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Abstract—To the best of our knowledge, the most recent light
detection and ranging (lidar)-based surveys have been focused only
on specific applications such as reconstruction and segmentation,
as well as data processing techniques based on a specific platform,
e.g., mobile laser. However, in this article, lidar point clouds are
understood from a new and universal perspective, i.e., geometric
primitives embedded in versatile objects in the physical world. In
lidar point clouds, the basic unit is the point coordinate. Geometric
primitives that consist of a group of discrete points may be viewed
as one kind of abstraction and representation of lidar data at the
entity level. We categorize geometric primitives into two classes:
shape primitives, e.g., lines, surfaces, and volumetric shapes, and
structure primitives, represented by skeletons and edges. In re-
cent years, many efforts from different communities, such as pho-
togrammetry, computer vision, and computer graphics, have been
made to finalize geometric primitive detection, regularization, and
in-depth applications. Interpretations of geometric primitives from
multiple disciplines try to convey the significance of geometric
primitives, the latest processing techniques regarding geometric
primitives, and their potential possibilities in the context of lidar
point clouds. To this end, primitive-based applications are reviewed
with an emphasis on object extraction and reconstruction to clearly
show the significances of this article. Next, we survey and com-
pare methods for geometric primitive extraction and then review
primitive regularization methods that add real-world constrains to
initial primitives. Finally, we summarize the challenges, expected
applications, and describe possible future for primitive extraction
methods that can achieve globally optimal results efficiently, even
with disorganized, uneven, noisy, incomplete, and large-scale lidar
point clouds.
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I. INTRODUCTION

L IGHT detection and ranging (lidar) is a kind of remote
sensing technique, which uses light in the form of a pulsed

laser to measure the distance from the sensor to the objects. From
the perspective of surveying principles, the existing lidar systems
can be categorized into time-of-flight and phase-shift systems.
The former measures distance by recording the transmission
time of light between the laser sensor and objects, while the
latter uses the phase difference between emitted and backscat-
tered signals to determine the measure distance. Although the
time-of-flight system is less accurate than the phase-shift system,
it has the capability to survey longer-range based on the different
operational platforms, i.e., space, airborne, and ground-based.
Space-based lidar is installed on satellites such as ICESat [1].
Airborne lidar or airborne laser scanning (ALS) refers to the
system running on aircraft, including unmanned aerial vehicles.
Ground-based lidar includes terrestrial laser scanning (TLS)
and mobile laser scanning (MLS) systems. Due to advances
in manufacturing technologies, lidar has become more popular,
more accessible, and more widely used than in the first decade
of the 21st century. For example, ground-based lidar’s ability to
acquire precise high-resolution 3-D details has become an attrac-
tive technology for environmental mapping, including pavement
identification [2], [3], road marker extraction [4], [5], curb mod-
eling [6], [7], vegetation mapping [8], [9], pole-like object local-
ization [10], [11], vehicle detection [12], [13], and building re-
construction [14], [15]. (A recent review of MLS data processing
and applications can be found in [16].) However, gaps between
lidar research and practice remain, with notable deficiencies in
scalability and robustness of current processing methods.

Except for some satellite-based lidar systems that output only
waveforms [17], most lidar systems output rich information,
including intensity, full waveforms, pulse count, incidence an-
gle, and point coordinates. The intensity is the amplitude of the
received signal, which is influenced by various factors, such as
range, emitted energy, incidence angle, and the backscattering
characteristics of an object [18]. These systems require intensity
calibration before further processing, but intensity calibration
remains difficult as the intensity value is not as reliable as coordi-
nates [19], [20]. ALS processing sometimes decomposes the full
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waveform to increase the density of point clouds [21] or estimate
physical parameters of vegetation [22]. However, performing
waveform decomposition is not required in most applications.
To obtain color information, extra cameras, registration, and
calibration are needed. Furthermore, most lidar point clouds
are unorganized when compared with 2-D images obtained
from cameras and point clouds captured by equipment, such as
Microsoft Kinect and Google Tango Tablet. In such unorganized
point clouds, the spatial relationship between neighboring points
is not stored, and data cannot be indexed by row or column
numbers. As a result, processing of lidar data in most contexts
refers to the use of algorithms for processing unorganized and
colorless 3-D point clouds using only 3-D coordinates.

The core of point cloud processing is to infer geometric
information from 3-D discrete and unordered points. The ba-
sic geometric unit is the point, with groups of points forming
geometric primitives. We group geometric primitives into two
categories: shape primitives and structure primitives. Shape
primitives include lines (e.g., straight and curved lines), surfaces
(e.g., planes), and volumetric shapes (e.g., cubes and cylinders).
Structure primitives include skeletons, 2-D outlines, and 3-D
edges. The term “structure” is used because primitives in this cat-
egory often constitute simplified object profiles. These structure
primitives may also be viewed as advanced primitives derived
from shape primitives. Similarly, contours are also regarded as
geometric primitives in both 2-D images [23] and 3-D point
clouds [24]. Although the lines in shape primitives and the
2-D/3-D edges in structure primitives look similar, they are quite
different. Line primitives are linear objects such as power lines
and thin poles, while edges delineate surfaces and volumetric
shapes. They are used in different scenarios. For example, utility
poles are represented by line primitives, which are being used in
city asset management. Road curbs modeled by edges contribute
to high-definition mapping for autonomous driving. Fig. 1 shows
an overview of these two classes of primitives.

Objects in our environment, especially human-made ones, can
be described by various geometric primitives and their com-
binations. For example, straight and curved lines often model
curbs [25], [26]. Power lines are fitted by a series of piecewise
straight lines [27] and/or a catenary curve model [28]. Volumet-
ric shapes like cylinders approximate streetlight poles and tree
trunks [29], [30]. Thus, geometric primitives are useful in object
recognition, scene understanding, and reconstruction. For in-
stance, the detection of volumetric shapes, such as cylinders and
cubes, happens first, followed by a probabilistic graph matching
to verify the shapes in the scene [31]. Furthermore, planar
primitives [32], [33], 2-D outlines [34], and 3-D edges [35] are
all basic elements in reconstructing various man-made objects.

Except for the aforementioned tasks, geometric primitives are
also the basis for many other applications. For ground filtering,
ground points can be roughly identified and removed by estimat-
ing the largest plane from the input point clouds [36]. For ground
interpolation, edges detected from point clouds are the basis for
breakline-preserving interpolation when filling holes in MLS
point clouds [37]. For segmentation, edges in MLS point clouds
enable the instance-level segmentation of buildings [38]. In lidar
calibration, geometric primitives are also useful. Chan et al. [39]

Fig. 1. Classification of geometric primitives in lidar point clouds.

proposed a rigorous self-calibration algorithm based on cylinder
detection in a scene. The authors found that cylinder-based cali-
bration outperformed plane-based calibration in several aspects;
in particular, the former method relied less on observations than
the latter method.

3-D edges in point clouds are also useful for registering
point clouds. For example, the extracted crest curves of objects
become the basis for registration [40]. Lin et al. [41] presented a
registration method for outdoor point clouds using line segments
detected from edges. Their method identifies corresponding
matches and refines the matches using the iterative closest point
algorithm. For the registration of images and lidar point clouds,
Habib et al. [42] proposed a method using linear edge primitives
estimated from plane intersections. Some registration techniques
have used other shape primitives. Rabbani et al. [43] proposed a
point cloud registration framework with no artificial targets and
incorporated primitives, such as planes, spheres, and cylinders.
This method first segments point clouds into regions, which
are fitted using predefined models. Subsequently, registration
is performed by minimizing the differences between the model
parameters in different scans or the orthogonal distance between
the points and fitted models. Von Hansen [44] presented a
plane-based registration method for ground-based lidar point
clouds. The method first divides point clouds into voxels, whose
dominant planes are estimated using random sample consensus
(RANSAC). The neighboring coplanar planes are then merged
into larger shape primitives. Subsequently, the registration is
conducted in two steps. The first step consists of finding matched
primitives using an exhaustive search, and in the second step,
the transformation parameters are calculated using least-squares
adjustment. Recently, Xu et al. [45] have proposed a coarse
registration algorithm based on planar patches in lidar point
clouds.
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Fig. 2. Examples of geometric primitive-based applications.

To highlight the role of geometric primitives and convey the
motivation why our review on this topic is needed, we provide
an overview of typical applications using geometric primitives
(see Fig. 2) to clarify the role of geometric primitives and explain
our motivation for conducting a review on this topic. Object
extraction and reconstruction are two application areas that have
attracting the most attention in recent years.

1) Object extraction: The extraction of various objects from
raw point clouds, including human-made objects and nat-
ural objects, such as vegetation, has been widely studied.
Wang and Shan [46] introduced the use of roof contours to
separate structures and vegetation for building detection.
Buildings with rectangular outlines can be identified in
ALS data applying a rectangle detection algorithm on
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DEM derived from the point clouds [47]. In MLS data,
buildings are often treated as objects consisting of multiple
planes that are detectable with segmentation methods [48].
For instance, Rutzinger et al. [49] presented a rule-based
method to detect buildings; non-wall segments were re-
moved from the region-growing results of the input point
clouds. Rules defining the segment size, number of points,
and orientations facilitated filtering out the non-wall seg-
ments [49], [50]. Xia and Wang [51] proposed a building
localization method for MLS point clouds. Their method
extracts planar primitives and projects them as 2-D line
segments. Subsequently, buildings are localized through
the rectangles generated by these line segments. Planar
primitives are also useful as geometric constraints that
effectively discriminate between buildings and adjacent
vegetation. In [52], the idea of using geometric primitive
priors is also applied to improve the classification accuracy
of ALS point clouds.
The extraction of pole-like objects, such as utility poles,
light poles, and tree trunks, is also of research interest.
Zheng et al. [53] presented a light pole extraction method
that incorporated prior knowledge of the pole skeleton into
the segmentation step. More specifically, it approximated
the skeleton of light poles using a gamma function and
used the distance between points and the potential skele-
ton as an important criterion for segmentation. Skeleton
information was also used for detecting pole-like objects
in [54]. In this work, the skeletons of pole-like object
candidates were derived using Laplacian smoothing, and
detection was achieved with a PCA-based object recog-
nition method. Cylinder or circle detection methods can
detect tree trunks in a forest automatically [30], [55], [56].
For example, Li et al. [57] performed pole detection using
adaptive cylinder fitting, which is also used in the tree trunk
detection. Maas et al. [58] extracted horizontal slices from
raw point clouds and detected tree trunks using multiple
circles extracted from the slices.
Algorithms for power line extraction project the candidate
points of power line horizontally and then detect power
line using a Hough transform (HT) [59]. Curbs, which are
linear ground structures, are key features in many appli-
cations, including autonomous driving and road mapping.
Road curbs in MLS point clouds can be viewed as con-
tours. For example, Xu et al. [25] detected curb candidates
by detecting edges among ground points. Others used a
similar method for curb extraction by starting with 3-D
edges [26].
The importance of geometric primitives in object
extraction is twofold. First, geometric primitives can be
treated as part of the objects of interest, which make object
detection roughly equivalent to extracting primitives as in
the case of detecting buildings using planes [51]. Second,
applications can use geometric primitives as constraints or
supplementary information during segmentation, such as
the use of skeletons to extract poles [53]. Compared with
pointwise features [60], geometric primitives are tolerant
of noise and data gaps. Additionally, geometric primitives

provide shape priors of various objects, which provides
useful high-level information for further processing.

2) Reconstruction: Object reconstruction from points has
attracted increased attention recently because the mod-
els provide an elegant way to achieve abstraction and
geometric representation of object entities embedded in
discrete points. Next, we focus on reconstruction methods
that make direct use of shape and structure primitives.
Line primitives are extensively used in model reconstruc-
tion. For example, Guo et al. [61] used the RANSAC
method to fit curved line models to power-line point
clouds in one span. Oesau et al. [62] projected wall
points horizontally, detected line segments using multi-
scale RANSAC, and obtained the indoor structures of
a building by analyzing the intersections between line
segments. Similar procedures for line primitive-based re-
construction were also used in [63]–[65]. Yang et al.
[66] projected wall points in MLS point clouds on the
ground and then detected and connected linear primitives
to construct 2-D building footprints.
Other shape primitives such as planes can also be used to
develop models, as in the building reconstruction study
by Li et al. [32]. The authors detected planar segments
using RANSAC and then extended the plane primitives to
obtain 3-D intersections, thus generating multiple boxes.
Building reconstruction was achieved by using a box
selection algorithm. Nan and Wonka [33] generalized
this idea by discarding the Manhattan world assumption.
Plane primitives can also approximate polygonal surfaces.
Monszpart et al. [67] focused on representing objects
with regularized primitives. Similar projects also produced
models by integrating multiple primitives [68], [69]. Fur-
thermore, basic shape primitives can be used to determine
complex components of buildings. Poullis and You [70]
proposed a model-driven building reconstruction method,
where simple modules consisted of planes defined to fit
the input data with symmetry constraints. Lin et al. [15]
segmented building point clouds into planar structures
that were then combined into building components, such
as chimneys, a box, and a couple of walls, using prior
knowledge of the buildings at different levels. The final
model was constructed by integrating various components
with semantic labels.
Structure primitives are often treated as the basis in many
reconstruction studies. Cao et al. [35] first extracted edges
by setting thresholds for local geometric features and then
connected them into a curve network that was completed
with a clustering method. The closed and regularized
curves were combined to generate the resulting model.
Roof boundaries also help with retrieving of building
models from ALS point clouds. Poullis [34] presented a
framework for reconstructing buildings from ALS data. In
this framework, the points were first segmented into planar
segments using an unsupervised clustering method, and
then, segment boundaries were extracted and regularized
for roof modeling. Zhou and Neumann [71] developed
models of buildings using detected 2-D outlines of plane



XIA et al.: GEOMETRIC PRIMITIVES IN LiDAR POINT CLOUDS: A REVIEW 689

segments from ALS point clouds. Chen et al. [72] used
roof boundaries as geometric primitives and generated
multiple levels of detail using boundary assembly strate-
gies. Yi et al. [73] first extracted the contour points of
buildings and then divided the data into blocks. In each
block, 2-D line primitives were extracted from the sliced
point clouds. The final model was created by assembling
the block models at different elevations. 3-D edges in
point clouds also serve as geometric constraints during
reconstruction [74]. Surface models can be expanded from
detected skeletons [75]. In the case of tree modeling, mod-
els are often expanded from tree skeletons. For example,
Livny et al. [76] first constructed and refined 3-D skeletons
of trees using input point clouds. Subsequently, the authors
used cylinders to inflate the skeleton into a volumetric tree
model. Other researchers have proposed similar methods
for tree reconstruction using skeletons [77], [78]; most of
the methods emphasized robust skeleton generation and
handling of missing trunks.

To sum up, geometric primitives are not only the basis for
reconstructions, but also serve as the key in many other point
clouds processing workflows (e.g., segmentation), whose per-
formance often depends on the quality of the extracted geomet-
ric primitives. Thus, many lidar data processing methods may
benefit from a comprehensive review of geometric extraction
methods used in different research areas. Our focus in this article
is on inferencing shape and structure geometric primitives and
their applications in lidar point clouds. We argue that many data
processing problems can be partly solved or even well addressed
if the potential of geometric primitives is fully explored.

Several reviews on lidar data processing have been published
in recent years [16], [79]–[83]. These surveys only focused on
certain applications, such as reconstruction [79], [80], [82], or
specific data processing steps, such as segmentation, classifica-
tion, and object recognition [81], [83], or point clouds acquired
by a specific type of platform such as mobile lidar [16], [83].
In contrast, our review focuses on the basic elements in lidar
point clouds and the intrinsic problems in data processing and is
not limited to data collection platforms or specific applications.
In other words, this review provides an overview and also a
perspective on how to perceive and understand lidar point clouds
based on geometric primitives.

The rest of this article is organized as follows. In Section II,
we review the state-of-the-art methods for extracting different
primitives. Section III summarizes the methods for primitive
regularization. In Section IV, the relationship between pointwise
features and geometric primitives, and the differences between
lidar point clouds and other point clouds in terms of processing
primitives are discussed. We conclude this article along with a
few suggestions for future research topics in Section V.

II. PRIMITIVE EXTRACTION METHODS

A. Shape Primitives

In general, the majority of shape primitives refer to lines,
surfaces, and volumetric elements. Existing methods can be clas-
sified into four classes: region-growing methods, accumulation

Fig. 3. Simple seed selection example. (a) Points in three segments have
different colors. (b) If the red point at the corner is selected as a seed, only
two segments would be identified.

methods, hypothesis and selection methods, and clustering-
based methods.

1) Region-Growing Methods: Region growing in point
clouds refers to algorithms that segment points into homoge-
neous regions based on local indicators. After selecting seed
points, these algorithms determine whether nearby points should
be grouped into the same segment according to the similarity
between local features such as normals. They terminate if every
point belongs to a particular segment.

The choice of neighborhood size, predefined merging rules,
and seed selection are critically important for region growing.
Most methods define the neighborhood size of each point using
the k-nearest neighbors or fixed distance neighbor methods [84].
Point density influences the performance of both methods.
Neighborhood size is usually selected empirically based on the
data properties and held constant during the growing process.
In general, the algorithm uses the normal difference to evaluate
similarity within a point neighborhood. If the included angle be-
tween normals at points falls below a given threshold, the points
will be grouped into the same cluster [84]. We note that a large
threshold for the normal difference tends to undersegmentation
results, while a small threshold may result in oversegmentation.
In practice, the angle threshold is often set empirically based on
data quality and accuracy requirements in different tasks.

In general, there are two ways to improve the performance
of region growing. The first is to improve the accuracy of
estimated local features [85]. For example, Nurunnabi et al. [86]
proposed a normal estimation method using robust principal
component analysis with neighboring points, yielding signifi-
cant improvements in their segmentation tests on the cylinder,
house, and traffic furniture scenes. The second is to reduce the
threshold dependence. For example, Maalek et al. [87] identified
outliers before clustering neighboring segments. Local statistical
features are also extensively used as growth indicators. For
example, Lin et al. [41] proposed a number of false alarm
indicators to control the grouping process for line segments.

In the case of seed selection, erroneous results may occur
when seeds are located along sharp edges or in noisy areas.
For example, the points in Fig. 3(a) can be divided into three
segments of different colors. Selecting the red point on the
corner in Fig. 3(b) as a seed causes the normal directions (blue
arrows) around the seed point to be close to each other, which
may lead to undersegmentation (i.e., only two segments will
be detected). A standard solution is the addition of smoothness
constraints when selecting seeds. For example, the algorithm
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selects seeds from flat regions based on local geometric features
like curvature or flatness [84], [88], [89]. Region growing can
also be accelerated by replacing pointwise growing with voxel-
wise growing [90]–[92]. For example, Xu et al. [93] proposed a
voxel-based primitive detection method that organizes points
into voxels that are then aggregated into segments based on
the similarity (e.g., distance and geometric saliency) between
adjacent voxels. Finally, model fitting enables further recogni-
tion of the primitive types (e.g., plane and cylinder) of detected
segments [43].

In general, region growing is a local-based method for shape
primitive extraction from point clouds. It is easy to implement
and often produces promising segmentation results [89]. Addi-
tionally, region growing can be implemented in parallel [94],
thereby making processing large-scale point clouds possible.
However, it suffers from noise, low accuracy of local features,
inappropriate thresholds, and poor seed selection. It should
be noted that region growing is also a typical locally optimal
method, which means that the previous results can affect later
ones, and repeated execution would not always output identical
results.

2) Accumulation Methods: Accumulation methods are algo-
rithms that work in parameter space and always contain a voting
step. The HT [95] is a standard accumulation method with three
broad steps: build the parameter space, accumulate votes from
the input data, and output primitives identified in the parameter
space [96]. The initial HT was proposed in [95] and then was
generalized by Ballard [97] to detect various curves like lines
and circles.

Taking the straight-line model as an example, there are two
parameters: the distance ρ between the coordinate origin and
the closest point on the line, and the angle θ between the line
direction and a reference axis. The commonly used accumulation
space is lattice-like structures, like rectangular cells in 2-D mod-
els, but inappropriate construction of the accumulation space
may lead to detection failures. For example, when detecting a
plane in 3-D, dividing the parameter space by latitude and longi-
tude causes cells near the poles to be smaller than cells near the
equator, biasing accumulation toward large cells and away from
small cells [98]. To address this problem, Borrmann et al. [98]
proposed a ball accumulator to divide the voting space equally.

As one survey of HT implementations has summarized, there
are many variants but with the voting method being the sig-
nificant difference between them [99]. In traditional voting
approaches, every point casts a group of votes in the parameter
space by fitting shape models with different parameters [100],
which is time-consuming for massive lidar point clouds. The ran-
domized HT [101] used a different approach for line detection:
two pixels in the image space form one vote in the parameter
space. Borrmann et al. [98] implemented a 3-D randomized HT
for plane detection by randomly choosing three points to form
a vote. The experimental results with point clouds show that the
randomized method performed better than other variants. Ca-
murri et al. [102] implemented both traditional and randomized
HTs to detect spheres, but they used every point together with
its associated normal to determine the plane in the 3-D space
corresponding to one vote in the Hough space. This was in lieu of

Fig. 4. Example of Gaussian sphere (on the right), where normal directions
of the input point clouds (on the left) are accumulated [106].

randomly generating planes to cast votes [103], [104]. To detect
peaks in the parameter space, a straightforward way is setting a
threshold to find cells corresponding to shape primitives in the
accumulation [100]. In [98], a cell with accumulated votes over
90% of the highest score will be retrieved as a plane. Peaks and
their associated votes can also be identified by mean shift [105]
and region growing [104]. Many accumulation algorithms are
unable to separate coplanar segments without further processing.

Accumulation methods can also apply to the detection of
volumetric shapes simply by using more parameters. For exam-
ple, a cylinder description requires five parameters: two angular
parameters for axis direction, one parameter for the radius,
and two parameters for the center position. However, a Hough
space with more than three dimensions is impractical due to the
complexity of the parameter space. Thus, research into using
accumulation methods for detecting volumetric primitives has
focused primarily on improving computational efficiency.

One possible way to handle high-dimensional problems is to
divide the accumulation space into smaller spaces to accumulate
votes separately [106]. Hulik et al. [103] introduced a hierar-
chical structure to build such a voting space. Another solution
for reducing the size of the problem is to handle the angular
parameters (θ,φ) and distance ρ separately by using normals and
Gaussian spheres [106]. For cylinder detection, point normals
are used to identify the orientations of potential cylinders in a
Gaussian sphere, as shown in Fig. 4, with points then projected
onto a plane whose normal is in line with the cylinder axis. After
applying a 2-D HT to detect circles on the projection plane, the
position and radius of the cylinder can be calculated. For sphere
detection, normal directions are used to vote for the sphere center
followed by the determination of the sphere’s radius.

Qiu et al. [107] used a Gaussian sphere to accumulate axis
orientations. Compared with the work of Vosselman et al. [106],
a different 2-D circle fitting method is used, which determines
the circle center by line intersections on the projected plane. Rab-
bani and Van Den Heuvel [108] implemented a similar process of
decomposing a complex problem into smaller ones by using two
Gaussian spheres: one for counting point normals and the other
for accumulating cylinder orientations. After recovering the axis
orientations, their method estimates the cylinder radius and po-
sition. In a shift away from decomposition, Drost and Ilic [109]
proposed a local HT method that introduces point pair features to
primitive detection and a vote casting method in submanifolds.
A non-maximum suppression can refine the extracted primitives.
Experiments with this approach show competitive results.
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It is worth noting that the idea of voting and accumulation
has also been applied in object detection. For example, Leibe
et al. [110] proposed an implicit shape model (ISM) for detecting
objects in images, which first trains a codebook of patchwise
features. Then, if a new patch is matched to a cluster in the
codebook, a vote for the potential object center will be cast based
on the spatial probability distribution obtained in the training
step. The ISM is also extended to detect objects in 3-D point
clouds [111]. Although the ISM is designed for object detec-
tion, this voting framework may also help identify geometric
primitives in point clouds.

In summary, accumulation methods are easy to implement and
robust when the data have noise or omissions. The voting space
structure and thresholds critically influence detection results as
well. Oesau et al. [94] also pointed out that accumulation-based
methods are sensitive to the selection of the coordinate origin,
and the sequential extraction procedures of these methods are
not suitable for global regularization. Finally, accumulation
techniques have a high computational cost, especially for shape
primitives with many parameters.

3) Hypothesis and Selection: Hypothesis and selection ap-
proaches have become popular in recent years. These methods
first make primitive guesses followed by a model verification
step. There are three broad types for this approach: RANSAC,
energy-based optimization, and preference analysis.

1) RANSAC: The RANSAC method is a simple but power-
ful tool with wide application in outlier detection, shape
detection, and registration. Fischler and Bolles [112] first
developed RANSAC with others making additional im-
provements in the subsequent decades. For shape detec-
tion, RANSAC first selects a subset of the input data and
then fits a predefined model and obtains the inliers of this
hypothetical model from the input data. The algorithm
repeats the above steps to generate enough model candi-
dates, and the one with the most inliers can be regarded
as an optimal model. An alternative way to evaluate an
optimal model is to use the median of the distances to
all points in the data, and the candidate with least me-
dian is selected as an optimal model [113]. Once the
cost function has been defined, the maximum number of
iterations can be implicitly defined based on the process
of adaptive estimation, starting with the worst case and
updating the estimation as the computation progress. If the
proportion of inliers in data can be estimated in advance,
the maximum number of iterations can also be inferred by
a probabilistic inference. If there are multiple primitives,
RANSAC executes multiple times to extract primitives
one by one.
Elaborating further, RANSAC generates model guesses
and then verifies the proposed models. Typically, the
method implements a minimal subset sampling strategy,
whereby a minimum number of data points is used to
estimate the model parameters (e.g., two points for a
line model and three points for a plane model). The
advantage of this strategy is that using fewer points from
the input data reduces the probability of using noise or
other contaminated data. When doing minimal subset

sampling, points are often randomly sampled, which pre-
cludes using any prior knowledge of the input data. How-
ever, RANSAC’s efficiency can be improved when using
sampling methods that take such prior knowledge into
account. Ni et al. [114] assumed that the inliers tend to be
close to each other and proposed a GroupSAC method that
divides the input data into clusters and draws samples from
clusters containing more inliers. Chum and Matas [115]
enhanced the random sampling process by substituting
sampling data with significant scores, which derived from
prior or domain-specific knowledge, such as local features
in 2-D images. Tennakoon et al. [116] studied the use of
more than minimal subset sampling strategies with a goal
of improving the model generation speed and the quality
of guesses.
The verification step determines whether a model proposal
is optimal for the given input data. Standard RANSAC
selects the hypothetical model with the most supporters
(i.e., the size of the consensus set of the sample that
defines the inliers), a time-consuming step often requiring
calculation of the distance between every input data point
and the hypothetical model. To improve the efficiency, it
is possible to filter out model proposals containing a large
portion of outliers using fewer input data points. Chum
and Matas [117] proposed a sequential probability ratio
test to decrease the runtime of the verification step. It uses
a statistical test on the sequential data and rejects the model
if the likelihood ratio is larger than a given threshold.
The runtime of this method is much less than standard
RANSAC’s as the test often stops before examining all
of the data. There are other statistical test methods for
verification, such as the Td,d test [118] and the bail-out
test [119]. All of these statistical methods improve the
efficiency of standard RANSAC but increase the risk of
rejecting correct models during the earlier steps and often
require more hypothetical models. The aforementioned
statistical methods all verify the hypothesized models one
by one. Nistér [120] proposed a preemptive RANSAC for
real-time applications that uses a breadth-first traversal to
verify the proposals on a small set of input data. After
generating a predefined number of model hypotheses and
scoring them based on a subset of the input data, it selects
models with high scores for further evaluation. A detailed
discussion of standard RANSAC and its variants for image
processing and photogrammetry applications can be found
in [121] and [122]. In the following paragraphs, we focus
only on RANSAC and its variants applicable to geometric
shape detection in lidar point clouds.
Many researchers have studied the use of RANSAC
for shape detection in lidar point clouds. Tarsha-Kurdi
et al. [100] presented a detailed roof plane detection
method using the standard deviation of the point-to-plane
distance to verify model proposals rather than selecting
the proposal with the most points as in standard RANSAC.
This extension avoids selecting planes with a large number
of supporters that are not real roof planes. Tarsha-Kurdi
et al. [100] also noted that RANSAC is more efficient than
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Fig. 5. Illustration of degeneracy. (a) Point clouds of small linear structures. (b) Degeneracy occurs when applying the standard RANSAC to a large scene of
MLS point clouds. The input data are sliced vertically, and each slice, i.e., detected planes, is colored differently.

HTs in detecting roof planes. Chen et al. [123] applied a
grid-based data structure to improve sampling efficiency
and to decrease the number of wrong proposals. To handle
the complex structure of planes, Yang and Förstner [124]
proposed a plane detection method integrating RANSAC
and the minimum description length (MDL) rule. After
dividing the input data into groups and detecting planes
in each group with RANSAC, the method estimates a
number of detected planes in each group using the MDL
rule. The detected planes are further merged by region
growing. Schnabel et al. [125] proposed a framework
to extract different shape primitives from point clouds
that improves both the hypothesis and verification steps
compared with standard RANSAC. Its model hypothesis
step samples points with the help of an octree structure to
maintain the spatial relationships between inliers and to
increase the probability of generating good hypotheses.
Its verification step scores and ranks model candidates by
point features such as normals. Tran et al. [126] performed
a primitive-type recognition step before extracting
primitives. This method identifies the primitive type by
finding the best-fit primitive model that has the smallest
fitting error. Finally, planar surfaces are extracted using
the RANSAC method proposed by Schnabel et al. [125].
The RANSAC variants mentioned above may detect
shapes even when the input data contain more than 50%
outliers. However, most of them only work well in point
clouds of uniform point density for simple scenes. In point
clouds from terrestrial lidar, data density varies, and scenes
are complex. These factors greatly influence RANSAC’s
performance. The term “degeneracy” refers to the situation
when data provide insufficient information to obtain a
unique solution [122]. In Fig. 5(a), points form two line
primitives. RANSAC will obtain a red line model if two
red points are sampled. In this situation, all of the points
are model inliers as indicated by two dashed blue lines.
Thus, RANSAC will extract only one line having all of the
points as inliers. Fig. 5(b) shows a real example of running
RANSAC in large-scale MLS point clouds. Instead of
extracting independent walls in each building, it selects
models consisting of points in close elevations. Thus, the

algorithm detects stacked vertical planes while missing the
actual planar structures. These problems with RANSAC
processing of lidar clouds are difficult to solve. Similar
to the idea of LO-RANSAC [116], which was proposed
for epipolar geometry detection, one possible way is to
improve the quality of model hypothesis. It tries to obtain
better models via localized optimization methods, such
as iterative model fitting. Another solution may lie in
improving RANSAC to use more prior knowledge. For
example, Oesau et al. [62] presented a two-scale RANSAC
framework for line detection from 2-D projected point
clouds. This approach makes the line hypotheses at multi-
ple scales, combines two-line proposals into one proposal
pairs, and selects pairs to preserve the detailed structure
information of intersecting walls. Finally, RANSAC only
detects one object each time, necessitating a sequential
extraction strategy for handling point clouds with multiple
objects. This approach detects the shape with the largest
number of supporters, removes its inliers from the input
data, and repeats the process until no detectable objects
remain. However, this sequential strategy leads to incor-
rect detection at times because later results depend highly
on previous ones [127]. Combining global structure infor-
mation and detecting multiple primitives simultaneously
may offer a solution.

2) Energy-based optimization: A recent approach to the mul-
timodel extraction problem is based on energy minimiza-
tion. It first generates many hypotheses for anticipated
models and then selects a subset from the hypotheses by
minimizing an objective function. A step-by-step example
is shown in Fig. 6. Fig. 6(a) shows the 2-D points of a
rectangle, and Fig. 6(b) shows the generated hypotheses
from sampling two random sample points. This reduces
to a problem of selecting the minimum number of hy-
potheses that cover most of the input data. For instance,
Fig. 6(c) shows the four-line models selected after min-
imizing some predefined objective functions. Yu et al.
[128] proposed a new multiple model fitting method using
global optimization. After generating model hypotheses
from sampling small subsets of the input data, the system
minimizes the objective function. An objective function
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Fig. 6. Line extraction example based on the ideas of hypotheses and selection strategy. (a) 2-D point clouds. (b) Generated hypotheses. (c) Selected line models.
Red points are intersections between models.

consists of three terms: model fidelity, inlier similarity,
and a regularization parameter. Minimizing this function
is a standard quadratic problem, which can be solved by
various methods. A more general form of the objective
function consists of data and smoothness terms [129].
The data term often quantifies the model fitting errors,
and the smoothness term adds constraints (prior knowl-
edge) to neighboring data points. Isack and Boykov [129]
proposed a new framework called Propose Expand and
Re-estimate Labels for the extraction of multiple geo-
metric models from discrete points. It generates model
proposals by a random sampling method and treats the
model fitting problem as a labeling process. The data
term is the sum of the distances between the data points
and the generated models. The method builds a graph
of neighboring data points by applying the Delaunay
triangulation to the input data. After that, the smooth-
ness term recognizes the prior knowledge that neighbor-
ing data points in the graph are likely from the same
model. The sum of the data and smoothness terms can
be minimized by an α-expansion algorithm [130] with a
subsequent re-estimation of the proposed models using
the optimized results. The method repeats the “optimize
then re-estimate” steps until the energy stops decreasing.
Finally, the system selects proposed models with their
numbers of inliers above a given threshold as the extracted
models. Delong et al. [131] optimized the number of
labels (potential models) using an extended α-expansion
algorithm. The smoothness terms of the Isack–Boykov
method in [129] and [131] both incorporate low-level
constraints (i.e., constraints on neighboring points) that
are said to be insufficient [132]. Integrating high-level
prior knowledge into the smoothness term [132], such
as topological relationships like parallel or orthogonality
between planes in the real world improves these methods.
Pham et al. [133] proposed another improvement using a
large rather than a minimal sampling strategy to generate
model hypotheses along with a simulated annealing frame-
work using graph cuts to minimize the objective func-
tion. Recently, these frameworks and their variants have

been used in ALS point cloud processing. For example,
Yan et al. [134] solved the problem of detecting roof planes
from ALS point clouds by minimizing a general object
function, which considers label costs [131]. In [135], mul-
tiple line models were extracted from ALS data via solving
an energy minimization formulation, which considers all
relevant factors, including model consistency, piecewise
continuity, and label compactness.
It is also possible to design objective functions from a
data coverage point of view. Magri and Fusiello [136]
generated hypotheses using a RANSAC sampling strategy,
with the objective function defined as the sum of n binary
values, each of which is 1 if the input point is an inlier of
some selected models (covered) and 0 otherwise, where
n is the number of input data points. Maximizing the ob-
jective function means maximizing the number of inliers
for the selected models. Xia and Wang [137] proposed a
line primitive extraction method for projected lidar point
clouds that first uses a randomized HT to generate model
guesses. It then considers data coverage, model intersec-
tions, and model numbers in the proposed objective func-
tion that can be optimized by linear programming. This
idea is also useful for other 3-D data. For example, Jiang
and Xiao [138] proposed a new framework for detecting
cuboids in RGBD images. Their method generates cuboid
hypotheses based on image segmentation results with prior
knowledge, such as sizes of potential cubes. The objective
function maximizes the coverage of data under constraints,
such as overlap and cube fitting errors.
Compared with standard RANSAC, energy-based meth-
ods extract all of the primitives simultaneously and avoid
the drawbacks of the greedy extraction strategy. Further-
more, the energy-based framework makes implementation
of prior knowledge easy. These methods often result in
globally optimal results. However, the setting of parame-
ters may be difficult for some datasets, and missing data
can lead to wrong results when using prior knowledge.
Also, a large number of points dramatically reduces the
selection efficiency. Thus, these methods are rarely ap-
plied to real lidar point clouds, especially for those with



694 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

variable density or large volumes from terrestrial lidar
systems.

3) Preference analysis methods: In the RANSAC algorithms,
the consensus step verifies each proposed model based
on its supporters. This relationship can be inverted: the
preference hypotheses for each input point can be ex-
amined in turn. Such methods are known as preference
analysis, a term originating from [139]. This approach
first generates hypotheses using a RANSAC-like sampling
method and, then, for each point, calculates residuals to all
the hypotheses. Observing that the residuals of hypotheses
generated from outliers will be randomly distributed while
the residuals of models generated from inliers will be
aggregated, the peaks in the residual histogram of each
point correspond to potential models. This method can au-
tomatically determine the number of potential primitives,
but the steps for model identification are cumbersome and
easily affected by noise [140]. This method was further
developed by Toldo and Fusiello [140], who introduced
an N ×M preference matrix for N input data elements
and M generated hypotheses. Each column of this matrix
records the preferred set of hypotheses for an input data
point. The method then groups points with a proposed
agglomerative clustering method, called J-linkage, ac-
cording to the Jaccard distance that measures the overlap
degree between two preference sets. This method was fur-
ther improved by using soft thresholds for the preference
function and a new similarity measure called the Tani-
moto distance [141]. Also, a bottom-up clustering method
groups points into different structures. More recently, the
idea of preference analysis for the extraction of multiple
structures has been explored. Xiao et al. [142] introduced
the hypergraph to integrate the information from input
data. A vertex in the hypergraph corresponds to an input
data point, and the edges represent the model hypothe-
ses. Multiple primitives are detected by partitioning the
original hypergraph into subhypergraphs using spectral
clustering [143]. These methods have achieved promising
results but are seldom used for real lidar point clouds due
to efficiency limitations [142]. Furthermore, these results
rely on a clustering step that is not always optimal and fail
to consider the intersections between multiple structures.

4) Clustering Method: Clustering analysis is also a way for
extracting geometric primitives from lidar point clouds. Feng
et al. [144] divided point clouds into small regions and then
selected the region with the minimum plane fitting errors as the
clustering seed. Later, a hierarchical clustering algorithm has
been proposed to merge neighboring regions if the fitting error
is below a given threshold. However, this method is intended
for organized point clouds. Sampath and Shan [145] proposed
a fuzzy k-means clustering method with a predefined number
of clusters applied to group lidar points. As the parallel and
coplanar roof planes may be mistakenly combined during the
clustering, the method uses model fitting and connective anal-
ysis to fix these errors. Poullis [34] proposed an unsupervised
clustering algorithm using 6-D features that include the nor-
mal (nx, ny, nz), height value, local height variance, and local

normal variance. Primitives are propagated by testing whether
the neighboring points meet a 6-D probability distribution de-
fined by the 6-D Gaussian function. Once a point is assigned to
a primitive, it is accepted as belonging to the primitive and the
6-D Gaussian distribution is recomputed to reflect the mean and
covariance in that primitive. The propagation process is repeated
until no more neighboring points satisfied the Gaussian model.
The above propagation process is executed multiple times if the
point set contains multiple primitives. To avoid setting a plethora
of thresholds, the tensor-based clustering algorithm was pro-
posed by Poullis [146] for segmenting the tensors into different
primitives, such as surfaces, curves, or junctions, respectively.
Similarly, Chen et al. [72] presented some refinements after the
initial clustering to eliminate the errors due to an inappropriate
selection of neighborhood size and thresholds. Xu et al. [147]
proposed a hierarchical clustering method for MLS point clouds
using bipartite graph theory, and their framework allows planar
segments to be kept after postprocessing, such as rule-based
merging.

Yi et al. [73] proposed a spectral residual clustering algorithm
to extract multiple line primitives from point clouds using the
idea of subspace clustering [148]. This method first builds a
point-to-point similarity matrix and then utilizes the spectral
clustering method [143] to divide input data into small groups
(overclustering). These small clusters are then merged according
to mutual information theory [149]. Data defects and varying
densities may affect this method’s results. The merging process
is also significant in obtaining good results. Wang et al. [150]
proposed a scoring-based clustering method for primitive ex-
traction. It first generated model hypotheses using the RANSAC
approach and sampling a minimal number of points to estimate
the parameters of the potential model. Then, the method com-
bined estimated thresholds and model residuals to score the hy-
potheses. Hypotheses with high scores were clustered into final
models according to mutual information theory [149]. Wang and
Xu [68] further improved the method and applied it to planes
extracted from lidar point clouds. These improvements include
consideration of the spatial distance when scoring hypotheses
to reduce the impact of point densities and using a medoid shift
clustering algorithm [151]. The methods in this paragraph rely
on the robustness of model scoring methods, with the merging
step noted to be of critical importance.

Clustering algorithms for primitive extraction are unsuper-
vised learning methods. Different clustering methods have dis-
tinct advantages and disadvantages in various tasks. In general,
current clustering algorithms applied in point clouds are of-
ten density sensitive, and extraction accuracy depends greatly
on extra refinement steps, for example, the initial primitives
extracted via probabilistic clustering in [34] contain a small
number of trivial clusters, which were merged with their adjacent
dominant primitives by a metric of Bhattacharya distance. Sim-
ilarly, in [146], the trial primitives produced by tensor clustering
were merged by analyzing primitive’s adjacent relationships
established on an adjacent graph.

In summary, the most frequently used methods for detecting
primitives from lidar point clouds are region growing, RANSAC,
and HT. Although these methods can achieve acceptable results
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TABLE I
LIST OF REVIEWED PRIMITIVE EXTRACTION METHODS

in many applications, their robustness to noise, density variation,
and missing data still needs improvement. More specifically,
for the region-growing algorithm, the degree of noise deter-
mines which neighboring points can be selected to participate
in clustering, while point density determines what extent of
local point points can be aggregated together. For the RANSAC
algorithm, different strategies for calculation of inliers have
different sensitivities to noise, point density, and missing data.
For example, adopting quadratic distance measure is robust
to noise, whereas using least median measure for estimating
inliers is more sensitive to density and missing data. For the
HT algorithm, how to set up an accumulator defined in the
parameter space will directly affect the accuracy of extracted
primitives. In addition, complex structures in the real world
also bring new challenges that make globally optimal solutions
difficult to achieve. Emerging methods, such as energy-based
frameworks, have already demonstrated their ability to detect
multiple structures from synthetic data and 2-D points, but their
performance with real lidar point clouds has not been fully
examined.

Table I provides a quick reference to relevant shape primitive
perceptive techniques along with their strengths and limitations.
To sum up, users can select suitable methods in their appli-
cations based on five major factors: the degree of implemen-
tation difficulty, robustness, global optimum, time cost, and
flexibility. Methods such as region growing, RANSAC, HT,
and clustering-based ones are easy to be implemented, and
lots of implementations in different programming languages
have already been released to the public, compared with other
methods in the table. The robustness of methods is critical
when handling lidar point clouds that are noisy, incomplete,
and containing a large percentage of outliers. In these cases,
RANSAC and accumulation methods may be preferred. Besides,
energy-based optimization methods [128], [131], and [132] that
consider noise and outliers may also be applicable. If the global
optimal results are needed in one application, users may have
to turn to energy-based methods for help. But, it should be
noticed that energy-based methods and preference analysis are
both time-consuming and, thus, are not recommended when low
time cost is required. The last factor is the flexibility of methods.
A method with high flexibility means that prior knowledge and

Fig. 7. Demonstration of skeletons and cutting planes. (a) Input points [155].
(b) Skeleton [155]. (c) Cutting plane [106].

various constraints can be easily considered during the primitive
extraction process. Currently, the most flexible method group is
energy-based optimization methods. However, high flexibility
often means more parameters, which need to be tuned carefully
for different datasets.

B. Structure Primitives

The structure primitives of interest include skeletons and
2-D/3-D edges. Specifically, 2-D edges occur in conjunction
with 2-D outlines in projected lidar data or 2-D images derived
from ALS point clouds. 3-D edges occur with all kinds of
boundaries detected in 3-D point clouds.

1) Skeletons: In the context of lidar processing, a skeleton
is “a thin and centered structure which jointly describes the
topology and the geometry of the shape” [153]. For instance,
the image in Fig. 7(a) has the skeleton shown in Fig. 7(b).
Skeletons are useful in animations and shape analysis [153] with
most existing methods for extracting 3-D skeletons designed
for meshes. For example, Au et al. [154] proposed a mesh
contraction method for skeleton detection. The method first pro-
cesses the watertight meshes with Laplacian smoothing and then
obtains a 1-D skeleton with connectivity surgery methods using
smoothed meshes. A skeleton-mesh mapping method refines
the final skeleton. However, these methods cannot be directly
applied to raw lidar point clouds because constructing meshes
from point clouds is complicated and may be incorrect. The
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procedure is also time-consuming. Similar to other topics, we
examine only skeleton extraction methods applicable to discrete
point clouds. Tagliasacchi et al. had a review of skeleton methods
for other data sources [153].

Sharf et al. [156] presented a curve skeleton extraction method
from point sets. Using a deformable model to describe the
volumetric shape of the input data, this method tracks and merges
the fronts’ centers to obtain curve skeletons. This method may
fail if the data have significant omissions. Cao et al. [157]
generalized the idea of contraction in [154] for processing point
clouds. This generalized form projects points onto a local tangent
plane, organizes them by the Delaunay triangulation, and per-
forms iterative Laplacian smoothing. The topological thinning
method produces the final curved skeleton. This approach tol-
erates missing data but requires clear dense input points [155].
Tagliasacchi et al. [75] presented a curve skeleton extraction
method with a claimed tolerance to missing data. This method
treats the skeleton as a set of generalized rotational symmetry
axes (ROSA) of a shape and introduces cutting planes [see
Fig. 7(c)] to obtain the slices of input points that generate the
ROSA points. The method then joins and smooths the ROSA
points to make skeletons. ROSA’s stability makes the method
robust to incomplete structures, but its input data should have
a low noise level, and pointwise normal should be accurate.
Huang et al. [155] proposed a skeleton construction method
that is robust to noise by using the L1-median of local points
to represent the optimal center. However, some researchers find
that the method is sensitive to occlusions [78].

In some specific applications, such as tree reconstruction,
prior knowledge is useful in approximation of the skeleton. For
example, Bucksch and Lindenbergh [158] presented a skeleton
extraction method using an octree-based graph and removal of
nonskeleton edges according to predefined rules. Livny et al.
[76] constructed a graph of points and extract a subgraph as the
stem skeleton. Similarly, Wang et al. [77] started from a graph of
input points and transformed the problem of skeleton extraction
into one of finding a minimum spanning tree (MST) in the orig-
inal graph. In these studies, the roots of the trees are important
in graph analysis. For example, the shortest path in the graph
should start from root points. Based on the prior knowledge of
tree structures, Wang et al. [77] and Mei et al. [78] also presented
point cloud optimization algorithms to repair missing structures.
However, this prior knowledge is not applicable to other objects.

In summary, although there are multiple methods for 3-D
skeleton extraction from point clouds, most of them have point
clouds of one single object as input and are not applicable
to raw lidar point clouds of real scenes. Also, the contraction
methods for constructing skeletons require significant execution
time and can achieve good results only in clean complete point
clouds. By using prior knowledge, the skeletons of some specific
objects such as trees may be detected easily. Efficient and robust
skeleton extraction methods for raw lidar point clouds should be
developed in the future.

2) 2-D Outlines: 2-D outlines are boundaries extracted from
projected point clouds or 2-D patches in ALS processing [159].
Conversion of 3-D point clouds to 2-D organized digital surface
models (DSMs) or normalized DSM (nDSM) images simply

requires projecting points onto 2-D grids. Each grid corresponds
to an image pixel with the pixel value equal to the maximum
height of the points in that grid. The conversion to 2-D enables
the use of traditional image processing algorithms.

Yu et al. [160] converted nDSMs derived from ALS lidar
point clouds into binary images, labeling pixels with values
higher than a given threshold as foreground and all others as
background. The method then smooths the binary nDSM with
morphological operations like closing and erosion and identifies
pixels adjacent to background pixels as building boundaries.
The algorithm then connects the boundaries using an extended
boundary algorithm [161]. Grigillo and Kanjir [162] also applied
morphological operations on nDSM images to remove spurious
objects and extract 2-D building boundaries by detecting straight
line segments using an HT. Lafarge et al. [47] used a marked
point process technique to extract rectangular outlines from a
DEM derived from ALS clouds. The technique associated each
input data point with a shape proposal, e.g., a rectangle, and
defined its objective function with three parts. The first part mea-
sures the coherence between the boundary points and rectangles.
The second term qualifies the relationship between neighboring
rectangles. The last term penalizes the intersection of parallel
models. The proposed energy function can be optimized by a
reversible jump Monte Carlo Markov chain sampler [163] and
a simulated annealing framework [164]. This method adapts
to 3-D situations by replacing the 2-D rectangle models with
cuboids [165].

The α-shape [166] algorithm is a widely used tool to extract
boundaries from 2-D points or pixels. The algorithm works by
first selecting two points to generate circles with the given radius
α. If there is no point that falls in the generated circle, the
two points will be labeled as boundary points. The first two
steps repeat until all points have been visited. The processing of
ALS roof points makes frequent use of this outline extraction
method [167], [168].

Other 2-D image processing methods can detect 2-D bound-
aries for planar patches. For example, Poullis [34] extracted
boundaries of roof patches in 2-D images with a contour de-
tection algorithm. Thanks to advances in 2-D image processing,
most 2-D outline extraction problems with lidar data are solvable
by converting input data to 2-D images. However, surrounding
occlusions (e.g., vegetation) easily affect DSM generation and
result in lower accuracy. In addition, 2-D outlines of objects
can also be delineated from ground-based lidar point clouds.
For example, Yang et al. [66] extracted 2-D outlines from MLS
point clouds by projecting detected 3-D planes horizontally. Xia
and Wang [137] first projected 3-D points horizontally, and line
segments are detected from projected points, which are then
connected into building outlines. In the recent years, it has been
increasingly popular to extract 3-D edges or boundaries directly
from lidar point clouds, especially from MLS and TLS point
clouds with much higher point density and more details than
ALS data.

3) 3-D Edges: To the best of our knowledge, there is no
universally accepted definition of 3-D edges or contours in
the context of lidar point clouds. Hackel et al. [169] under-
stood contours to be linear structures with a large number of
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Fig. 8. Overview of 3-D edge extraction methods.

discontinuous among adjacent orientations or surface normals.
Ni et al. [170] classified 3-D edges into boundary elements (e.g.,
surface outlines) and fold edges (e.g., surface intersection lines).
We refer to all boundaries and contours in lidar point clouds as
edges for clarity. Fig. 8 shows a summary of the three methods
for edge extraction from lidar point clouds: local feature-based,
segment-based, and gradient-based.

1) Local feature-based methods: Local geometric properties,
such as flatness, are good indicators for identifying edge
regions in point clouds. Based on the PCA of neighboring
points, these methods estimate local curvature measures
using eigenvalues and recognize data points with high
curvature values as edges [171]. Demarsin et al. [172]
used normal differences to identify edge points. In fact,
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various eigenvalue-based features are useful for detecting
rough regions in point clouds. Hackel et al. [173] proposed
a supervised classification framework to extract contours
from terrestrial lidar point clouds. Their method used
features derived from PCA for classification, although
the method may fail in areas lacking training data. Also,
many factors such as data quality and feature scales all
affect the values of these features [174]. Dittrich et al.
[175] presented a comprehensive study on the accuracy
and robustness of eigenvalue-based features in 3-D point
clouds. Thus, these methods for edge detection are often
applied to high-quality point clouds of small scenes.

2) Segment-based methods: Fold edges in 3-D point clouds
are the intersections between segments or surfaces. In
processing roof point clouds from ALS, Chen et al. [72]
proposed a boundary extraction method using Voronoi
diagrams. Their method clusters roof points into planar
segments and then constructs a Voronoi graph and Delau-
nay triangles from points with labels to indicate segment
membership. Finally, the method extracts the edges of
triangles belonging to segment boundaries by analyzing
the properties of adjacent labels. Borges et al. [176] also
segmented points into planes and then calculated the in-
tersection lines between adjacent planes.
Ni et al. [170] and Kang et al. [177] projected 3-D points
onto a plane and then identified edge points based on the
distribution of the projected points such as the pattern
of angular gaps [177]. A region-growing method can
connect edge points using point orientations estimated
by RANSAC to constrain the growth. Chen and Yu [178]
also used the angular properties of points on a projected
plane to detect boundary points. In addition, the k-means
clustering method is applied to identify fold edges. Lin
et al. [41] obtained more detailed edges, instead of large
planar segments, by generating oversegmented facets
and then employed the α-shape algorithm to retrieve
boundaries of each facet. After that, the algorithm
eliminated boundaries surrounded by other coplanar
facets and recognized the remaining boundaries as edges.
Finally, the algorithm groups all the edge candidates using
a constrained region-growing method. One drawback of
this method is the difficulty in obtaining planar segments
from nonplanar surfaces.
These methods all achieve promising results in small
scenes or in specific applications (e.g., roof boundaries),
but they rely too much on results from the still-evolving
field of point cloud segmentation. Furthermore, retrieval
of adjacent planes and estimation of the intersections be-
tween small primitives are difficult and inaccurate in com-
plex scenes. Long execution time also remains a problem.

3) Gradient-based methods: Contour and edge detection
within 2-D images are well-developed fields [179].
Classical methods, such as the Canny detector [180],
have proven their ability to extract contours using the
basic technique of gradient (difference between features)
analysis, and others have extended existing 2-D solutions
to point clouds. Lin et al. [181] created 2-D images by

projecting 3-D points onto planes from multiple views
and applying a fast line detection method called line
segment detector [182] to extract lines from the multiple
perspectives. Projecting the 2-D line segments into a 3-D
space enables extraction of the 3-D edges. Similarly, Lu
et al. [183] proposed a fast line segment extraction method
for lidar point clouds through detecting 2-D lines via
contour finding method in projected planes. Xu et al. [25]
extended the 2-D Sobel detector to 3-D and applied it to
voxelized MLS point clouds. Their method selects points
with significant response to the detector as edge candidates
and filters non-edge points using an edge-linking
algorithm. These methods often lose 3-D information and
accuracy. Xia and Wang [184] proposed a gradient method
for direct processing of 3-D point clouds and redefined
gradient as the difference between features of neighboring
points. Their method extends the Harris detector [185] to
3-D and filters edge candidates using the ratio between
eigenvalues of a symmetric matrix instead of calculating
all eigenvalues. It links edges with a graph snapping
algorithm. However, the performance of this method
depends on the accuracy of local features and requires
careful threshold selection tailored to different datasets.

Among the three types of edge extraction methods, the local
feature-based approach is usually the fastest, but its perfor-
mance depends greatly on the accuracy of feature calculation,
which is easily affected by factors such as noise. The segment
intersection-based method is the slowest of the three, performing
well only with good segmentation results. The gradient-based
method appears to balance efficiency with performance but
always requires voxelization or projection. The gradient def-
inition in discrete point clouds is also unclear. Last but not
least, edge linking methods that aim at grouping edge candidates
into primitive-level clusters need further investigations, as they
are not robust against noisy edge candidates and data missing.
Overall, the existing edge extraction methods for 3-D point
clouds still need further improvement.

III. PRIMITIVE REGULARIZATION

The results of primitive extraction are groups of points, each
of which corresponds to a detected primitive. Some primitive
extraction methods (e.g., RANSAC) will estimate model pa-
rameters for point groups during the extraction process, while
many other methods (e.g., clustering-based methods) are not.
To further obtain primitive parameters, least-squares fitting al-
gorithms can be used to estimate geometric model parameters
given groups of points [186]. PCA using model inliers can also
fit planar primitives. For example, the normal of the potential
plane equals the eigenvector corresponding to the smallest eigen-
value [187]. However, noise and outliers easily affect PCA-based
results. Some researchers propose other plane fitting methods
to solve this problem, such as a robust distance-based PCA
algorithm that excludes outliers before plane fitting [188].

Primitive models fitted by inliers are data-driven models,
which means that the models are only faithful to the input data.
However, outliers, density variation, and occlusions can bias
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Fig. 9. Overview of primitive regularization methods.

results from such models. Primitive regularization means ad-
justing the parameters of the extracted primitives based on prior
knowledge of targets. The use of regularization improves the
accuracy of the resulting models and preserves the topological
relationships (e.g., parallelism, orthogonality, and coplanarity)
among primitives. Occlusions and density changes in the data
from terrestrial lidar make regularization both difficult and nec-
essary. For example, incomplete data often bias the initial fitted
models. While there are numerous methods for primitive regu-
larization, most of them exist for specific applications, such as re-
construction. Fig. 9 shows the two broad categories of regulariza-
tion methods: rule-based and optimization-based adjustments.

1) Rule-based adjustment: Parameters of fitted primitive
models are often adjusted to satisfy some specific configurations
one by one in rule-based adjustment methods. Sampath and
Shan [167] proposed a roof boundary regularization method for
ALS point clouds that uses long segments as bases and adjusts
the perpendicular and parallel relationships between boundary

lines hierarchically. Similarly, Dorninger and Pfeifer [168]
adjusted topological relationships between boundaries by fixing
the directions of long line segments and changing the parameters
of the short ones. Zhang et al. [189] assumed that buildings
contain only two dominant orientations and compulsively align
detected building contours with the dominant orientations.
Zhou and Neumann [71] proposed a dominant orientation
detection method that first estimates the principal directions
of local boundaries and then accumulates a histogram of
directions. The peaks in the histogram identify the dominant
directions, and the method fixes the boundary directions to
the closest peak in the histogram. Oesau et al. [94] proposed
a greedy regularization method using a graph structure. After
detecting parallel configurations between primitives by running
a mean-shift algorithm on the sphere of normals, the method
detects orthogonality by comparing the directions between
parallel clusters. It selects the cluster with most points as the
basis and removes it. The process is repeated for all of the parallel
clusters. It applies a clustering method with a distance metric to
group adjacent parallel structures and determine coplanarity. A
hierarchical regularization concept is extensively used to finalize
global regularization for linear primitives [135] and planar
primitives [190]. The hierarchical framework can avoid conflict
of different types of regularized operations and costly pairwise
comparisons of different relationships of geometric primitives.

2) Optimization-based adjustment: Optimization-based
methods approach regularization by integrating prior knowledge
into objective functions that are minimized to determine the
optimal primitive configurations. The regularization can be
performed during the primitive extraction step. For example,
in [132], parallel and orthogonal constraints are added to the
energy function to obtain regularized primitives. However, most
research regularizes primitives after the extraction process. The
objective function developed by Lafarge et al. [191] favors
perpendicular and parallel configurations of primitives through
the addition of an energy term that measures the differences in
the direction between two primitives. Similarly, Holzmann et al.
[69] incorporated the Manhattan world assumption for modeling
background clutter into a regularization term that penalizes
planes that violate this assumption. Li et al. [192] proposed
GlobFit to adjust the configuration of shape primitives globally.
This method uses an efficient RANSAC algorithm [125] to
generate initial primitives from the input point cloud and then
considers orientation (e.g., parallelism and orthogonality) and
placement (e.g., coplanar and coaxial) relationships between
primitives with the help of a relationship graph. This turns the
regularization step into a constrained nonlinear optimization
problem.

Monszpart et al. [67] detected initial primitives by region
growing, which generates many candidates. The regularization
step identifies a subset of regularized primitives among all
candidates. This approach favors planes with close orienta-
tions and penalizes irregular primitive configurations. Quadratic
programming was used to optimize the final objective func-
tion. Poullis [34] treated the regularization of 2-D edges as a
multilabeling process. This approach first detects the principal
directions of roof outlines using a Gaussian mixture model
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and then initializes labels corresponding to these directions.
The method uses an objective function that incorporates data,
smoothness, and label terms. After optimization, line segments
with the same direction share the same label, and the system also
discards redundant labels. Recently, Yi et al. [73] have presented
a contour regularization method that finds pairs of nearly parallel
or nearly perpendicular line segments. The method includes a
model for line segment refitting with topological constraints
that is optimized by the Levenberg–Marquardt algorithm. Prim-
itive regularization concepts also apply to the optimization of
normals and orientations in lidar point clouds [193], [194]. To
make full use of hard constraints, Zhou and Neumann [195]
proposed a framework for rooftop reconstruction by imposing
multiple global regularities (e.g., roof–roof, roof–boundary, and
boundary–boundary regularities). The principle of this method
is that the global regularity reveals the topological relations
between the primitives and also provides information on the
architectural design of buildings.

In summary, primitive regularization implements and incor-
porates prior knowledge of human-made objects. The rule-based
methods are efficient and straightforward in most applications,
but the greedy search procedure does not guarantee globally opti-
mal solutions. The performance of these methods may also be af-
fected by the predefined rules. Optimization-based methods are
flexible, allowing for incorporating prior knowledge for model
detection, and often provide globally optimal results. However,
the methods are complicated and time-consuming, and it is
challenging to design an appropriate objective function. Overall,
globally optimal results are preferable, and optimization-based
methods offer more potential for the future if their time cost is
reduced.

IV. DISCUSSION

In the previous sections, we reviewed methods for primitive
extraction and regularization. In this section, the relationship
between pointwise features and geometric primitives in lidar
point clouds is explored. Moreover, the differences in primitive
processing and applications between lidar point clouds and point
clouds acquired by other sensors are discussed.

A. Pointwise Features and Geometric Primitives

In point clouds processing, pointwise features are often used
as the basis for many applications such as classification [196]
and object recognition [60]. It is necessary to describe the re-
lationship between pointwise features and geometric primitives
in lidar point clouds processing. In this review, the relationship
is illustrated from two aspects, i.e., the hand-crafted pointwise
features and the deep-learning-based features.

Many widely used hand-crafted features in point clouds are
based on eigenvalues. Jutzi and Gross [197] proposed an object
structure analysis method based on eigenvalues of moments
defined within a spherical neighborhood of each point. Local
structures in the point clouds, such as planes and intersections
of planes, can be identified by analyzing the magnitude of three
eigenvalues. This eigenvalue-based method cannot extract geo-
metric primitives directly, but it may be useful for finding regions

of potential geometric primitives. The eigenvalue-based method
is sensitive to the size of the neighborhood and can be improved
by using an adaptive neighborhood selection method [174]. A
list of eigenvalue-based features and feature relevance analysis
can be found in [196]. On the other hand, geometric primitives
in point clouds can also be used as a reference for feature
calculation. Guo et al. [198] proposed a robust local reference
frame based on local surfaces for calculating pointwise features.
Mallet et al. [199] used local-plane-based features to improve
lidar point classification accuracy. These pointwise features,
such as angle deviation and distance between points and local
planes, are calculated based on planes formed by neighboring
points. In [200], several pointwise features were calculated based
on local surfaces. For example, the plane index, which is the stan-
dard deviation of the distance between points and a local plane,
and the surface index (averaged plane index) were designed.
Similar to the spin image descriptor [201], Guo et al. [200]
also calculated the pointwise spin image by projecting local
points onto a predefined plane. In [202], the projected plane
of the spin image is fitted by neighboring points. In short,
hand-crafted pointwise features can reveal local properties of
geometric primitives, which can also be regarded as the basis
for feature design and calculation.

Deep learning is a supervised learning method and has become
popular in point clouds processing in the past three years. Ge-
ometric primitive detection based on deep learning frameworks
has also been proposed for images and 3-D models. A deep
neural network named PlaneNet, which can predict the depth
and plane parameters from RGB images, was proposed in [203].
In this framework, a number of planar surfaces are extracted in
a network branch that uses global averaged pooling features as
input, and the plane parameters can be predicted when camera’s
intrinsic parameters are known. Zou et al. [204] presented a 3-D
primitive recurrent neural network for extracting primitives from
RGBD images. The key idea of this framework is applying a long
short-term memory unit, which predicts primitives in sequences.
The advantage is that this network unit preserves symmetry
and long-range structural similarity of human-made objects.
In [205], four geometric primitives (plane, sphere, cylinder, and
cone) were detected in RGBD images using their network. In the
experiments, the positions and normal vectors of pixels were fed
to the network to obtain probability maps of primitives. Then, the
potential primitives were verified using RANSAC model fitting.
Tulsiani et al. [206] proposed a CNN framework for extracting
volumetric primitives (cuboid) from 3-D object models. In this
model, the loss function consisted of two terms, i.e., the coverage
loss and consistency loss. The first term is large if the primitives
do not cover the object, and the second term is a penalty when
the detected primitives are outside the objects.

The aforementioned deep learning frameworks cannot pro-
cess discrete point clouds. To address this problem, Qi
et al. [207] proposed a classical neural network to extract high-
dimensional pointwise features from unorganized and discrete
point sets. In this framework, a multilayer perceptron was used
to learn pointwise features from the training data, and the global
features were obtained by max pooling. The PointNet++ [208]
was developed by improving the PointNet using multiple-scale
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sampling operations. Li et al. [209] proposed a supervised
primitive fitting network for extracting geometric primitives
from 3-D point clouds. This network is based on PointNet++,
which outputs three pointwise features in their architecture: the
point-to-primitive relationship, normal vectors, and the associ-
ated primitive types. These learned features are combined to
detect various primitives in point clouds. Four primitive types
(plane, sphere, cylinder, and cone) were used in the study. The
authors established a new loss function consisting of five terms,
i.e., segmentation loss, normal angle loss, primitive-type loss,
primitive fitting loss, and primitive axis angle loss. The first
term is small if the point sets are well segmented. The second
term is a penalty if there are differences between the predicted
normals and the ground truth. The third term penalizes an
inaccurate relationship between the points and the associated
primitive types. The objective of their method is to obtain a
low model fitting error (the fourth term) and to minimize the
axis differences (the last term) between the predicted model and
the ground truth. This article offers a practical way to obtain
geometric primitives based on pointwise features learned from
neural networks. Geometric primitives may also improve the
performance of deep learning-based applications in point clouds.
For example, Landrieu and Simonovsky [210] first grouped
point clouds into simple shape primitives to construct a so-called
superpoint graph, which is useful for the retrieval of contextual
information using graph convolution.

Only a few deep learning frameworks have been proposed for
the extraction of 3-D shape primitives, and there are almost no
published papers on structure primitive extraction from discrete
point clouds based on deep learning. However, some deep-
learning methods exist for the extraction of structure primitives
from images. For example, Yu et al. [211] presented a semantic
edge extraction framework for images, but the depth information
was not considered in their framework. In the area of skeleton
extraction, Atienza [212] applied the pyramid U-Net to extract
2-D skeletons, and in their method, point sets are transformed
into 2-D images. The authors tested the method in the SkelNetOn
dataset [213], which contains labeled skeletons of 2-D point sets.

To sum up, a major problem in training primitive detection
networks is the need for sufficient large-scale ground truth data
of various primitives. Ground truthing using manual labeling is
time-consuming and labor-intensive. Ground truth can also be
generated using automatized methods [203], simulations [205],
and CAD models [209]. However, this type of ground truth data
may contain numerous errors or be biased toward real scenes.
Notably, there exist no datasets of 3-D edges and skeletons,
which has become a significant obstacle in developing deep
learning frameworks for primitive extraction from lidar point
clouds.

B. Primitives in Other Point Clouds

In general, the primitive extraction and regularization meth-
ods reviewed in this article can be used not only for lidar point
clouds, but also for point clouds generated from other sources
such as mesh models, RGBD depth data, and multiview stereo
images. There are three key differences between lidar point

Fig. 10. Penetration and density variances in lidar point clouds. (a) Cylinder
pole (black) is surrounded by vegetation (green). (b) Walls (planes) close to
vegetation, and roof planes with a diverse point density.

clouds and other point clouds, namely, precision and accuracy,
homogeneity, and application scenarios. Therefore, different
challenges are associated with the different types of point clouds
and affect the choice of the method.

1) Precision and Accuracy: The precision and accuracy of
lidar point clouds are often higher than those point clouds gen-
erated by other sensors. These two factors need to be considered
when choosing algorithms. Precision refers to the consistency
of repeated measurements. For example, the thickness of a wall
will be large if the wall points have low precision. In this case,
primitive extraction methods (e.g., region growing) relying on
local features (e.g., normals) should consider the feature reliabil-
ity. Accuracy refers to the closeness of point clouds to the ground
truth. For example, according to [214], point clouds generated
by structure from motion (SfM) are often more distorted than
ALS point clouds. For example, the edges in SfM-derived point
clouds are not as sharp as those in lidar point clouds [214].
Thus, when using geometric primitives as constraints for object
detection or segmentation, primitives extracted from lidar point
clouds are often more reliable than primitives detected from
other point clouds. It should be noted that the accuracy of SfM
point clouds is not always lower than that of lidar point clouds.
In some cases, the accuracy depends on the application and the
environment [215].

2) Homogeneity of Point Clouds: Since lidar can penetrate
vegetation and windows, it is more challenging to separate
spatially connected objects in lidar point clouds than in other
point clouds. For example, as shown in Fig. 10(a), a cylinder
pole is surrounded by vegetation, and the wall planes are spa-
tially connected to the neighboring trees. It is preferable for
the extraction of primitives (cylinder and planes) to choose
methods that are robust against noise. Also, prior knowledge,
such as the perpendicular and parallel relationships between wall
planes, can be used as constraints for primitive extraction and
regularization [191]. Apart from the property of penetration, the
point density of lidar point clouds, especially those collected
by ground-based lidar, is much varied than other point clouds
due to occlusion and the scanning mode. For example, as shown
in Fig. 10(b), although the roof planes A and B are spatially
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connected, the point density of the roof plane A is much higher
than that of roof plane B. Therefore, methods for the extraction
of geometric primitives should be insensitive to point density.
That is, clustering-based methods that strongly depend on local
features (e.g., normal, density) are not suitable in this case.

3) Application Scenarios: In many lidar-based applications
such as urban reconstruction, the data volume of point clouds is
always large (e.g., city-scale or street-block level). In contrast,
point clouds obtained by RGBD cameras or generated from mesh
models have small data volumes (e.g., room level). Given the
large data volume, the preferred primitive extraction methods
are expected to be efficient. This is why the energy-based opti-
mization methods are not widely used for processing large-scale
lidar point clouds. In addition, lidar point clouds are often used in
surveying and mapping, where high precision and accuracy are
required in the final products. For example, geometric primitives
such as lines derived from edges or planes are vital elements
that bridge the gap between discrete points and vectorized maps.
Thus, primitive detection and regularization in lidar point clouds
often require higher fidelity than in other applications such as
visualization and model abstraction [216].

V. CONCLUSION AND FUTURE WORKS

In this review, we focused on geometric primitives as core
elements in lidar point clouds and examined point cloud pro-
cessing from a geometric perspective. Geometric primitives fall
into two classes: shapes (e.g., lines, planes, and cylinders) and
structures (e.g., skeletons and edges). We have discussed the
extraction and regularization of geometric primitives in lidar
processing in detail. We summarize the existing challenges and
provide suggestions for future studies.

1) Data inconsistency: Raw point clouds are often noisy, have
uneven point distribution, and are incomplete, especially
if data are acquired from terrestrial lidar platforms, such
as TLS and MLS. These problems often result in low per-
formance of commonly used primitive extraction methods,
such as region growing and RANSAC. Point cloud consol-
idation [194] offers a promising approach to solve the data
quality problem, but the method is time-consuming and
not suitable for large-scale scenes at present. It is necessary
to develop methods that address data inconsistencies as
well as algorithms that are tolerant of data inconsistency.

2) Local versus global solutions: In the context of primitive
extraction, locally optimal solutions are always achieved.
Thus, regularization is often used during postprocessing
to obtain globally optimal results [192]. These postpro-
cessing methods always require prior knowledge of object
structures, which may be challenging to define for large
and complex scenes. Current extraction and regularization
methods also suffer from these weakness when dealing
with large data volumes. Therefore, efficient and globally
optimal methods for extracting multiple primitives from
data with complex structures are still needed. For example,
Dong et al. [217] improved the classical region-growing
approach by introducing a global optimization method.
Most existing methods are tailored to detect one specific

primitive type from the input data. The optimal extraction
of multiple types of primitives requires further study.

3) The potential of structure primitives: Many applications
use geometric primitives as discussed in the first section.
Compared with shape primitives, the potential of structure
primitives is relatively unexplored. For example, segment-
ing point clouds into regions using contour information
has received little attention, while many contour-based
segmentation methods [179] have been developed for 2-D
images. In the future, we look forward to more attention
being given to edge extraction and its application in 3-D
point clouds, such as data abstraction and edge-based
segmentation.

4) Benchmarks of geometric primitives: Currently, there are
no benchmark datasets for geometric primitives in li-
dar point clouds. Furthermore, except for widely used
methods such as region growing and RANSAC, many
implementations of the reviewed methods are not publicly
available. Therefore, the guideline of method selection
provided in this review is primarily based on analysis
and experience. In the future, existing methods for ge-
ometric primitive extraction and regularization should
be benchmarked to enable quantitative comparisons. The
main objective of developing benchmarks is helping re-
searchers to select suitable primitive extraction and reg-
ularization methods for their applications. Besides, point
cloud datasets of geometric primitives are also critical for
deep-learning-based studies [209].

5) Primitive inference in deep learning: Deep learning based
on the CNN has become popular in recent years and has
achieved satisfactory results in different areas, such as
image contour extraction [218]. However, key technolo-
gies, such as convolution operations, are not suitable for
discrete, disorganized 3-D point clouds, although it is pos-
sible to take advantage of regular 3-D grids [219]. Some pi-
oneering researchers have designed deep learning frame-
works that can be used for discrete points directly [207].
Recently, geometric primitive inference from point clouds
has attracted increasing attention [204]. The future looks
promising for primitive extraction and applications using
deep learning frameworks.
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