensor, and the point clouds have

high density of about 1000 points/m2 on the ground on av-

erage. The dataset covers the full range of the MLS sen-

sor of approximately 100 m away from the road centerline

without trimming. Limited post-processing was done to re-

semble real-world point cloud collection scenarios without

trimming far points and resampling.

Each of the four sections of the dataset was saved separately

in .ply files. The point clouds were classified and point-wise

labels were assigned manually using CloudCompare4 soft-

ware. Each point cloud file has the following 10 attributes:

• x, y, z: Position of each point recorded in meters, in

NAD83 / UTM Zone 17N

• R, G, B: Natural color reflectance of red, green, blue of

each point, recorded in integer [0, 255]

• Intensity: LiDAR intensity of each point, normalized

to integer [0, 255]

3https://www.teledyneoptech.com/en/products/

software/lms-pro/
4https://www.cloudcompare.org



Figure 2. Overview of the dataset. Top: Approximate boundary of each section in our dataset (Satellite imagery from Google Maps).

Bottom: Overview of labels (each class in different colors).

• GPS time: GPS time of when each point was collected,

recorded in float format

• Scan Angle Rank: Scan angle of each point in degree,

recorded in integer [-13, 31]

• Label: Object class label of each point, recorded in

integer [0, 8]

A sample of the Toronto-3D dataset is shown Fig. 1. Simi-

lar to previous datasets, the object class labels were defined

as follows:

• Road (label 1): Paved road surfaces, including side-

walks, curbs, parking lots

• Road marking (label 2): Pavement markings including

driving lines, arrows, pedestrian crossings

• Natural (label 3): Trees, shrubs, not including grass

and bare soil

• Building (label 4): Any parts of low and multi-story

buildings, store fronts

• Utility line (label 5): Power lines, telecommunication

lines over the streets

• Pole (label 6): Utility poles, traffic signs, lamp posts

• Car (label 7): Moving cars and parked cars on road

sides and parking lots

• Fence (label 8): Vertical barriers, including wooden

fences, walls of construction sites

• unclassified (label 0)

A summary of number of points and distribution of labels

in each section is shown in Table 2.

3.3. Challenges of Toronto3D

The Toronto-3D dataset is comparable to Paris-Lille-3D

in several aspects. They are both urban outdoor large-scale

scenes collected by a vehicle-mounted MLS system with a

32-line LiDAR. Toronto-3D covers approximately half the

distance of Paris-Lille-3D and includes half the number of

points. They are both labeled with a similar number of

classes for the purpose of semantic segmentation. Different

from Paris-Lille-3D, the Toronto-3D dataset has the follow-

ing characteristics that bring more challenges to effective

point cloud semantic segmentation algorithms.

Full coverage of LiDAR measurement range. The MLS

system that acquired this dataset has a valid measurement

distance of approximately 100 m. Different from Paris-

Lille-3D where only points within approximately 20 m

away from the road centerline are available, Toronto-3D

keeps all collected points within about 100 m without trim-

ming. The full coverage of measurement range of Toronto-

3D resembles point cloud data collection in real-world sce-

narios, and it brings challenges of variations of point density

at different distances, inclusion of more noise, and inclusion

of more objects further away from the sensor.



Table 2. Number of labeled points for each class (thousand)

Section Road Road marking Natural Building Utility line Pole Car Fence unclassified Total

L001 11,178 433 1,408 6,037 210 263 1,564 83 391 21,567

L002 6,353 301 1,942 866 84 155 199 24 360 10,284

L003 20,587 786 1,908 11,672 332 408 1,969 300 1,760 39,722

L004 3,738 281 1,310 525 37 71 200 4 582 6,748

Total 41,856 1,801 6,568 19,100 663 897 3,932 411 3,093 78,321

Variation of point density. Unlike the relatively small

variation of point density in Paris-Lille-3D, the Toronto-

3D dataset has a larger variation of point density of ob-

jects caused majorly by two reasons: inclusion of all points

within full LiDAR measurement range, and repeated scans

during point cloud collection. The variations of point den-

sity are illustrated in Fig. 3. As illustrated in the scene, the

cars (colored in orange) on the streets have much higher

point density compared to the parked cars at the upper-

middle in the image. The cars with lower density are ap-

proximately 30-40 m away from the road centerline, which

means such scenarios would not be included in Paris-Lille-

3D. In addition, at the center area in the scene, point den-

sity is significantly higher (over 10 times higher) compared

to other parts of the scene, and this is caused by repeated

scans when the vehicle stopped at the intersection during

data collection. The repeated scans resulted in variations of

point density on the same building at the same distance to

the sensor at different locations, and no resampling process

was performed. The large variation of point density would

be challenging to test the robustness of algorithms to cap-

ture features effectively.

New challenging classes. There are two class labels not

commonly seen in other popular datasets listed in Table 1,

i.e., road marking and utility line. Road markings include

various pavement markings on the road surface, including

pedestrian crossings and lane arrows, with various sizes and

shapes, and they are difficult to distinguish from road sur-

faces. Though wires, defined similar to utility lines this

dataset, were included in Oakland 3-D dataset [18], sam-

ple size was limited due to the small number of points in

the dataset. The utility lines are thin linear objects that are

challenging to identify, especially in areas where they over-

lap with poles, trees and are close to buildings. In addition,

the fence class that covers various wall-like vertical struc-

tures is also challenging to identify.

4. Methods

4.1. Recent studies

Semantic segmentation of point clouds is to make pre-

dictions on each point to assign a semantic label. With the

recent development of 3D deep learning, semantic segmen-

Figure 3. Variations of point density. Top: Point density high to

low illustrated in color red to blue. Bottom: Labels of point cloud

(each class in different colors).

tation tasks can be achieved by end-to-end deep neural net-

works. Existing 3D deep learning models on point clouds

can be roughly generalized into three categories: view-

based models, voxel-based models and point-based models.

The view-based models such as MVCNN [27] project 3D

point clouds into multiple views as 2D images, but they do

not fully use the rich 3D information. Voxel-based models

such as VoxNet [17] and 3D-CNN [10] structure unordered

point clouds into voxel grids, so that known structures and

methods of 2D images can be extended to 3D space. How-

ever, the nature of point clouds that they are sparse and have

varying densities make voxelization inefficient.

Point-based methods directly process unordered and un-

structured point clouds to capture 3D spatial features. Start-

ing from PointNet [20] which learns point-wise spatial fea-

ture with multi-layer perceptron (MLP) layers, point-based



methods have been greatly developed, followed by Point-

Net++ [22], PointCNN [12]. Graph models were also ap-

plied to extract spatial features in point-based models, and

such methods include ECC [26] and DGCNN [32].

4.2. Baseline approaches for semantic segmentation

Six state-of-the-art point-based deep learning models for

semantic segmentation were tested on the proposed dataset

as baseline approaches:

PointNet++ [22] applies PointNet [20], which is the pioneer

method using MLPs to process point cloud directly, to local

neighborhoods of each point to capture local features, and

a hierarchical approach is taken to capture both local and

global features.

DGCNN [32] constructs graphs to extract local geometric

features from local neighborhoods, and applies EdgeConv

as a convolution-like operation. EdgeConv is isotropic

about input features with convolutional operations on graph

nodes and their edges.

KPFCNN [28] introduces a convolutional operator called

KPConv to capture local features with weights defined by

a set of kernel points. KPConv is robust to varying point

densities and is computationally efficient. KPFCNN is cur-

rently ranked first in Paris-Lille-3D benchmark.

MS-PCNN [16] is an end-to-end point cloud segmentation

network combining point convolutions with edge informa-

tion. It applies revised PointConv [33] operations with edge

features from revised EdgeConv [32] operations.

TGNet [13] introduces a novel graph convolution function

called TGConv defined as products of point features from

local neighborhoods. The features are extracted with Gaus-

sian weighted Taylor kernel functions. It is an end-to-end

semantic segmentation network with hierarchical TGConv

followed by a conditional random field (CRF) layer.

MS-TGNet is proposed in this study with a revised structure

of TGNet. Considering the full range of approximately 100

m from the road centerline was preserved in this dataset,

there is a large difference in point density. Multi-scale

grouping (MSG) proposed in PointNet++ [22] was designed

to capture features more effectively in point clouds with

large variations in point density. A MSG layer was imple-

mented in the second layer of the original TGNet architec-

ture to capture local geometric features at three different

radii (0.2 m, 0.4 m and 0.8 m) through testing.

4.3. Evaluation metrics

For the evaluation of semantic segmentation results, in-

tersection over union (IoU ) of each class, overall accuracy

(OA) and mean IoU (mIoU ) are used.

IoUn =
TPn

TPn + FPn + FNn

(1)

OA =

∑
TPn

Total number of points
(2)

mIoU =

∑
IoUn

N
(3)

where N is the total number of labels, n is the nth label

in N , TP , FP and FN represent number of points of true

positives, false positives and false negatives of the predic-

tions respectively. OA and mIoU evaluate the overall qual-

ity of semantic segmentation, and IoU of each class mea-

sures the performance on each class.

4.4. Parameters and configurations

L002 was selected as the testing set among the four sec-

tions due to its smaller size and balanced number of points

of each label, while the other three sections were used for

training and validation. For fair comparison, only coordi-

nates (x, y, z) of point clouds were used.

The parameter settings of PointNet++ and DGCNN were

directly used from the networks for indoor scenes, which

may limit the performance of these two algorithms to some

extent. The parameter settings of KPFCNN, MS-PCNN and

TGNet were used from the networks tested on Paris-Lille-

3D dataset in literature. The network structures and param-

eter settings of these algorithms may not be directly compa-

rable, and parameter tuning does not guarantee the fairness

of comparison. In this study, the results are for baseline

illustration purpose only, and better results could be poten-

tially achieved with further tuning. The models were trained

and tested on a NVIDIA RTX 2080Ti with 11G of RAM,

and batch sizes were adjusted accordingly.

5. Results and discussions

5.1. Performance of baseline approaches

The results for semantic segmentation baseline ap-

proaches using Toronto-3D are shown in Table 3.

PointNet++ [22] achieved highest IoU in road class. How-

ever, the PointNet++ model with MSG modules did not

perform as well as the base PointNet++ architecture with

the published parameter settings of indoor scenes. DGCNN

[32] performed the worst in terms of both OA and mIoU

in our dataset. Since DGCNN uses KNN for construction

of graphs to capture local features, it may not perform well

in this dataset with varying point density.

KPFCNN [28] is on the top spot of Paris-Lille-3D bench-

mark at the moment, and it achieved the highest OA and

second highest mIoU among the tested baseline algo-

rithms. KPFCNN achieved the highest IoU in building,

utility line, pole and fence segmentation. MS-PCNN [16]

and TGNet [13] both achieved mIoU of over 58% follow-

ing the performance of KPFCNN.

The proposed MS-TGNet achieved comparable results with

KPFCNN, achieving highest mIoU of 60.96% and sec-

ond highest OA of 91.69% among the baseline approaches.

It has highest IoUs in road marking and natural classes.



Table 3. Semantic segmentation results of different methods (%)

Methods OA mIoU Road Rd mrk. Natural Building Util. line Pole Car Fence

PointNet++ [22] 91.21 56.55 91.44 7.59 89.80 74.00 68.60 59.53 53.97 7.54

PointNet++ (MSG) [22] 90.58 53.12 90.67 0.00 86.68 75.78 56.20 60.89 44.51 10.19

DGCNN [32] 89.00 49.60 90.63 0.44 81.25 63.95 47.05 56.86 49.26 7.32

KPFCNN [28] 91.71 60.30 90.20 0.00 86.79 86.83 81.08 73.06 42.85 21.57

MS-PCNN [16] 91.53 58.01 91.22 3.50 90.48 77.30 62.30 68.54 53.63 17.12

TGNet [13] 91.64 58.34 91.39 10.62 91.02 76.93 68.27 66.25 54.10 8.16

MS-TGNet (Ours) 91.69 60.96 90.89 18.78 92.18 80.62 69.36 71.22 51.05 13.59

A visual comparison of semantic segmentation results of

KPFCNN and MS-TGNet is shown in Fig. 4.

5.2. Areas for improvements

From the results of the baseline approaches, all algo-

rithms performed poorly in road marking and fence with

IoUs lower than 22%, and the accuracy of utility line, pole

and car can be improved. Four examples of errors in the

results from the best performing two algorithms, KPFCNN

and MS-TGNet, are further illustrated in Table 4.

In Box a where some concrete blocks are placed as a barrier,

KPFCNN classified them as buildings while MS-TGNet

classified them as cars. The concrete blocks may have sim-

ilar structures to cars and buildings but they are smaller in

size. In the same scene, part of trunks of the trees were

misclassified as poles in KPFCNN but they are correctly

grouped into natural class in MS-TGNet possibly due to

the edge features. It explained the higher performance of

KPFCNN on pole and higher performance of MS-TGNet

on natural class to some extent.

Box b shows a truck partially misclassified by both algo-

rithms. They both correctly classified the lower part of

the truck, but the upper part with box shape was classi-

fied as building by KPFCNN and fence by MS-TGNet. The

truck is a moving object and only one side was completely

scanned, adding the vertical structure of the truck, so that

these conditions possibly resulted in the confusion.

Box c shows a scenario with road markings. KPFCNN was

not able to identify road markings with a IoU close to 0.

MS-TGNet captured part of the road markings but at a low

IoU of 18.78%, and missed the pedestrian crossings. The

road markings on pavements are difficult to distinguish with

point coordinates only, and additional color and intensity in-

formation would make road markings easier to identify.

Box d illustrates a scene with utility lines at the boundary of

the test point cloud. KPFCNN distinguished the utility lines

correctly, while MS-TGNet classified the horizontal line as

a mixture of several classes including road and road mark-

ings. The horizontal utility line in Box d is at the boundary

of the point cloud without road surface underneath to pro-

vide contextual information.

The performance of algorithms with the backbone of Point-

Net++, including the proposed MS-TGNet, was probably

limited by the number of points the structure is able to pro-

cess with the limitation of RAM. KPFCNN uses a much

larger number of points and outperformed MS-TGNet in

most categories but showed some weakness in natural and

road marking classification. Selection of KPConv kernels

and network settings could be improved to capture road

marking. New algorithms that can process a large number

of points, such as RandLA-Net [9], would have advantages

in outdoor scenes, and they will be tested on Toronto-3D.

6. Conclusions

This paper presents Toronto-3D, a new large-scale urban

outdoor point cloud dataset collected by a MLS system. The

dataset covers approximately 1km of road with over 78 mil-

lion points in Toronto, Canada. All points were preserved

in the range of data collection to resemble real-world appli-

cation scenarios. This dataset was manually labeled into 8

categories, including road, road marking, natural, building,

utility line, pole, car and fence. Five state-of-the-art end-

to-end point cloud semantic segmentation algorithms and a

proposed network named MS-TGNet were tested as base-

lines for this dataset.

The proposed MS-TGNet is able to produce compara-

tive performance with state-of-the-art methods, achieving

the highest mIoU of 60.96% and a competitive OA of

91.69% in the new dataset. The Toronto-3D dataset pro-

vides new class labels including road markings, utility lines

and fences, and all tested semantic segmentation methods

need to improve on road markings and fences.

The intention of presenting this new point cloud dataset is

to encourage developing creative deep learning models. The

labels of this new dataset will be improved and updated with

feedback from the research community.
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(a) Ground truth (b) Result of KPFCNN (c) Result of MS-TGNet

Figure 4. Visual comparison of results of semantic segmentation

Table 4. Detailed views at semantic segmentation errors

a b c d

KPFCNN

MS-TGNet

Ground truth
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