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A B S T R A C T   

The reconstruction of buildings using inhomogeneous and unstructured point clouds is a challenging task for 
photogrammetry and computer vision research communities. A new approach for 3D building surface modeling, 
based on closed constraints, is proposed. First, a region growth algorithm is applied to fit the input point clouds 
by a set of candidate planes. Then, additional candidate planes are generated from the initial planes according to 
a rigid transformation followed by expanding the original primitive set to the candidate model set through 
generation rules. Furthermore, an energy function is employed to combine the data fitting errors with the 
structural constraints at the model selection stage. Finally, the 3D building surface model is generated from the 
candidate set through energy minimization. More precisely speaking, we adopt the surface optimization scheme 
that enforces the 3D polygonal surfaces of the building to be consistent with a priori geometric structures. Our 
approach was assessed using multi-source datasets with different densities, noise levels covering diverse and 
complex structures. The experimental results demonstrated that the proposed approach achieves better accuracy 
and robustness than those of several state-of-the-art methods.   

1. Introduction 

The surface reconstruction from 3D point clouds is crucial for several 
applications (Berger et al., 2017; Tachella et al., 2019; Li et al., 2019), 
including those related to virtual reality (Bruno et al., 2010), smart cities 
(Yang and Lee, 2017) and robotics (Rajput et al., 2018). Building surface 
reconstruction is a fundamental task to achieve large-scale 3D city 
reconstruction. Notably, the most challenging task is to propose a robust 
algorithm for 3D surface reconstruction to generate reliable building 
surfaces from multiple-sources data with different sparsity, varying 
noise levels, and complex structures. To this end, a large amount of 
research has focused on building surface reconstruction using various 
methods, including image-based (Musialski et al., 2012; Nan et al., 
2015; Wang et al., 2015), aerial LiDAR-based (Verma et al., 2006; 
Jarzkabek-Rychard and Borkowski, 2016; Wu et al., 2017) and ground 
LiDAR-based (Chen and Chen, 2008; Wan and Sharf, 2012). 

Reconstruction of building surfaces in complex real-world scenes poses 
specific challenges due to various geometric shapes and occlusions. 
Consequently, automated reconstruction of 3D building surfaces from 
point clouds yet remained an open challenge (Ochmann et al., 2019; 
Berger et al., 2017). Many methods have been proposed, including those 
based on implicit methods (Hoppe et al., 1992, 1994), moving least- 
squares fitting method (Alexa et al., 2003), Multilevel Partition of 
Unity (Ohtake et al., 2003), Poisson surface reconstruction method 
(Kazhdan et al., 2006; Alliez et al., 2007), and Bayesian surface recon-
struction methods (Jenke et al., 2006; Diebel et al., 2006). These implicit 
methods sometimes tend to smooth the data. In order to produce a 
sharper surface, unlike the l1- or l2- norm in many methods, Li et al. 
(2018) proposed a new minimization method by using l0 gradient. Un-
fortunately, most of these approaches do not cope with poor quality 
point clouds. To overcome this, Ganapathi-Subramanian et al. (2018) 
used structure-aware shape templates to guide the generation of initial 
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primitives. However, a limitation occurs due to the variety of shape 
templates, and it becomes a challenge to generate new shapes. Li et al. 
(2017) and Mo et al. (2019b) adopted neural network architecture to 
capture the layered structure of the reconstructed object to achieve finer 
geometric perception of a complex structure. Moreover, some valuable 
scene priors were used for building surface reconstruction. For example, 
it is beneficial to reconstruct the building surface fully by extracting 
high-level global scene features instead of local details (Yumer and Kara, 
2012; Oesau et al., 2014). In most urban scenes, buildings can be 
conceived as a composition of surface structures and their relationships. 
As such, graph neural networks that are able to describe relationships on 
graphs of 3D point clouds has attracted widespread attention. Mo et al. 
(2019a) presented a hierarchical graph network for concurrently 
combining both part geometry and inter-part relations during network 
training. Similarly, Li et al. (2018b) used graph neural networks to 
represent probabilistic dependencies among graphs nodes and edges, 
which can capture structure and attributes. These methods have certain 
guiding significance for the identification of relations between 
primitives. 

This paper, presents a new approach to building surface recon-
struction with a focus on the closed constraints when selecting global 
inter-plane relations of primitives to obtain the watertight surface model 
of regularized primitives. More precisely, we developed an energy 
minimization strategy, which taking into account structural closure 
constraints and the adjacency of candidate planes. The closed con-
straints are applied to ensure the coincidence of the intersecting edges of 
the adjacent planar surfaces. 

The rest of this paper is organized as follows: Section 2 briefly re-
views related studies in surface reconstruction. Section 3 presents the 
motivation to conduct this work. Section 4 gives specific implementa-
tion steps for the proposed algorithm, including how a candidate was 
generated, as well as the closed and regular arrangements of planes 
selection. Section 5 presents and discusses the experimental results and 
compares the performance of our method with that of several existing 
methods. Section 6 concludes of the paper. 

2. Related works 

The development of 3D sensing equipment has facilitated the 
acquisition of point clouds. Reconstruction of building models from 3D 
point cloud has become the main research content in computer graphics 
and photography, being implemented a lot of research in the past few 
decades. The polygonal surface reconstruction aims to obtain dense and 
complete surfaces. According to the difference of reconstruction strate-
gies, the existing surface reconstruction methods of buildings from point 
clouds mainly include two categories: data-driven and structure-driven. 

As for data-driven reconstruction methods, the most popular tech-
nique fits geometry and identifies higher-level intrinsic structural re-
lationships between them. The extraction of initial primitives is mainly 
to restore the real object model from the point clouds with noise and 
outliers. The milestone method is based on Random Sample Consensus 
(RANSAC) (Schnabel et al., 2007), which is an efficient model fitting 
algorithm, as well as its variants, such as variational surface approxi-
mation (Li et al., 2009), Groupsac (Ni et al., 2009), PROSAC (Chum and 
Matas, 2005) and Multi-Structure Estimation (Wong et al., 2011). The 
sampling-based approachs are popular because of simplicity, scalability, 
and probability guarantees. However, the performance of scene-level 
structures is relied on the iterative selection of inner point sets from 
the data to estimate the model, in which the number of iterations of the 
algorithm is large and unstable. The GlobFit framework (Li et al., 2011) 
optimizes the data fitting based on the intrinsic relationships of the 
original primitives (obtained by RANSAC), further identifying global 
relationships. However, if the extracted primitives are not accurate, 
influenced by the of noise points, the detection of the wrong relationship 
between primitives can be generated. Based on RANSAC, Jenke et al. 
(2008) proposed an algorithm to extract the basic geometric model and 

candidate contour points to provide boundary contour through an 
optimization function. By subdividing the surface reconstruction into 
sub-problems of each primitive, the error boundary extraction of one 
primitive does not affect the surface reconstruction of the rest, solving 
the problem of fails due to local errors occurred in the global optimi-
zation method. 

Compared to approaches that focus on obtaining dense polygonal 
surfaces, the exploitation of high-level plane has attracted researchers’ 
attention. Arikan et al. (2013) proposed a semiautomatic polygon sur-
face reconstruction method, which refines the initially fitted primitives 
through manual interaction. Considering the adjacency of the polygon, 
Chen and Chen (2008) connected the outer boundary points to perform 
polygon fitting. This method is feasible when studying a model refined 
against poor-quality data because the intersection of adjacent planes can 
be inferred from the boundary of the fitting plane, thereby restoring the 
structure of the missing portion. Taking the data as the research object, 
PEARL approach (Isack and Boykov, 2012) mathematically models the 
fitting problem and uses the energy function for the optimization task. 
However, broader inter-primitive relations are needed. Besides, the 
reconstruction can be transformed into a volume reorganization of 
locally block-level structures from the perspective of combination. For 
example, Lin et al. (2013) reconstructed the rough building model by 
decomposing the point cloud into block levels and piecewise fitting 
faces. 

Similarly, Yi et al. (2017) projected the boundary points dividing the 
building into sections regarding the distribution histogram of the pro-
jected points. However, the segmented block structure fails when a 
failure occurs in the boundary extraction caused by noise interference. 
In this case, structural constraints based on primitive extraction become 
an alternative to improve the reconstruction accuracy. 

The structure-driven reconstruction methods consider the repetitive 
and symmetrical structures of buildings. For example, Smart-Boxes (Nan 
et al., 2010) focuses on the reconstruction of tall buildings with many 
repetitive structural elements. The structural elements are selected by 
the user, matching with similar shapes in the model library. Then, the 
matched models are integrated to generate regular models, as presented 
by Pauly et al. (2008) and Gal et al. (2007). Moreover, symmetry or 
repetition is the most common type of structure, and their automatic 
detections are implemented in 2D by Furukawa et al. (2009), based on 
projection geometry (Hartley and Zisserman, 2003). Li et al. (2011) 
explored the global structural relationships of primitives to fit the scan 
data better, however not handling the data that completely lacks a face. 
Chen et al. (2017) divided the roof according to the topology rules. 
Then, the extraction of the original boundary using Voronoi graph-based 
was conducted (Amenta et al., 1998), and used to generate the light-
weight building model. It is worth noting that the original shape and its 
spatial relationship are indispensable in the existing primitive-based 
approach. Monszpart et al. (2015) proposed an artificial scene recon-
struction algorithm based on the regular set, which uses an iterative 
method to simultaneously extract primitives and local internal re-
lationships, and generate a small main structure of the model. However, 
the primary purpose of these viewpoints is to infer the symmetry, ver-
tical, and other structural relationships between the primitives, and fail 
to guarantee the closure of the model boundaries. Nan and Wonka 
(2017) obtained watertight reconstructions surface models of the 
buildings based on an approach that is effective in dealing with noise, 
outliers, and missing data. However, small principal structures are easily 
missed, and it is only applied to the reconstruction of a fully closed 
model. In recent years, there are methods on generative models for 3D 
shapes, for example, reconstruction methods based on point clouds 
(Achlioptas et al., 2019; Li et al., 2018a; Fan et al., 2017), modeling 
methods based on multi-scale depth maps (Arsalan Soltani et al., 2017), 
reconstruction methods based on surface meshing (Groueix et al., 2018) 
and local shape synthesis (Kalojanov et al., 2019), and so on. These 
methods focus more on the basic geometric structure generation rather 
than the overall structure. Recently, Xia et al. (2020) investigated the 
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latest processing techniques regarding geometric primitives, empha-
sizing that primitive extraction methods can still achieve the globally 
optimal results effectively, even with poor Lidar data quality. 

The algorithms mentioned above ignore the boundary closure 
problem during the optimization reconstruction process, focusing only 
on the local fitting or on inferring the internal relationships of the 
primitives. The proposed algorithm guarantees the closeness of the 
boundary while inferring the relationship between the surface sets to 
generate a more watertight high-precision model. 

3. Motivation 

Structural relationships in real scenes are often biased or even wrong 
due to the lack of points and the presence of noise. According to the 
Manhattan hypothesis, the building is mainly composed of plane parts in 
most urban human-made building scenes. Typical planar relationships 
between them include parallelism, coplanarity, orthogonality, and 
symmetry, etc. Therefore, we first speculate on possible relationships 
and generate candidate sets that are likely to be close to the real model 
based on hypothetical relationships. In other words, the candidate 
primitive planes are first expanded by adding hypothesized planes. 
Secondly, the regular arrangements of planes (RAP) extraction are 
transformed into a selection problem. 

An effective way to achieve this premise is first to find potential 
inter-plane relationships as much as possible based on the initial fitting 
primitives. Then extract the proper intrinsic relationship of the primi-
tives according to the constraints. As for the constraint rules, we 
consider three aspects: (1) data cost: the fitting residual between the 
original data points and the primitives; (2) irregularity cost: the gap 

between the structural relationship between the continuous primitives 
and the prior prediction. Besides, the additional smoothing term is to 
ensure the smoothness of the segmentation. 

The rule constraints of the structure are generated from a global 
perspective based on the reconstruction algorithm of the regular set, 
considering the topological relationship between the faces. However, 
the discontinuity of reconstructed models may occur due to occlusion. 
RAPter method (Monszpart et al., 2015) did not consider this. 

Strategies on boundary closure constraints of adjacent structures to 
optimize the accuracy of the model fitting are needed. Our method, 
Clow_Rapter, considers the original point cloud as input, which may 
contain outliers, noise, and missing data. The output of the proposed 
method is the permutation of primitives selected for optimization con-
straints and their intrinsic relationships. 

The algorithm is implemented in three steps: (i) the original point 
cloud is initially fitted; (ii) the additional candidate planes are created 
using the initial planes by rigid transformation, and the original primi-
tive set P is expanded to the candidate model set P̃ according to the 
generation rules; (iii) an optimization formula is developed to select 
Clow_RAP from the expanded candidate set, taking into account the 
structural constraints of the global perspective and the model closure in 
the Clow_RAP selection stage, which is the most critical. 

4. Method 

The proposed method aims to reconstruct the closure and regular 
arrangements of the planes from a raw point cloud of the scanned 
buildings, where the regular arrangement refers to the orderly combi-
nation of primitives with a certain structural relationship. The proposed 
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method considers three main stages:  

(1) Initialization: First, the raw point cloud S is segmented by a 
region growing algorithm into a set of patches {Sj} according to 
the normal consistency, where j is an index of each block cloud. 
Then, we calculate the fitting plane Pj of each patches Sj using the 
least-squares method. Thus, the initial set of primitive planes P: 
{Pj } are obtained;  

(2) Candidate generation: Since the original primitive P:{Pj}, 
generated by local fitting, is susceptible to outliers, it is difficult 
to detect the structural relationship between these disordered 
local primitives robustly. In Fig. 1, a 3D cube is considered as a 
toy example. The initial fitting planes of the patches Si, Sj, Sk, Sl in 
initialization are denoted as Pi, Pj, Pk, Pl, respectively. The point 
cloud at position j is scattered due to the influence of noise. The 
points at this location are supposed to be coplanar. As shown in 
Fig. 2(a), there are some points deviate from the plane, gener-
ating inclined planes, such as Pj. From a global perspective, the 
patches {Sj} may be better fitted by the plane model of other 
locations through a rigid transformation. As shown in Fig. 1, the 
primitive {Pi} which is a primitive that is initially fitted by the 
patches {Si} is rotated by 90

◦

to the geometric center of the 
patches {Sj}. Similarly, Pl has been rotated to the center of {Sj}. 
Primitive Pk is parallel to Pj, and then Pk is translated to a certain 
distance to the center of {Sj}. As a result, the fitting model of the 
patches {Sj} has a set of new candidate sets {Pi, Pl, Pk}. Generally 
speaking, the candidate sets can be expressed as {Pi→j ,. . ., i, j=1, 
2,...}, where Pi→j indicate primitives that are transformed from 
{Si}. The primitive Pi fitted by the patches {Si} is transformed to 
the center of {Sj}, and this primitive is denoted as Pi→j. To 
highlight that, Pj is obtained by the transformation of Pi, which is 
denoted as Pi→j. According to the above rules, more primitives are 
generated for each patch. Therefore, we gain fitting models P̃ =
{Pi→j, i, j=1, 2,. . .}, which are suitable for the raw point cloud. 
Although these primitives contribute to recovering the structures 
with missing data or excessive noise, most of them are eventually 
discarded.  

(3) Closed regular arrangements of planes selection: We select 
closed sequences with regular structure from the extended set of 
primitives P̃. The binary variable χi→j ∈ {0,1} indicates whether 
the candidate plane Pi→j is selected as the final model. As shown 
in Fig. 2, the candidate model of the patch {Sj} is obtained by the 
rotation and the translation transformation of Pi, Pk, and Pl. As 
shown in Fig. 2(b), Pi is rotated by 90◦, and then translated to the 
center of the patches {Sj} to obtain {Pi→j}. Similarly, {Pk→j} and 
{Pl→j} are candidate models for {Sj}. If {Pk→j} is selected as the 
effective fitting primitive of the patch {Sj}, then χi→j = 1, other-
wise, χi→j = 0. 

The binary variable [χi→j,. . . ], i = 1, 2,. . . represents the final set of 
valid models, called the regular set. The regular set needs to be selected 
according to the structural similarity grouping due to the complexity of 
the topology of the building. Therefore, the indicator variable χi→j ∈

{0,1} is introduced, and χi represents the original primitive of the 
transformation in a set of models. So the value of the indicator variable χi 
is maxjχi→j. This algorithm transforms the selection problem of the 
regular set into the minimum optimization problem of the energy 
function, which can be described by Eq. (1). 

{χi},
{

χi→j

}
= argmin E := λEdata

{χi}{χi→j}
+ (1 − λ)Eirr* + Espat (1)  

where Edata is the data item, Eirr* is the non-regular term, and Espat is the 
spatial smoothing term, with 

∑

j
(χi→jχi − χi→j)⩾0. It is guaranteed that 

when {Pi→j} is selected as the effective fitting primitive of {Sj}, the 

primitive {Si} of the set of models also needs to be valid. λ ∈ {0,1}, being 
close to 1 when the input data has high-precision or is pre-processed. On 
the other hand, when the data contains a lot of noise or data missing, we 
can choose a small value of λ. In general, the value of λ is set to be 0.5. 

4.1. Structural constraint 

4.1.1. Data 
The purpose of the data cost is to calculate the fitting residuals be-

tween the original point cloud {Ph} in {Sj} and its fitting primitives 
{Pi→j}. In the initial fitting phase, the regular set based reconstruction 
algorithm use Principal Component Analysis (PCA) (Maćkiewicz and 
Ratajczak, 1993) to estimate the sum of the fitted distance errors, as 
presented in Eqs. (2) and (3). 

Edata :=
∑

j

∑

i
χi→jEd(Pi→j, Sj) (2)  

Ed
(
Pi→j，Sj

)
=

1
⃒
⃒
{

ph ∈ Sj
}⃒
⃒

∑

ph∈Sj

d
(
ph, pi→j

)2 (3)  

where the binary variable χi→j indicates whether a candidate plane 
{Pi→j} is selected as the fitting model of the patches {Sj}. Due to the 
different sizes of point cloud blocks {Ph} ∈ Sj , Ed normalizes the fitting 
error of each patch {Pi→j}. 

4.1.2. Irregularity 
After ensuring the accuracy of the primitive fitting, the structural 

relationship among the primitives also needs to be maintained. Similar 
to the Manhattan-World assumption, the parallel planar arrangement is 
the most common rule. The non-regular term Eirr* evaluates the degree 
of matching between primitive models. In our algorithm, each primitive 
Pi is transformed into the position of the other patches. Without loss of 
generality, Pi fitted by {Si} is represented as Pi→i. The irregularity term is 
then defined in Eq. (4). 

Eirr* :=
∑

i,k
χiχkIrr(pi→i, pk→k) (4)  

where Irr(Pi→i, Pk→k) is an irregularity function, Irr(Pi→i,Pk→k):=ƒ(∠(ni, 
nk)). The f(⋅) function is the mathematical formula ƒ(x):=1-exp(-δx). 
∠(ni,nk) represents the angle between the normal vector of primitive Pi→i 
and the normal vector of Pk→k normal vector. χi indicates whether the 
model Pi→i is selected or not. Namely χi = 1 means Pi→i is selected, 
otherwise χi = 0. 

4.1.3. Spatial smoothness 
Spatial smoothness term merges the patches of adjacent structures in 

the same direction to be merged into coplanar patches. The two patches 
Sj and Sl are merged if a minimum distance occurs between their points, 
and also if there is a close direction vector between the two patches, as 
presented in Eq. (5). 

Espat :=
∑

j,i,l,k;j∕=l

χi→jχk→lneigh
(
Sj, Sl

)
Cspat (5)  

where Cspat is a fixed space penalty, which is defined as Cspat = (1-λ)/10. 
The neigh(⋅) function measures the proximity of the distance and direc-
tion of two patches in Eq. (6).  

neigh(Sj, Sl):= I( min
pg∈Sj ;pk∈Sl

‖pg − pk‖ < 2ρ)I(∠(n(Sj), n(Sl)) < τ) (6)  

where I(⋅) is a binary function, note that I(x)=1 when the conditions “x” 
in parentheses is satisfied, otherwise I(x)=0. The neigh(⋅) function 
measures the proximity of the distance and the direction of two patches. 
In particular, the patches are considered adjacent if the distance be-
tween patches Sj and S1 is less than 2ρ, and the normal vector direction 
angle is less than τ. The distance between the patches Sj and Sl is 
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calculated by the minimum distance between the two points Pg (Pg Є Sj) 
and Pk (Pk Є S1). 

4.2. Closed constraint 

The extraction algorithm of regularly arranged planes mainly focuses 
on obtaining closed and regular sequences of primitives, ignoring the 
boundary connection of adjacent faces. Most critically, high-quality 
closed models are obtained based on global structural relationships. 
To achieve the closure of adjacent planes, we transform the closure of 
the gap between the faces into the constraint adjacency. If the adjacent 
faces intersect, the original points at the intersecting edges must be close 
enough. The algorithm mainly consists of two stages.  

(1) Determine each pair of adjacent faces: 

The plane P1 is obtained by fitting the patch S1 = {pi,i = 1,2,3,...}. 
Similarly, P2 is obtained by fitting the patch S2 = {pj, j = 1,2,3,...}. If P1 is 
adjacent to P2, it need satisfy: 

If the distance of patches S1 and S2 is close enough, it means that the 
points contained in patches S1 and S2 are close to each other. In our 
assumption, we define the points set S, where S = {(pi,pj) ||pi-pj||<d*}, i, 
j = 1,2,3,…, pi є S1, pj є S2. S, as a non-empty set, contains points in two 
point cloud blocks whose distance from each other is less than the 
threshold, as shown in Fig. 3(a).  

(2) The closed constraint of adjacent faces: 

Given adjacent and intersect planes P1 and P2, they must satisfy the 
following conditions: the distance between points p є S from the S1 and 
S2 is sufficiently close, and the sum of the distances to P1 and P2 should 
be as close as possible within a distance threshold. The energy minimum 
with closed constraints selects the final model set (see Fig. 3(b)). This 
process can be described by Eq. (7). 

Eclosure = dis(S,P1) + dis(S,P2) (7) 

By adding this closing constraint into Eq. (1), we obtain the updated 
energy function (Eq. (8)). 

{χi},
{

χi→j

}
= argmin E := λEdata

{χi}{χi→j}
+ (1 − λ)Eirr* + Espat + Eclosure (8) 

The energy function contains the data term Edata, the non-regular 
term Eirr*, and the spatial smoothing term Espat. The energy formula-
tion in Eq. (8) contains the data fitting error term Edata, the irregularity 
term Eirr*, the spatial smoothness term Espat and the closed constraint 
Ecloseure. The data fitting error term Edata, the irregularity term Eirr*, the 
spatial smoothness term Espat are described in detail in Eq. (1). 

4.3. Optimization 

The purpose of the optimization is to search the final model from the 
expanded candidate set based on the energy function minimization. We 
used the CoinBonmin solver (Monszpart et al., 2015) for the task of 
optimization. Bonmin (Basic Open-source Nonlinear Mixed INteger 
programming) is an open-source code for solving general MINLP (Mixed 
Integer NonLinear Programming) problems. The web address of the 
open-source code is https://projects.coin-or.org/svn/Bonmin 
/stable/1.5. We adopted the strategy from coarse to fine to improve 
the optimization efficiency of the algorithm. Specifically, by setting a 
threshold that supports the number of plane points, the planes that meet 
the threshold range are selected in batches for optimization. For 
example, if the threshold is set to be 800, there must be at least 800 
points associated with the plane that related to the optimization. Then, 
the next level candidate set is introduced according to the previous 
extraction process. When selecting primitives in each iteration, the sum 
of reconstruction costs is calculated. In the next iteration, the face set 
with the smallest total cost is selected. The specific algorithm is imple-
mented as Algorithm 1. 

Algorithm 1. (Algorithm of Closed-Regular Arrangements of Planes 
(Clow_Rapter))  

Input:patches{Sj}∈S, local primitives{Pi→i∈P}, area threshold α 
Output:Clow_RAP set P*={Pi→j}, closed relationship {<Pi→j , Pi→k , relation>} 
/// (1) Initialization 
1: P0:={Pj→j}∈P, P* :¼ Φ , S ¼¼ Φ , P* = Φ // Initialize set of selected candidates P0, 

points set of adjacent plane pair S, the set of adjacent plane pair P* 
2: population=num // faces require that there are enough close pairs of points on both 

faces 
3: α:= areamax/areamin ρ 
/// (2) Candidate generation 
4: while P0∕= Ø do 
5: Pα:={Pj→j, s.t. ∀j with area(Pj→j) > α}∈P0 
6: P0:=P0\Pα 
// expand from a set of primitives 
7: P̃:=Pα∪Enrich(Pα , P*)∪Enrich(Pα , Pα)  
/// (3) Clow_RAP Selection 

// Closed constraint 
8: if distance(pi∈P̃(i) , pj∈P̃(j))<d*) then // If the distance between the  
points in the two patches is less than the threshold d* 
9: S=S+(pi , pj) // Add point pairs to collection S 
10:end if 
11: if S.size() > population then 
12: P̃(i) adjacent to P̃(j)  
13: P*=(P̃(i),P̃(j))  

(continued on next page) 

Fig. 3. The closed constraint of adjacent faces. (a) The gap between adjacent faces; (b) Selection of a closed plane pair by candidate constraint in the candidate set.  

Table 1 
Statistics of processed scenes: the number of original input points (#points), and 
# point resolution is the average distance between measurement points.  

Scene #points #point 
resolution/ 
m 

Scene #points #point 
resolution/ 
m 

Container 81 k  0.08 Lans 126 k  0.004 
Contain_unit 162 k  0.08 Room 586 k  0.004 
Tower 65 k  0.4 Xiaowu 100 k  0.02 
Bungalow 71 k  0.3 Polyfit_4e 118 k  0.08 
Empire 1.2 M  0.0025 Bottom 159 k  0.3 
Boxunion_noise 100 k  0.08 Apartment 105 k  0.8 
Euler 1.22 M  0.02 Nola 78 k  0.05 
Boxunion 739 k  0.004 Notre- 

Dame de 
Paris 

78 k  0.02  
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(continued ) 

14:end if 
15:return P* 

// Select Clow_RAP 
16: P*:=P*∪P*∪ {P*⊆P̃}  
17: control the number of candidate set generations, decrease the threshold α = α/2 // 

Iteration 
18: end while 
19: return P̃*    

5. Algorithm implementation and assessment 

5.1. Experimental setup 

We implemented our method using C++ under the ubuntu system. 
The number of candidate sets is controlled by setting a threshold during 
the candidate set generation stage. The distance threshold in the 
experiment is based on the point density presented in Table 1. 

5.2. Data_sets 

In the experiment, the data sets include an aerial image-based point 

(a) Container                       (b) Tower

 (c) Bungalow

Fig. 4. Aerial images.  

Fig. 5. The final model generated by different input parameters (a) to (h) as listed in Table 2: By adjusting the values of pairwise (pw) and poplimit (pl), the models 
with different degrees of detail are generated. 
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cloud and a LiDAR point cloud. The image-based data such as Container, 
Contain_unit, Tower, and Bungalow are from Jimei University, China. The 
structure of the Bungalow is more complicated because the point clouds 
are from the reconstructed results of aerial images, which were acquired 
from the suburbs of Xiamen City, as shown in Fig. 4. Empire and Box-
union_noise are LiDAR point clouds with noise. Empires have a relatively 
low noise level and complicated structure, which is derived from Lafarge 
and Alliez (2013). Boxunion is a courtesy from the Intelligent Geometry 
Processing Laboratory at the University of London (Guerrero et al., 
2018), and Boxunion_noise (LiDAR) contains Gaussian noise. Besides, the 
point clouds of complex and diverse structures are also provided. For 
example, Euler (LiDAR) is from Oesau et al. (2014), Lans is from Lafarge 

Table 2 
The input parameters corresponding to the reconstruction results shown in Fig. 5 
(a)-(h).   

Result -s/m -al/◦ -pw -pl -it/times -t 

a 14  0.02 15  0.01 1 20 16 
b 14  0.02 15  0.01 3 20 16 
c 14  0.02 15  0.01 2 20 16 
d 10  0.02 15  0.01 8 20 16 
e 10  0.02 15  0.01 10 20 16 
f 9  0.02 15  0.01 20 20 16 
g 13  0.02 15  0.05 3 20 16 
h 13  0.02 15  0.015 2 20 16  

(a) 

Container RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

(b) 

Contain_unit RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

(c) 

Tower RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

Bunglow

CASNAR

)d(

PEARL GlobFit

RAPter Polyfit Clow_Rapter

Fig. 6. Reconstruction of a set of buildings from 3D-imaging cloud points, which corrupted by the inhomogeneous and unstructured point distribution.  
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and Alliez (2013), and Nola is derived from Zheng et al. (2010). Notre- 
Dame de Paris is provided by WHU-TLS in the following link: http://3s. 
whu.edu.cn/ybs/en/benchmark.htm. The DURAARK project estab-
lished a unique collection of datasets from the architectural domain, 
where Room is chosen from it. To verify the closure characteristic of the 
proposed algorithm, we use the Polyfit dataset (Nan and Wonka, 2017) 
to verify the closure problem. The dataset includes Polyfit_4e, Bottom and 
Apartment, etc. 

Point cloud resolution, as one of the attributes of the point clouds, 
determines the ability to extract target details from the point clouds and 
is an important indicator of the accuracy of the reconstructed model. 
Here, the resolution is understood as the average distance between 
measurement points, according to the Point Cloud Library in the 
following link http://pointclouds.org/documentation/tutorials/corres 
pondence_grouping.html. Table 1 shows the statistics of the processed 
scenes. 

5.3. Input Parameter Settings 

Since the data_set in the experiments are from different sources, the 
values of the parameters are entered manually according to the char-
acteristics of each data. Specifically, the scale threshold (s) and the angle 
limit threshold (al) are required to segment the raw point cloud. If the 
distance between point pairs is less than s and the angle is less than al, 
the two points are considered to come from the same plane. In the 
process of optimizing candidate sets, pairwise threshold (pw) represents 
the degree of association between primitives. According to different data 
sources, the values of pw differ significantly, corresponding to the data 
characteristics. The value of the poplimit (pl) controls the size of the 
generated primitives and also controls the generation of small struc-
tures. If the number of points supporting the fitted face is less than a 
specific threshold pl, this face will not be generated. That is to say, that a 
face is generated only when the number of points contained in the fitted 
face is greater than pl. The number of iterations is represented by it, and t 
is a number that is an exponential multiple of 2. 

By analyzing the meaning of each parameter and measuring distance 

between point pairs, we found that the value of s has a critical impact on 
the performance. In addition, the value of pw, pl will affect the efficiency 
of each algorithm. Fig. 5 shows the comparison of experimental results 
obtained by different parameter settings, where the input parameters 
are shown in Table 2. 

Table 2 presents the input parameters, which are expressed 
regarding each reconstruction result, shown in Fig. 5(a)–(h). The result 
is the number of faces in the model set reconstructed after the optimi-
zation. When the value of poplimit (pl) is increased, the number of 
generated faces decreases. The smaller the pairwise (pw), the more 
compact is the reconstructed model structure. 

5.4. Baselines 

The results of the proposed algorithm have been compared to 
mainstream algorithms, including RANSAC, discrete labeling based 
PEARL, constrained global structure GlobFit, RAPter-based method, and 
Polyfit (Nan and Wonka, 2017). 

The traditional RANSAC method uses a probabilistic framework that 
is susceptible to outliers. The PEARL algorithm relies on the α-expansion 
library to reimplement the plane fitting. Compared to the two local 
reconstruction algorithms of RANSAC and PEARL, the GlobFit algorithm 
pays more attention to global relationships. The RAPter algorithm not 
only focuses on global relationships but also allows small key structures 
to remain and not be covered by the main structure. As for Polyfit, it 
focuses on capturing the entire closed structure by intersecting the 
initial primitive extensions. 

5.5. Results and discussions 

We evaluate the reconstruction results on point clouds with different 
sparsity, variable noise levels, and complexity. In general, our approach 
produced arrangements with higher regularity, and critically, guaran-
teeing a more closed polygon model. Fig. 6 shows the input point cloud, 
which is generated from the Smart 3D system (MVS), which is one of the 
mainstream commercial 3D reconstruction software based on multi- 

(a) 

Empire RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

(b) 

Boxunion- 

noise
RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

Fig. 7. Reconstruction results of the Empire and Boxunion_noise data sets, which are corrupted by outliers.  
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view stereo system (MVS) (Seitz et al., 2006), using UAV (Unmanned 
Aerial Vehicle) aerial images. We assessed the method capability on non- 
uniformly sampled and sparsely sampled data and showed the impact of 
occlusion on the reconstruction results. We present for the proposed 
method the reconstruction consequence of data corrupted by outliers 
(see Fig. 7). Moreover, Euler is a good example of our approach to 
demonstrate the complexity and regularity of the building (see Fig. 8). 
We also conduct experiments on benchmark data_sets considering 
complex structures, as shown in Figs. 9 and 10. In Table 8, we also 

describe the quantitative results during model generation. Specifically, 
taking the number of generated faces as a reference object, our method is 
almost identical to the number of original planes, simultaneously 
generating a lightweight surface model. Meanwhile, we mainly consider 
the evaluation from three aspects: the coverage of inner points; the 
geometric fidelity; and the number of generated planes. The coverage 
means the ratio of the points assigned to the shape, and the geometric 
fidelity is the Root-Mean-Square-Error (RMSE) distance of the model to 
the inner points. 

(a) 

Euler RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

(b) 

Boxunion RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

Fig. 8. Reconstruction results for Euler and Boxunion data sets. The Euler is relatively complex and contains many small structures, while the Boxuinon is 
more regular. 

(a) 

Polyfit_4e RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

(b) 

Bottom RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

Apartment

tiFbolGLRAEPCASNAR
)c(

retpaR_wolCtifyloPretPAR

Fig. 9. Reconstruction results of the Polyfit benchmark data set.  
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Given the input point cloud S and the reconstructed model M, the 
coverage is defined through Eq. (9). 

coverage =
|{s|∀s ∈ S, s.t.‖s − M‖ < T } |

|S|
× 100% (9)  

where s is a point in S. ||s-M|| is the Euclidean distance between s and M, 
and |S| is the number of points in S. T is a preset threshold. In the ex-
periments, we found that the threshold should be related to the density 
of the model. Based on empirical tests, we adopted the value of T equal 
to 0.6 times the size of the point resolution. The RMSE is defined by Eq. 
(10). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1

∑
∀s∈Si

‖s − Pi‖
2

∑n
i=1|Si|

√

(10)  

where Pi is the primitive plane of the reconstructed model M. Each plane 
Pi is fitted from the associated set of points Si. ||s-Pi|| indicates the 
Euclidean distance between the point and the primitive plane. |Si| de-
notes the number of points in the point cloud block Si. 

The assessment metrics coverage and RMSE are trade-off indicators, 
since higher and lower coverage may respectively result in overfitting 
and underfitting. Therefore, we evaluate the experimental results based 
on the two metrics together with the number of generated planes. 

Moreover, Fig. 12 shows the relationship graphs about the planes in 
the final model, to illustrate the effect of the closed constraints of the 
proposed algorithm on the reconstruction results. 

Fig. 6 shows the point clouds corrupted by non-uniform sparse 
sampling. The traditional RANSAC method uses a probabilistic frame-
work that is susceptible to outliers. The PEARL algorithm relies on the 
published α-expansion library to reimplement the plane fit. Compared to 
the two local reconstruction algorithms of RANSAC and PEARL, the 
GlobFit algorithm pays more attention to the global relationship. The 
RAPter algorithm not only focuses on global relationships but also al-
lows critical and small structures to remain without being covered by the 
overall structure. The main purpose of Polyfit is to obtain the closed 
structure through the intersection extension of the initial primitives. As 

shown in Fig. 6(a), Container is a relatively simple point cloud data. 
Focusing on local fittings, as can be verified, RANSAC generates 

more local planes, which are cluttered. Referring to the priories, PEARL 
began to pay attention to the regular arrangement between the planes. 
The overall structure is generated in PEARL, but there is a large gap in 
the middle. GlobFit, which considers the global structure, extracts the 
overall surface structure of buildings reliably. Namely, the consideration 
of the global structure may have a positive effect on generating the rule 
model. Based on the GlobFit, RAPter also considers the relationship 
between planes from a global perspective and retains more detailed 
structures. There are no more small structures in this example, not 
providing significant different results in the visualization results for the 
two algorithms. The most obvious difference is that there are gaps be-
tween adjacent faces in the RAPter, and the closure of the model is 
inferior. To get a more watertight model, the most prominent feature of 
Polyfit is to intersect the initial primitives to obtain a more compact 
model. However, this method is outstanding in closed data, but not ideal 
in non-closed data. As shown in Fig. 6(a), part of the structure is not 
generated with Polyfit, and the overall structure is not accurately 
recovered. In this case, the proposed algorithm obtained a more 
watertight model. Similarly, the RANSAC of Fig. 6(b) generates a lot of 
fragments, and PEARL has a slanted plane. Polyfit results in considerable 
errors in the reconstruction of the structure of Contain_unit, which is a 
more complicated than Contain, and it presents a sparse point cloud. In 
Fig. 6(c), RANSAC and PEARL provided only local fitting results of the 
data, without overall structure. As expected, Polyfit generates a closed 
overall structure. However, this method loses some small main struc-
tures. The proposed algorithm can effectively obtain a more watertight 
model and allow the preservation of structures in non-dominant di-
rections. In Fig. 6(d), our method, Clow_Rapter, effectively sews the gaps 
between the adjacent surfaces, as presented in the RAPter method. 

In particular, Bungalow and Low building belong to low-rise build-
ings, but the reconstruction effect is quite different. Compared to 
Bungalow, Low building contains more junks and occlusions caused by 
poles in front of the buildings and railings on two-story balconies. The 
pole was involved in the reconstruction, which results in a collapsed 

(a)

Lans RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

(b) 

Room RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

(c) 

Xiaowu RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

Fig. 10. The reconstruction results of LiDAR point clouds with complex structures.  
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structure. Consequently, the original structure of the building was 
destroyed. It can be seen that for sparsely sampled data, occlusion and 
junks have a significant impact on the reconstruction algorithm, and our 
algorithm cannot be completely robust. 

To further evaluate the performance of the reconstruction results, 
Table 3 shows the quantitative comparison of each method. Note that 
RANSAC is capable of fitting regular data, such as Container, Con-
tain_unit, and Tower. However, when the point cloud contains a high 
percentage of outlier or noise points, the performance of RANSAC is 
significantly decreased. As shown in Fig. 6(a)–(d), many redundant 
fragments are generated since the percentage of noise points is high. As 
shown in Table 3, RANSAC achieved the highest value of coverage 
because it mainly focuses on the data fitting. However, RANSAC 
generated 483 planes, which is different from the number of surfaces 
generated by the other methods. The results show that the reconstructed 
model may overfit if the fitting scheme only relies on data distribution. 
Moreover, the results of PEARL are unstable, while GlobFit achieved 
better results since it enables the algorithm to capture the overall 
structure of the building. Note that Polyfit cannot generate the original 
structure on non-closed data, and the contribution rate of the interior- 
points is low. By constraining the structure information, RAPter gua-
rantees the coverage of the interior-points ensuring the global structure. 
The proposed Clow_Rapter can get a relatively large interior-point 
support rate while maintaining a smaller RMSE. In other words, the 
proposed Clow_Rapter gives a good trade-off between fitting error and 
prior shape. 

For LiDAR point clouds corrupted by outliers on Empire and 

Boxunion_noise (Fig. 7), we verified the effective reconstruction perfor-
mance of the proposed algorithm. Our algorithm is capable of recovering 
the global structure from data with different levels of noise. And more 
importantly, the resulting model structure is more compact. For Empire, 
most notably, the top of the building is a cylinder (Fig. 7(a)), approxi-
mated by planes that support the global structure. RANSAC over- 
simplifies the geometry in the process of local fitting due to a large 
amount of noise. However, as shown in Boxunion_noise (Fig. 7(b)), it 
generates more local messy structures, but small structures and inclined 
planes were not generated. Therefore, RANSAC has unstable recon-
struction results for data with a lot of noise. PEARL generates more 
regular arrangements for planes. However, due to the balance of 
complexity and smoothness considered in the energy function, some of 
the main structures of the building are missing, as shown in Fig. 7(a) and 
(b) for PEARL. In contrast, GlobFit has better performance in the 
structural integrity of the model. Unfortunately, it cannot handle a lot of 
outliers. Consequently, more small details are missing in the top of the 
building. As shown in Fig. 7(a) (GlobFit), RAPter is closer to the original 
structure of the building. However, the top structure is dispersed, 
resulting in a poor closure of the model. Clow_Rapter, proposed in this 
paper, can effectively generate a more compact and complete structure 
of the building (see Clow_Rapter in Fig. 7(a)). Polyfit guarantees closure, 
but it also lacks some non-dominant structure. The data of Box-
union_noise also restores the original structure better than Clow_Rapter 
(Fig. 7(b)). Polyfit has almost perfect performance on high-precision 
data for simple structures with rules than other all methods. 

Table 4 presents the quantitative evaluation of the surface recon-
struction in LiDAR point clouds with a high percentage of noise points. 
The results of RANSAC and PEARL are unstable since they only focus on 
local plane fitting. For example, the coverage of the RANSAC in Empire is 
only 25.26%, while the score is 98.35% in Boxunion_noise. In Empire 
data, with a complex structure, RANSAC generates very few faces, while 
in a simple Boxunion_noise, it generates a lot of fragments. On the other 
hand, RAPter, Polyfit, GlobFit and Clow_Rapter are more balanced for 
different data, considering the coverage and the RMSE. The main reason 
is that both point clouds are closed structures. As a result, Polyfit is 
comparable to RAPter and Clow_Rapter. In Empire with complex struc-
ture, Clow_Rapter generated 324 faces, which can retain more details, as 
shown in Table 4. However, in the simple structure of Boxunion_noise, it 
can generate a lightweight model. In general, the proposed Clow_Rapter 
algorithm can reconstruct the global structure from noisy data with 
closure constraints. 

The following experiment aims to verify the result of the proposed 
algorithm in point clouds with a more regular structure. For point clouds 
with regular structures, the Euler (Fig. 8(a)) is relatively complex and 
contains many small structures, while the Boxuinon is more regular. For 
rule point clouds, RANSAC and PEARL still generate a lot of fragments 
and do not restore the whole structure. GlobFit shows the best perfor-
mance to reconstruct the objects due to maintaining global relation-
ships. In the Euler with complex structures, Globfit not only reconstructs 
the complete structure more accurately but also retains more fine 
structures. However, RAPter and Clow_Rapter failed to generate those 
fragments despite the restoration of the whole structure of the building, 
which may be related to the number of iterations that generated the 

Table 3 
Quantitative evaluation of surface reconstruction in aerial image point clouds.  

Method Container Contain_unit Tower Bunglow 

Cover (%) RMSE (cm) Prim Cover (%) RMSE (cm) Prim Cover (%) RMSE (cm) Prim Cover (%) RMSE (cm) Prim 

RANSAC  99.89  5.2 483  89.87  11.1 650  85.31  8.3 522  63.51  24.8 581 
PEARL  82.68  13.9 8  22.86  7.1 27  56.38  8.5 179  61.10  21.4 27 
GlobFit  99.07  12.0 8  85.47  9.9 24  69.67  9.3 608  81.41  22.8 28 
RAPter  98.93  12.3 8  82.41  10.1 18  76.14  8.3 638  78.50  23.1 20 
Polyfit  70.24  7.6 6  50.14  7.3 9  60.48  8.5 27  55.21  26.4 16 
Clow_Rapter  98.76  12.3 7  83.28  9.4 20  79.45  7.8 164  73.11  24.3 21  

Table 4 
Quantitative evaluation of surface reconstruction in LiDAR point clouds with 
noise.  

Method Empire Boxunion_noise 

Cover 
(%) 

RMSE 
(cm) 

Prim Cover 
(%) 

RMSE 
(cm) 

Prim 

RANSAC  25.46  1.8 5  98.35  6.2 205 
PEARL  94.40  2.7 62  34.26  5.7 13 
GlobFit  64.76  1.5 13  93.75  7.2 123 
RAPter  79.34  1.3 163  59.63  7.3 26 
Polyfit  80.61  1.5 288  60.21  7.2 18 
Clow_Rapter  79.94  1.1 324  59.39  7.2 25  

Table 5 
Quantitative evaluation of surface reconstruction in LiDAR point clouds with a 
regular structure.  

Method Euler Boxunion 

Cover 
(%) 

RMSE 
(cm) 

Prim Cover 
(%) 

RMSE 
(cm) 

Prim 

RANSAC  89.17  2.2 301 97.86  3.0 672 
PEARL  99.40  1.4 236 52.67  4.2 19 
GlobFit  99.98  1.0 315 100  0.9 20 
RAPter  89.37  1.4 151 100  0.9 20 
Polyfit  83.13  1.5 55 99.46  1.1 20 
Clow_Rapter  95.31  1.2 236 100  0.9 20  
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model. Clow_Rapter optimizes the intersection between planes based on 
RAPter. Polyfit generated a rough model framework as expected. Be-
sides, for a simple point cloud of the rule structure, GlobFit, RAPter, 
Polyfit, and Clow_Rapter in Fig. 8(b) gives a perfect reconstruction result 
considering the global structure between the primitives. 

Experimental results indicate that Clow_Rapter is robust to favor 
globally consistent closed regular arrangement planes of the recon-
structed object as much as possible; even the residuals of the primitive fit 
become larger. In contrast, the plane adjacent to the final model is more 
compact in the data corrupted by non-uniform sampling, noise, and 
complex structures. As for buildings with regular structure, all methods 
achieve a high interior-point coverage rate of more than 90%, as shown 
in Table 5. Note that our method achieves the smallest geometric error, 
and even can achieve perfect reconstruction, such as in Boxuninon. In 
the Euler data with complex structure, the proposed method generates 
relatively more planes and can retain more details of the surface model. 

We also test all methods on the Polyfit benchmark dataset, which 
comes from the Polyfit project. The first experiment is based on Poly-
fit_4e, which is formed by the combination of several close structures. As 
shown in Fig. 9(a), due to the influence of the acquisition technology or 
noise, some points are missing in the original point cloud. From the 
experimental results, we can see that RANSAC and PERAL present 
overfitting, as too many redundant planes are generated to achieve a 
high coverage. On the other hand, although the results of RAPter and 
GlobFit seem promising, they did not provide a closed 3D model. 
Noteworthy that closed-based methods such as Polyfit and the proposed 
Clow-Rapter acquired a closed surface model. That being said, Polyfit 
has problems of underfitting, since the number of the plane is not 
enough to cover the surface points. The same conclusion can be drawn in 
the data of Bottom. One exception is that PEARL completely failed in this 
case. In the case of Apartment (Fig. 9(c)), there are complex planes, 
which have different density and coverage, in the point cloud. Note that 
RANSAC and PERAL are totally collapsed. GlobFit and RAPter present 
overfitting, while Polyfit presents underfitting. The proposed close 
constraint effectively reduces the gap at the side of adjacent parts. 

Table 6 presents the quantitative evaluation of the reconstruction 
results of the Polyfit dataset. The typical case is that RANSAC has strong 
capabilities in data fitting, but it has difficulties in recovering complex 
data since it ignores the prior of the global structure. Note that the 
proposed algorithm can improve the geometric fidelity when the 
contribution rate of the interior points to the structure is reduced, and 
has an obvious effect on the global structure, as shown in Fig. 9 and 
Table 6. 

In the following experiments, we focus on evaluating the perfor-
mance of each method based on point clouds with complex structures. 
As shown in the first column of Fig. 10, Lans has tapered structures and 
octagonal pyramids, and Room includes not only surface points, but also 
an indoor scene, which may interfere in the surface reconstruction. As 
for Xiaowu, the two houses in the scene are joined together. There is no 
doubt that the surface reconstruction of these data has great challenges. 
In the second and the third column of Fig. 10, RANSAC and PEARL 
generate redundant fragments and cannot obtain the global structure. As 
shown in Fig. 10 (a), GlobFit and RAPter used global structure and then 
has restored the overall structure of the building, while the output model 
is not closed. Clow_Rapter can completely reconstruct the building, 
where the generated anise stars and Tower tops in the data of Lans are 
better compared to other methods. It is worth noting that the octagon of 
Clow_Rapter is more standardized and compact. At the corner of Xiaowu, 
our method improves the closure of the joint, as shown in Fig.10 (c). 
Note that Polyfit failed in the data of Xiaowu, which is a non-closed point 
cloud. In general, Polyfit is not applicable to data with complex data 
structures. 

Table 7 represents the quantitative evaluation of the reconstruction 
performance. Overall, our method maintains the smallest geometric 
errors. Notably, in the data of Lans, RAPter and Clow_Rapter have 
similar interior-point coverage, and Clow_Rapter can get a more 
watertight surface model. In other words, our method guarantees the 
global structure of the model without losing the contribution rate of the 
interior points. It needs to be explained that Room is a point cloud data 
containing indoor scenes, such as tables and chairs. Polyfit only gener-
ates closed faces, and some small structures disappear. The Xiaowu data 
is a non-closed data, and the eaves structure is not generated in the 
model. Therefore, the point coverage of their model is low. 

Objectively speaking, our method is not perfect, and the recon-
struction performance on some other data is poor and even the original 
overall structure cannot be restored. Nola contains many small struc-
tures (Fig.11 (a)). Notre-Dame de Paris has a typical western architectural 
style and has a more complex structure, as shown in Fig. 11(b). The point 
cloud reconstruction of these data has great challenges. We use various 
methods to try to reconstruct these buildings. In particular, the recon-
struction of Notre-Dame de Paris is difficult. Although our method cannot 
fully reproduce various shapes, it can clearly locate the overall structure 
layout, which can lay the foundation for the surface reconstruction in 
point clouds with complex structures. 

Table 8 shows the number of faces in the model generation stage of 
each method in a different category of point clouds. The number of faces 

Table 6 
Quantitative evaluation of the reconstruction results of the Polyfit dataset.  

Method Polyfit_4e Bottom Apartment 

Cover (%) RMSE (cm) Prim Cover (%) RMSE (cm) Prim Cover (%) RMSE (cm) Prim 

RANSAC  97.67  8.7 871  99.88 10.6 1304 99.99  15.9 935 
PEARL  52.89  10.8 67  – 1 – 1 
GlobFit  71.98  11.2 68  97.79 14.3 237 95.61  20.7 478 
RAPter  71.08  11.5 62  94.56 15.5 142 95.59  21.1 55 
Polyfit  80.38  11.6 8  69.72 16.6 64 56.04  17.0 7 
Clow_Rapter  69.56  11.2 63  91.71 18.8 132 82.82  25.4 55  

Table7 
Quantitative evaluation of surface reconstruction in point clouds with complex structure.  

Method Lans Room Xiaowu 

Cover (%) RMSE (cm) Prim Cover (%) RMSE (cm) Prim Cover (%) RMSE (cm) Prim 

RANSAC  49.74  1.3 477  99.69  4.5 712  90.04  5.1 800 
PEARL  31.54  1.0 523  60.85  7.2 65  30.58  4.8 243 
GlobFit  90.81  1.5 300  84.91  5.9 76  77.57  6.9 214 
RAPter  96.74  1.4 544  69.17  6.9 57  75.74  6.9 229 
Polyfit  91.98  1.5 51  15.63  6.3 22  21.59  4.6 28 
Clow_Rapter  94.23  1.0 246  83.15  6.1 59  73.52  2.4 230  
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optimized and selected based on the candidate model set should ideally 
be similar to the initial set of that. 

The results show that the number of models generated by the RAN-
SAC algorithm differs significantly from the initial set of fits. For 
example, for Container, the number of final model sets for Container is 
more than six times the initial fit due to the generation of many frag-
ments, as shown in Fig. 6(a). Since the excessive presence of outliers in 
Empire (Fig. 7(a)), RANSAC over-simplified the geometry. PEARL 
discovered the main directions, which is close to the number of input 
planar segments, but the planes returned by PEARL, are not perfectly 
aligned. Given more, it cannot effectively process data containing a large 
number of outliers. As a result, the tiny main structure on top of the 
building was lost (Fig. 7(a)). 

In contrast, RAPter can effectively generate the main surface from 
the sparse point cloud and the data disturbed with noise, which shows its 
capacity to deal with large scale scenes. The most prominent is that it 
can identify and retain important and non-dominant structures in the 
main structural context. The main disadvantages are gaps between 
adjacent faces resulting in poor overall closure of the model. 

For Polyfit, more candidate sets are generated by the intersection of 
adjacent faces, which is even more than 50% off the candidate set of 
other algorithms. And the regular set is far from the initialization. As 
shown in Figs. 6 and 7, the regular set loses many smaller details in the 
Container data and the Empire data. Considering the closed constraint, 
the number of candidate set generated by Clow_Rapter (320) is less than 
that of RAPter (326). In general, both algorithms are consistent with the 
number of input planar segments. Still, the experimental results of the 
visualization show that the Polyfit reconstruction effect is better in 
constraining the overall model closure. However, the Clow_Rapter per-
forms better in terms of balancing the global structure and closure. To 
more intuitively show the effect of the closed constraint on the rela-
tionship between primitives, the graphical representation is shown in 
Fig. 12. A circle indicates a plane, and a line between dots indicates the 
relationship between planes. It is worth noting that different colored 
dots are represented by different initial primitives through rigid-body 
transformation. In other words, this means that the more colored dots, 
the more initial primitives retained infinal model sets after selection 
from the candidate set, which causes more initial primitives and 

Table 8 
Comparison of experimental results: the numbers of input planar segments (initialization), primitives that generated the candidate set (candidate), and the regular set 
(optimization).  

Category Name (points) Method Initialization Candidate Optimization 

Image-Based Point Cloud Container (81,779) RANSAC 8 – 483 
Pearl 8 – 8 
Globfit 8 – 8 
RAPter 8 16 7 
clow_Rapter 8 24 7 
Polyfit 8 587 13 

LiDAR points cloud Boxunion (100,000) RANSAC 20 – 672 
Pearl 20 – 19 
Globfit 20 – 20 
RAPter 20 142 21 
clow_Rapter 20 136 20 
Polyfit 20 882 20 

LiDAR points cloud with noise Empire (1,200,000) RANSAC 327 – 5 
Pearl 327 – 62 
Globfit 327 – 13 
RAPter 327 2966 326 
clow_Rapter 327 2908 320 
Polyfit 327 5217 43  

(a) 

Nola RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

(b) 

Notre-Dame 

de Paris
RANSAC PEARL GlobFit RAPter Polyfit Clow_Rapter 

Fig. 11. The reconstruction results of other LiDAR point clouds.  
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structures are preserved as well as the resulting model structure is richer 
and more complete. 

In Fig. 6, RAPter generates seven faces in Container, all of which are 
obtained by transforming one initial primitive. As shown in Fig. 12, faces 
are marked by two colors, red and green, respectively, indicating that 
the whole model consists of two initial primitive transformations. As we 
can see, there is a gap when considering the RAPter method in Fig. 12(a), 
representing that the fitting at this position by the same primitive is not 
perfect. It is more suitable by another primitive, such as in Fig. 12(b). 
Similarly, the crack at the top of the Empire disappears in Fig. 12(d), and 
the structure is more compact than (c). From the relationship diagram, 
the points in Fig. 12(d) (Empire) have more types of color than (c), 
retaining more initial structure. So the top structure of the Empire is 
more regular, which improves the closure of the overall model. As for 
the Euler with complex structures, RAPter has more colors than Clow_-
Rapter, so RAPter retains more fine structures than Clow_Rapter, such as 
the fragments of the roof. Furthermore, the point distance in RAPter is 
close. In contrast, the distribution of the Clow_Rapter is more uniform in 
Fig. 12(f). 

6. Conclusions 

In this paper, we introduced a novel building reconstruction algo-
rithm based on closed constraints to obtain watertight and complete 
building surface model, named Clow_Rapter. The algorithm considers 
the closed constraints of polygon boundaries to perform surface recon-
struction based on regular arrangements of planes. The pipeline of the 
proposed algorithm includes candidate planes generation from an input 
point cloud, candidate planes regulation, closure constrain, and surface 
model optimization. The main contribution is to detect the adjacency of 
intersecting faces, then to enforce the boundary closure of the primitive 
in the process surface model generation. The experimental results show 
that our algorithm improves the closeness of the global structure 
without sacrificing the coverage rate of interior points and geometric 
errors. Significantly, the watertight structure of the building is nearly 
guaranteed in the point clouds corrupted by non-uniform, sparse sam-
pling, or outliers. Besides, Clow_Rapter supports lightweight model 
generation, which can identify and retain the structure that is consistent 
with a priori geometric structures. That being said, our algorithm may 

(a) RAPter_Container (b) Clow_Rapter_Container

Empire                             (d) Clow_Rapter_Empire

(e) RAPter_Euler                             (f) Clow_Rapter_Euler

Fig. 12. Relationship between the primitives in the reconstruction results of the RAPter and Clow_Rapter algorithms. In Figs. (a)–(f), the left side is the recon-
struction model of the algorithm, and the right side is a graphical representation of the relationship between the corresponding planes. 
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be over-regularized in the situation of building with very complex sur-
faces. Therefore, our future work will focus on the analysis of the trade- 
off between closure regulation and data fitting error. 
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