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Abstract— This article presents a semi-automated method to
extract the lane features along the curved roads from mobile
laser scanning (MLS) point clouds. The proposed method consists
of four steps. After data pre-processing, a road edge detection
algorithm is performed to distinguish road curbs and extract road
surfaces. Then, textual and directional road markings such as
arrows, symbols, and words, to inform drivers in necessary cases,
are detected by intensity thresholding and conditional Euclidean
clustering algorithms. Furthermore, lane markings are extracted
by local intensity analysis and distance thresholding methods
according to road design standards, because they are more
regular along the road. Finally, centerline points on lanes are
estimated based on the coordinates of extracted lane markings.
Our method shows strong feasibility and robustness when creat-
ing high-definition (HD) maps from MLS data, by increasing the
number of blocks in the curve and the distance threshold control
in curved lane centerline extraction. Quantitative evaluations
show that the average recall, precision, and F1-score obtained
from four datasets for road marking extraction are 93.87%,
93.76%, and 93.73%, respectively. The generated lane centerlines
are evaluated by overlaying them on manually labeled reference
buffers from 4 cm resolution orthoimagery. The comparative
study indicates that the proposed methods can achieve higher
accuracy and robustness than most state-of-the-art methods.

Index Terms— High-definition map, mobile laser scanning,
point clouds, road marking, centerline, lane-level navigation.
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Fig. 1. The signage definitions of lane lines.

I. INTRODUCTION

PRECISE localization of autonomous vehicles (AVs) is
crucial for public driving safety. Autonomous vehicles

could conduct a series of catastrophic behaviors with inac-
curate localization and route planning operations, such as
driving on the opposite side of the road or illegally changing
lanes [1], [2].

Autonomous driving systems sometimes identify sidewalks
and maintenance lanes to be drivable or believe a destination is
inside of a large obstacle [3]. To help such autonomous robots
precisely perceive the world and achieve reliably environ-
mental perception, multiple sensors are commonly employed
in autonomous driving, including cameras, RAdio Detection
and Ranging (RADAR), and Light Detection and Ranging
(LiDAR) [4]–[6].

However, onboard sensors are not always reliable for the
applications of precise trajectory design and detailed road
information registration [7]. In general, autonomous vehicles
need to recognize which lanes can be safely driven on, when
turns to a curve, and when makes lane-changing decisions.
It puts forward a very high demand for the road information
extraction, especially in the more complex curve. In this
article, we propose a new strategy using local and global
intensity thresholds to extract lane lines (definitions showing
at Fig. 1) with the control of distance threshold, and more
blocks are generated in the curve to improve the precision of
curved lane line extraction.

Different from conventional two-dimensional (2D) maps,
High-definition (HD) maps are created using mobile laser
scanning (MLS) data with the absolute localization accuracy
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in the range of 10-20 cm [8]. MLS systems collect mil-
lions of 3D point clouds in complicated urban environments
at a normal driving speed, which could represent detailed
three-dimensional (3D) road network topologies [9]. Such
highly precise HD maps can provide AVs with a longer sensing
range and greater capacity to maneuver smoothly than onboard
sensory devices [10]. It is well-known that the detection range
of sensors is limited due to the presence of corners, ramps, and
obstacles such as moving vehicles, pedestrians, and cyclists.
If AVs can obtain auxiliary aids from a preloaded HD map,
it can not only extend their sensing ranges beyond the reach
of onboard sensors and know whether there are obstacles
or sharp curves in the front of them, but also allows the
decision-making subsystem to respond quite quickly [11].

By combining real-time sensory detection with prior knowl-
edge, a preloaded map with rich metadata can transform the
challenging sensor-based environmental perception task into a
simplistic map-based localization mission. However, HD map-
aided localization services still face several dilemmas. MLS
system has great advantages in obtaining 3D HD maps with
high precision and clarity. But point cloud processing is not
an easy task, due to its massive data volume, unavoidable
noises, high complexity, and occlusions [12]. For example,
the size of an MLS dataset rendering 1 km length of an
urban road acquired by RIEGL VMX-2HA or Trimble MX-9
systems is over 5 GB [9]. In addition, the inconsistent distrib-
ution of point density makes MLS data difficult to process.
More challenge comes from performing prior knowledge
(e.g., traffic restrictions) in road marking extraction and lane
centerline generation [13]. Such dilemmas make efficient and
robust lane feature recognition tasks from MLS point clouds
challenge [14].

Currently, there is no commercial software with solid built-
in functions that can handle large-volume of MLS point
clouds. To solve such problems, this article attempts to
develop a semi-automated approach for extracting valuable
road features (e.g., road markings) and creating HD maps
by employing MLS point clouds. More specifically, the sig-
nificant contributions of this article are as follows: (1) an
improved road curb detection algorithm for road surface
extraction using MLS point cloud is proposed; (2) a novel
semi-automated algorithm for road marking extraction by
semantically and topologically analyzing road characteristics
is developed; and (3) a novel algorithm is finally proposed
for lane centerline generation, which supports sub-lane level
navigation for autonomous vehicles. In summary, this article
denotes a remarkable contribution to the research on lane
feature recognition for HD map generation, which further
conduces to the development of autonomous driving and
vehicle-to-everything (V2X) technologies.

II. RELATED WORK

Currently, various methods have been developed for lane
feature recognition and extraction in urban environments that
are crucial to HD maps generation. This part provides an
in-depth review and investigation from the perspectives of
MLS point clouds. More detailed literature reviews were
fully addressed in our recently published review article [9].

Generally, the commonly employed lane feature recognition
algorithms using MLS point clouds are classified into two
steps: road surface extraction (Section A) and road marking
extraction (Section B).

A. Road Surface Extraction

The first step of extracting road features and creating 3D
HD maps is road edge detection and road surface extrac-
tion. According to several studies, the road surface extraction
methods can be classified into three groups: scan-line based,
trajectory-based, and voxel-based.

Scan lines are usually produced based on the GNSS times-
tamp or scanning angle field when point clouds are organized
by a given time interval. A scan line-based method was
proposed in [15] to detect road surfaces by creating a moving
window operator, which preliminary results achieved relatively
high accuracy. By taking height differences between road
surfaces and trajectories into consideration, a method was
presented in [16] to extract road surfaces using a least-squares
line-fitting algorithm. Although partitioning entire point clouds
into multiple scan lines leads to computational complexity and
algorithm applicability, detailed information contained within
scan lines is still not sufficient for road curb detection in
complex urban environments [17].

Additionally, trajectory data collected by MLS systems were
generally used by dividing MLS point clouds into equally
sized data blocks at certain time-wise or distance-wise inter-
vals. In [18] and [19], the whole MLS point clouds were
transversely partitioned into a series of point cloud profiles
based on trajectory data, each profile was then sliced to pro-
duce pseudo scan lines with a specified width. Subsequently,
road boundaries in each road data block were extracted based
on the slope and height jumps between two neighboring
points. Although road partition based algorithms could provide
promising solutions for road surface extraction. The accuracy
is heavily affected by the quality of trajectory data due to
different laser scanning patterns. Road seeds were determined
in [20] by detecting road curbs and separating the road surface
from its surrounding environment. Meanwhile, the principal
component analysis (PCA) was employed in [21] to detect
road surfaces from the local neighborhood of the seed points.
Furthermore, snake (a cubic spline-based algorithm) was used
in [22] to fit road cross sections.

Other methods for road surface extraction mainly involve
3D geometric features filtering, surface growing, and voxel-
based algorithms. An algorithm was presented in [23] for road
surface segmentation from terrestrial laser scanning (TLS)
data. In their approach, a fuzzy clustering method was applied
to cluster raw TLS points. Then, a RANdom Sample Consen-
sus (RANSAC) algorithm was applied to fit the linear clustered
data. According to the density gradients of contiguous voxels,
an approach was presented in [24] for road curb detection and
noise removal. The experimental results showed a considerably
high accuracy. However, the computational cost of voxel-based
methods is relatively larger than other methods, especially
for processing highly dense MLS point clouds in urban road
networks.
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Although most of the studies presented promising results,
limitations inevitably existed in these approaches. For instance,
some of the mentioned algorithms distinguished road points
from non-road objects but failed to generate smooth road
edges. Moreover, one more common limitation is that these
algorithms mainly focused on a specific road type or a partic-
ular study area. For example, the algorithm proposed in [25]
performed well for straight roads, but relatively weak for
curved roads. In addition, thresholds used in these studies are
highly dependent on prior knowledge and expert experience,
which limits the extensive application of these algorithms.

B. Road Marking Extraction

Road markings are important lane features in traffic man-
agement systems, as they provide clear guidance and warnings
for road participants (e.g., drivers, cyclists, and pedestrians).
Most importantly, they also play an important role in devel-
oping intelligent transportation systems (ITS) and navigating
AVs. Road markings are painted on asphalt pavements with
particularly retro-reflective materials [21]. Accordingly, the
approximately high reflectance is recognized as a unique
characteristic to distinguish and derive road markings from
road surfaces using MLS point clouds [26]. In fact, the laser
pulse intensity values increase with the decrease of scanning
ranges and incident angles between laser scanners and scan-
ning targets [27]. Therefore, many algorithms for road marking
extraction have been proposed mainly based on traditional
approaches and deep learning (DL).

On the one hand, road markings can be extracted based on
the 2D images derived from 3D point clouds. Such image-
related methods are conducted by converting 3D point clouds
into 2D georeferenced images based on the inverse distance
weighted (IDW) interpolation algorithm [19]. Therefore, off-
the-shelf image processing algorithms can be applied [28].

A multi-level thresholding segmentation method was pre-
sented in [29] to identify road marking candidates. With a set
of local thresholds, connected contours were extracted from
georeferenced images with inconstant luminance. A radius-
rotating method [43] was developed to find road intersections
and sliced roads from these places, then a total least squares
line fitting was later used to obtain road centerlines. Another
method [45], containing three key algorithms, namely, skew-
ness balancing, rotating neighborhood, and hierarchical fusion
and optimization (SRH), has extracted road centerlines from
generated image in an urban environment with correctness and
completeness of 91.4% and 80.4%, respectively. Subsequently,
the support vector machine (SVM) algorithm was applied to
classify the extracted road markings based on their morpho-
logical characteristics. The methods proposed in [19] and [25]
both adopted an inverse perspective mapping (IPM) algorithm
to transform the viewing angle of the image from the original
position to a top-view perspective. The Otsu thresholding [30]
was then conducted to segment various road markings from
backgrounds (i.e., road surfaces). The extraction accuracy of
these dimension reduction methods could be over 90%. Nev-
ertheless, road markings were projected to a horizontal plane,
which unavoidably results in an accuracy loss, especially for

areas with large terrain variation. To deal with this problem,
a multiple scale tensor voting (MSTV) algorithm was proposed
in [31] to eliminate both false positive and false negative errors
by employing a median-based filtering method.

Several studies focused on directly process point clouds
for road marking extraction. An algorithm for lane marking
extraction was developed in [32] using MLS point clouds.
Apart from the intensity filter, the standard deviation of
elevation was analyzed, and the lane markings were finally
classified through Hough transformation. Another method
called MTH [44], which represented three main famous
algorithms, namely, Mean shift, Tensor voting and Hough
transform. The mean shift algorithm was used for cluster-
ing road center points. To enhance salient linear features,
the tensor voting algorithm was applied. Finally, the Hough
transform algorithm was used to extract road centerlines.
Recently, deep learning methods has attracted much attention
in remote sensing field [33], [34]. A two step-wise method
was developed in [35] to directly detect and classify road
markings from MLS point clouds into stop lines, zebra cross-
ings, road boundaries, arrows, rectangles, and centerlines.
First, the large-size road markings were derived by using the
multi-thresholding segmentation approach and spatial density
filter. Then, the PCA and deep multi-layer perceptrons (MLPs)
were conducted for the small-size road marking extraction
and classification. A deep learning architecture was proposed
in [36] for road marking extraction and classification. First,
a modified U-shape neural network was applied for road mark-
ing segmentation. Subsequently, a multiscale convolutional
neural network (CNN) based on hierarchical classification
method was designed to classify various types of road mark-
ings, followed by a generative adversarial network (GAN) for
road marking completion. Such deep learning-based methods
for road marking extraction and classification have achieved
state-of-the-art solutions. However, the limited availability of
labeled point clouds is still the bottleneck for the widespread
applications [37].

Furthermore, the intensity of point clouds is the most critical
characteristics that can be used for extracting road markings.
Distance-dependent thresholding is another common solution
for achieving high accuracy in road marking extraction. For
structured environments such as highways and viaducts, a sin-
gle intensity filter can produce acceptable results, as there are
no other features with high reflectance painted on the pave-
ment. However, for complicated urban scenes, more additional
attributes should be employed to deliver accurate road marking
extraction results [38], [39].

III. DATA PROFILING

The MLS datasets used in this study were acquired by a
RIEGL VMX-450 system [40]. Fig. 2 shows the geographic
location and trajectory of the survey area. Table I indicates
the detailed scanning parameter settings of such MLS system.
The MLS surveys were conducted in Xiamen Island, Fujian,
China (longitude 118◦04’04”E, latitude 24◦26’46”N). The data
collection vehicle travels through the roads of interest at the
speeds of up to 60 km/hr, resulting in the MLS point densities
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Fig. 2. Study area in Xiamen Island, China. (a) Geographic location of
Xiamen, China. (b) Trajectory of the study area.

TABLE I

SCANNING PARAMETERS OF THE RIEGL VMX-450 SYSTEM

ranging from 7000-8000 points/m2. The collected MLS point
clouds were then processed and saved in multiple LAS files.

A total of four test datasets were used in this article.
Dataset 1 is a simple urban road corridor that covers a small
range of HuanDao Road with a length of near 30 m. The total
number of points in Dataset 1 is 1,920,753 with a point density
of 8000 points/m2. Datasets 2, 3, and 4 are three segments of
YanWu Bridge, covered by 6,758,030 points, 9,058,578 points,
and 8,381,952 points, respectively. The lengths of these three
segments are 176.5 m, 175.5 m, and 176.4 m, respectively.
The average point density is 7500 points/m2. Dataset 2 is a
one-way two-lane road, while Datasets 3 and 4 are three-lane
roads with lane reduction areas.

These four datasets contain a variety of road features,
including different types of road markings, roadside trees,
traffic signs, and buildings. Based on these four datasets, the
performance of the proposed methods is tested and compared
with other existing methods. Finally, orthoimage acquired from
an unmanned aerial vehicle (UAV) was used to validate the
experimental results of the proposed method.

IV. METHOD

In this section, we detail the proposed method for semi-
automated extraction of lane centerlines. Such generated lane
centerlines are further employed to facilitate the advancement
of HD maps for autonomous vehicles.

A. Workflow of the Proposed Method

In order to deliver stable localization and navigation services
for AVs in heavy traffic flow environments, the proposed
method aims to extract essential lane features from MLS
point clouds, including road edges, road surfaces, road mark-
ings, and lane centerlines. This method mainly contains four
modules (see Fig. 3): data pre-processing, road edge and

Fig. 3. Workflow of the proposed method.

surface extraction, road marking extraction, and lane centerline
estimation.

Specifically, Module I is designed for data pre-processing. A
coordinate system transformation function is first implemented
followed by a voxel-based upward growing algorithm [18]
for non-ground points removal. Module II contains a road
edge detection algorithm to extract road surfaces based on
road design standards. Module III provides intensity analysis
function based on outlier removal, and conditional Euclidean
clustering algorithms to further extract both directional and
textual road markings. Finally, Module IV contains a distance-
to-road-edge algorithm for lane marking extraction, and lane
centerlines are thus generated based on the coordinates of
extracted lane marking points.

B. Module I: Data Preprocessing

Since the coordinate system of MLS system is arbitrary
with a random user-defined origin point, a coordinate system
transformation function is thus performed to fix the orientation
of the vehicle frame so that the points can be more easily
interpreted. The orientation of the vehicle frame is specified
so that the x-axis towards the front of the vehicle, the y-axis
points to the right of the vehicle, and the z-axis towards
the top of the vehicle. Specifically, the coordinate system
transformation is carried out by using:

X Di = D + (1 + k)R(εx)R(εy)R(εz)XG j (1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(εx) =
⎛
⎜⎝ 1 0 0

0 cos εx sin εx

0 − sin εx cos εx

⎞
⎟⎠

R(εy) =
⎛
⎜⎝ cos εy 0 − sin εy

0 1 0

sin εy 0 cos εy

⎞
⎟⎠

R(εz) =
⎛
⎜⎝ cos εz sin εz 0

− sin εz cos εz 0

0 0 1

⎞
⎟⎠

(2)

where X Di and XG j are the coordinates of MLS point clouds
in the transformed coordinate system and original coordinate
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Fig. 4. The voxel-based upward-growing algorithm. (a) raw point cloud seg-
mentation process, (b) Octree Spatial Index in local blocks, and (c) voxel-
based upward growing pattern.

system, respectively. D = (�X,�Y ,�Z) is the transformation
matrix, and k is the scaling factor denoted as the ratio between
the original and transformed coordinates. Where εx , εy , εz

are the three rotation angles of the 3D coordinate system and
R(εx ), R(εy), R(εz) are their corresponding rotation matrix.
To fix the orientation of x-axis and y-axis, two consecutive
trajectory points are selected as reference points to calculate
the rotation angle.

Moreover, this article only focusses on extracting on-road
information, the non-ground points have become rela-
tively redundant. Accordingly, a voxel-based upward grow-
ing method [18] was employed to identify and separate
non-ground points from ground points such as canopies,
buildings and traffic signs for computational efficiency
enhancement.

Fig. 4 illustrates the detailed procedure of the voxel-based
upward growing approach. First, as shown in Fig. 4(a), the
raw point clouds are horizontally segmented into blocks. The
width of each block is afterward determined by the size of test
datasets. Instead of globally processing the entire point clouds,
this process can greatly reduce the influence of ground undu-
lations. Then, the points in each data block are further divided
into a series of voxels. The certain width of voxels is calculated
by the average point density using octree spatial index (see
Fig. 4(b)). Next, each voxel will grow upward toward its
9 adjacent voxels. As shown in Fig. 4(c), 9 neighbors of
voxel Vj are voxels L1, L2 . . . L9. Subsequently, the upward
growing algorithm will regard its 9 neighbors of voxel Vj as
new starting points and continue to grow upward following the
same pattern. This process will not terminate until all voxels
have no adjacent voxels.

During the upward growing process, the voxels with the
maximum local height values in each growing region are
determined. Finally, the following criteria are used to judge
whether a voxel belongs to ground voxel or non-ground voxel:{

Non − ground voxels, i f Hglobal > He or Hlocal > Hg

Ground voxels, i f Hglobal ≤ He or Hlocal ≤ Hg

(3)

where Hglobal denotes the global height value of a voxel,
which is defined as the height difference between the certain
voxel and the lowest voxel in the entire point cloud. Hlocal

is the local height value of a voxel, which is determined
as the height difference between the certain voxel and the

lowest voxel in a certain block. He represents a global ground
undulation threshold, which is calculated by the maximum z
value of the entire test dataset. Hg denoted by the maximum
z value in a specific growing region indicates a local ground
undulation threshold.

Accordingly, the voxels will be regarded as ground voxels,
if either the global height value Hglobal is less or equal
than the global ground undulation threshold He, or the local
height value Hlocal is less or equal than the maximum z
value Hg. As demonstrated in this article, such voxel-based
upward growing procedure by embedding the dynamic sizes of
point cloud blocks and upward growing voxels, can save more
computational power than directly using elevation thresholding
based methods [9]. Most importantly, the integrity of ground
point clouds is completely retained without any information
loss.

C. Module II: Road Edge Detection and Road Surface
Extraction

Road curbs are constructed as road boundaries that separate
sidewalks and green belts from road surfaces [41]. Therefore,
an improved curb-based road surface extraction method is pro-
posed, which consists of three key steps: road curb detection,
road edge refinement, and road surface extraction.

1) Road Curb Detection: Instead of directly processing
the entire dataset, processing 3D points in each local data
block can considerably reduce the negative effects of road
undulations. Thus, the segmented ground point clouds are
first partitioned into data blocks based on a user-defined
interval (L) perpendicular to the vehicle trajectory. The key
idea is setting a proper segmentation interval in order that each
block can have the least but sufficient points, which means one
curb candidate points could be detected at least on both sides
of the local block. Otherwise, the length of these blocks should
be increased. In this article, the total number of blocks ranges
from 30 to 500 depending on the size and characteristics of
test datasets.

Consequently, ground points are divided into a series of
local blocks after data segmentation. In each block, the pro-
posed algorithms detect curb points based on two criteria:
slope and height differences. According to the road design
rules and visual inspection of the test datasets, pavements
are typically higher than roadways in a neighborhood with
a 7 - 15 cm elevation jump. Moreover, slopes at the pave-
ment shoulders are larger than those of continuous points on
roadways. Fig. 5 presents typical road curbs with intensity
information from MLS point clouds. Therefore, based on both
slope jumps and height differences, the following two criteria
are defined and applied to determine whether a point pi is a
curb point:

∀Pi :

⎧⎪⎨
⎪⎩

curb candidate, i f (Sslope > ST

& (Gmin ≤ Gi ≤ Gmax))

non − curb point, otherwi se

(4)

where Sslope is the slope of two consecutive points, ST is
a user-defined slope threshold, Gi denotes the elevation dif-
ference between a point and its adjacent point in a pseudo
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Fig. 5. Illustration of road curbs in MLS point clouds.

Fig. 6. Illustration of the proposed curb extraction method.

scan line. Gmin and Gmax are the minimum and maximum
elevation difference thresholds, respectively. Sslope is calcu-
lated by:⎧⎪⎪⎨

⎪⎪⎩
Sslope = arctan(

Zi+1 − Zi√
(Xi+1 − Xi )

2 + (Yi+1 − Yi )
2
)

Sslope ∈ (
−π

2
,
π

2
)

(5)

where (Xi , Yi , Zi ) and (Xi+1, Yi+1, Zi+1) are the coordinates
of two consecutive points in a pseudo scan line. The revised
algorithms calculate slope and elevation differences of any two
consecutive points in each scan line. Once a point’s slope and
elevation difference match the given thresholds, this point is
thus considered as a curb candidate. By using this strategy,
several curb candidates are extracted within each data block.
Subsequently, a quick sorting algorithm is performed to sort
all curb candidates in data blocks based on their elevations.
The lowest points on each side of the block are considered as
the bottom points of road curbs. Fig. 6 illustrates the principle
of the revised road curb extraction method. The red points
are curb candidate points in local blocks and the blue points
represent the lowest curb candidate points on each side of the
block.

2) Road Edge Refinement: Different from most existing
methods, in this article, the positions of lane marking points
are determined by calculating their distances to the extracted
road edges. Therefore, the accuracy of extracted curb points is
of great significance. All extracted curb points are expected to
be the bottom of curbs or guardrails. However, it is inevitable
that some extracted points lead to slight deviations. Thus,
a road edge refinement method by employing RANSAC is
proposed to remove outliers.

The robustness of RANSAC makes it commonly applied.
It keeps searching for better models until a user-defined
iteration number is reached. In this article, since the number
of the extracted curb points is usually nearly 300 with few
outliers in our datasets, the upper bound of iterations is set to
be 1,000.

It is noteworthy that if the number of curb points is
not enough after refinement, a point interpolation method is
implemented to interpolate points between consecutive curb
points. The midpoints of any two consecutive curb candidates
are regarded as new curb candidates until a pair of curb points
are found within each local data block. Accordingly, a B-spline
curve fitting algorithm is conducted to fit the extracted road
edge in the XY -plane.

3) Road Surface Extraction: Finally, two curb points are
extracted on both sides in each block. Based on the positions
of these curb points, linear functions that pass any two
consecutive curb points can be calculated. Therefore, any
two consecutive curb points could generate a local edge line.
Consequently, in each block, the points located in the inner
side of the corresponding edge line are determined as road
surface and accordingly extracted.

D. Module III: Road Surface Information Extraction

Different road markings have various characteristics, such
as widths, lengths, shapes, colors, and positions. In this
article, two algorithms are developed with each focusing on
different types of road markings. On one hand, a clustering
algorithm based on morphological analysis is developed to
extract directional and textual road markings including arrows,
symbols, and words. On the other hand, a distance-to-road-
edge thresholding approach using road construction standards
is proposed to extract lane markings, such as solid and broken
lines.

1) Directional and Textual Road Marking Extraction: With
extracted road surface points, a directional and textual road
marking recognition framework is proposed. It consists of
three processes: intensity analysis, statistical analysis-based
outlier removal, and conditional Euclidean clustering.

Due to the near-infrared wavelength of laser pulses, road
markings have higher reflectance than unpainted road surfaces.
Therefore, a global intensity filter is first applied, which
detects road markings depending on intensity information. The
observation is defined as:

∀pi :
{

Road marking candidates, i f (Imin ≤ Ii ≤ Imax)

non − marking points, otherwi se

(6)

where Ii is the intensity values of MLS points. Imin and
Imax are the minimum and maximum intensity thresholds,
respectively. If a point’s intensity value is within the prede-
fined range, this point is then determined as a road marking
candidate. However, the point intensity largely depends on the
scanning range and incidence angle of laser beams, which con-
tributes to a phenomenon that point intensity gradually fades
from the vehicle trajectory to its both sides [31]. Thus, local
optimal thresholds are required to be adaptively estimated.

Authorized licensed use limited to: Jonathan Li. Downloaded on November 12,2020 at 01:02:22 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YE et al.: ROBUST LANE EXTRACTION FROM MLS POINT CLOUDS TOWARDS HD MAPS ESPECIALLY IN CURVE ROAD 7

Specifically, Imin is usually set as small values to avoid the
error of omission.

However, noise inevitably exists in MLS point clouds
after using the global-scale intensity road marking extraction
method. Such noisy points complicate the estimation of local
point cloud characteristics, leading to erroneous values, which
in turn could cause point cloud registration failures. In this arti-
cle, most of the noise are isolated points and point mutations in
local neighborhoods. Thus, a statistical outlier removal (SOR)
algorithm is applied. More specifically, the SOR algorithm
firstly attempts to find the K neighboring points from certain
points of interest, where K is a user-defined threshold based
on the average point density. If there are no enough neighbors
within a stated radius, the point is considered as an outlier
and removed from the point cloud. Furthermore, if the K -
nearest points of a certain point are founded in a specified
area, the mean distance from this point to its neighbors is
calculated. The SOR algorithm assumes that the distribution
of the mean distance of all points should follow Gaussian
distribution, and the points outside an interval defined by
the clustering method [16] is performed. Based on the mean
and standard deviation of global distances are considered as
outliers and eliminated from the dataset. As consequence,
filtering out noisy points can enhance computational efficiency
prior knowledge (e.g., heights, sizes, and widths) of road
markings, and relatively large clusters (e.g., arrows and words)
are distinguished by removing small clusters (e.g., straight
lines and noise). A width threshold denoting the difference
between the maximum and minimum y values of point clouds
is applied to eliminate irrelevant clusters and improve road
marking extraction accuracy.

Although outliers are filtered out, points belonging to the
same object are still isolated and unorganized, and there are
no topological relationships among points. Therefore, to dis-
tinguish specific objects (e.g. arrows) and organize discrete
points into semantic clusters, a revised conditional Euclidean
clustering (CEC) method [16] is performed based on the prior
knowledge (e.g., heights, sizes, and widths) of road.

2) Lane Marking Extraction: Next, a distance-to-road-edge
method is proposed for lane marking extraction. By taking re-
fined road edges as benchmarks, the positions of lane marking
points are determined by calculating the distances from each
point to road edges. The thresholds used in this algorithm are
defined by road design standards, which regulates the widths
of road markings, lanes, marginal strips, and road shoulders.

The distance-to-road-edge algorithm initially considers the
refined curb points as (see red points in Fig. 7) control points
and then segments data into a considerable number of blocks.
Every two consecutive curb points will generate one block,
and a linear function is calculated based on the coordinates of
two consecutive curb points.

This segmentation process enables the proposed algorithm
to process a minimal set of data in local blocks, thus reducing
the influence of errors on global scale. After segmentation,
a searching window first moves from the two curb points
in each local block, and then searches for points whose
distances to the generated edges are within a predefined range.
Meanwhile, a point intensity thresholding is applied to detect

Fig. 7. Distance thresholding.

points with high retro-reflectance values in certain strips. The
criteria for detecting lane markings are described as follows:

∀pi :

⎧⎪⎨
⎪⎩

Lane point, i f (Imin ≤ Ii ≤ Imax)

& (dmin ≤ di ≤ dmax)

Non − lane points, otherwi se

(7)

where Ii is the intensity value of a point. Imin and Imax are the
minimum and maximum intensity thresholds, respectively. di

is the distance from a point to the generated road edge in the
local block. dmin and dmax are the minimum and maximum
distance thresholds, which are preset according to road design
standards.

Moreover, according to the Code for Layout of Urban Road
Traffic Signs and Markings of China (GB 51038 C 2015), lane
widths are at least 3.5 m for urban roads with a speed limit
of 60 km/hr. Additionally, marginal strip widths range from
0.5 m to 0.75 m for urban roads, and shoulder widths range
from 1.5 m to 2.5 m for the test roads. Furthermore, the width
of lane markings in the study area is 0.15 m. Thus, dmin and
dmax are usually set at 0.5 m and 0.9 m, respectively.

Consequently, points with certain intensity values and
within specific regions are extracted as lane markings. The
nearest and farthest points on lane markings are considered
as the outer edge and inner edge of the lane marking and
separately extracted. Finally, as shown in Fig. 7, lane centerline
points are estimated by finding points with a certain distance
(d1 + d2 + d3/2) to the right road edge. The equation of the
distance from a point to a line is described as follows:

d = |ax0 + bx0 + c|√
a2 + b2

(8)

where d is the distance from a point to a line, (x0, y0)
represents the 2D coordinate of a point, and a, b, and c are
the coefficients of a linear function, which is estimated by two
consecutive curb points in local data blocks.

This method can produce promising results, especially for
straight roads. It should be noted that when deals with curves,
partitioning data into more strips is a useful approach to
improve extraction accuracy. The smaller the length of each
block, the more similar the shape of the rectangle and its cor-
responding arc. Fig. 8 shows the proposed method applied to
curve roads. Fig. 8 (a) shows a curved road section segmented
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Fig. 8. Lane marking extraction using different blocks in curves. (a) 4 blocks,
(b) 8 blocks.

into 4 blocks (red rectangles), while Fig. 8(b) shows an 8-
block segmentation result of the same curve. Red points are the
extracted curb points, yellow lines are the local road edge lines
connected by consecutive curb points, and blue points denote
the detected lane marking points. Therefore, the smoothed lane
marking extraction results could be obtained by partitioning
data into more slices of blocks.

E. Module IV: Lane Centerline Estimation

To calculate the coordinates of lane centerline points,
the same segmentation procedure as mentioned before is
hereby implemented. The extracted lane markings are seg-
mented into hundreds of blocks, where the center points of
lane markings on both sides in each data block are extracted.
The coordinates of the center points in each block are calcu-
lated by:

C (XC , YC , ZC )=
(

Xmax +Xmin

2
,

Ymax +Ymin

2
,

Zmax +Zmin

2

)
(9)

where Xmax , Xmin , Ymax , Ymin , Zmax , and Zmin are the
maximum and minimum values of x , y, and z for each cluster
in the local block, respectively.

Two center points are extracted in each local block with
one on each lane marking cluster. Similarly, the coordinates
of lane centerline points are estimated by calculating the
coordinate mean of two extracted center points in each local
block. Generally, a point cloud is segmented into hundreds
of blocks, thus producing the same number of lane centerline
points. However, for broken lines and faded lane markings,
a center point interpolation method is applied to interpolate
center points in empty areas until enough lane centerline points
are generated. Fig. 9 manifests the principle of the proposed
lane centerline estimation method.

Fig. 9. Centerline estimation.

Fig. 10. Road curb detection results in this paper, three datasets (left) and
refined curb points (right). (a) Dataset 1; (b) Dataset 2; (c) Dataset 3.

V. RESULTS AND DISCUSSION

A. Road Curb Detection and Road Surface Extraction

In this article, road surfaces were extracted by detecting
curb points as road boundaries. Three critical parameters
were predefined according to prior knowledge about road
design standards, namely, minimum height difference Gmin =
7 cm, maximum height difference Gmax = 30 cm, and slope
Sslope = 70◦. Fig. 10 presents the non-ground point removal
and road edge refinement results of Datasets 1, 2, and 3.

Based on the coordinates of extracted road curb points,
points located between the left and right road edges are
considered as road surfaces and therefore extracted. It is
noted that a road edge is defined as the straight line or
curve that passes the two nearest curb points. As mentioned
before, partitioning data into more pieces of block can improve
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Fig. 11. Curved road surface segmentation results obtained using
(a) 50 blocks and (b) 300 blocks.

the performance of the proposed algorithm. This strategy
is particularly beneficial to curved roads, as the proposed
algorithm extracts road surfaces in each local block with a
pair of local road edges as references. If the area of each
block is not small enough, the estimated road edge could not
fit the real road edge. As shown in Fig. 11, more smooth road
edges can be obtained based on the 300-block segmentation,
see Fig. 11(b), compared to the 50-block segmentation, see
Fig. 11(a). It indicates that the more blocks are used, the more
accurate road edges could be extracted.

B. Road Marking Extraction

As shown in Fig. 12, the proposed road marking extraction
algorithm was tested on the four datasets, which contained
different types of road markings including arrows, symbols,
words, lanes, and hatch markings. To achieve the best perfor-
mance, local optimal thresholds were estimated based on the
characteristics of different datasets. The distance thresholds
were determined by road design standards. According to the
Code for Layout of Urban Road Traffic Signs and Markings of
China (GB 51038-2015), dmin was set to 0.5 m, and dmax was
set to 0.9 m for roads without shoulders. For roads decorated
with shoulders, dmin = 1.5 m, dmax = 2.75 m for the right
side, and dmin = 0.5 m, dmax = 0.9 m for the left side,
respectively. Apart from distance-based thresholding, intensity
information is also utilized to detect lane marking points.
Generally, the minimum intensity threshold Imin was set as
23,000, and the maximum intensity threshold Imax was set to
be 40,000 based on visual interpretation of test datasets.

As shown in Figs. 12 and 13, most lane markings were
successfully extracted from road surfaces. However, some
extracted road markings in Fig. 12 were incomplete (see high-
lighted in the red rectangles A and B). The missing parts were
primarily caused by the occlusions of large obstacles, as laser

Fig. 12. Extracted lane markings and key points: four datasets (left) and
extracted lane markings (right).

pulses cannot reach the shadows of the obstacles. Another
reason is that some road markings have been painted on the
road surfaces for decades without routine maintenance. Thus,
road marking decay has been caused by heavy-duty trucks and
salt dissolution in snow season. In summary, the proposed lane
marking extraction method delivered promising results.

C. Lane Centerline Estimation

The coordinates of lane centerline points were estimated
depending on the coordinates of the extracted lane marking
points on both left and right sides. In this article, Wz was set to
2.0 m for Dataset 1, Dataset 2, Dataset 3, and 0.5 m for Dataset
4 based on experiments assessments. Wz is a predefined width
threshold that denotes the width of each block. After extracting
desired road information, the generated LAS file was converted
to Shapefile format and further processed in ESRI ArcGIS
software. Finally, discrete lane centerline points were linked
using an XY-Line tool in ArcGIS to create smooth lines (see
Fig. 14). In addition, the map can be converted to other

Authorized licensed use limited to: Jonathan Li. Downloaded on November 12,2020 at 01:02:22 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 13. Detailed sections of the extracted lane markings and key points.
(a) Test dataset 1. (b) Test dataset 3.

types of user-defined formats. Thus, the HD map prototype
was developed for the localization and navigation missions of
autonomous vehicles, as shown in Fig. 15.

D. Accuracy Assessment

Furthermore, an accuracy assessment was implemented to
evaluate the performance of the proposed methods. Three
criteria including Recall, Precision, and F1-score were used to
conduct the accuracy assessment. The expressions are defined
as follows:

Recall = Tp/ (FN + TP ) (10)

Precision = TP/ (FP + TP ) (11)

F1−score = 2 × Precision × Recall

(Precision + Recall)
(12)

where TP represents true positive, FP denotes false positive,
and FN indicates false negative classification outputs. In this
article, the recall addresses the completeness of the extracted
road markings, while the precision shows the valid percent-
age of these extracted road markings. Moreover, F1-score
describes an overall score by taking both precision and recall
into consideration. More specifically, TP denotes the number
of correctly classified road marking points, FP represents the
quantity of noisy points that are misclassified to lane marking
points, and FN indicates the quantity of lane marking points
that are misclassified to outliers.

Fig. 14. The estimated lane centerlines in this article. (a) Test dataset 1.
(b) Test dataset 2.

Fig. 15. A 3D HD map prototype created in this article.

A set of reference pixels for each dataset was manually
labeled using UAV orthoimagery in ArcGIS v10.3. Addition-
ally, the MLS point clouds were aligned to the same coordinate
system (UTM) with an UAV orthoimagery. Then, the extracted
road markings were overlapped with UAV images in ArcGIS.
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Fig. 16. Validation of the extracted road marking overlapped with orthoim-
age. (a) Manual interpreted road marking polygons, (b) orthoimage overlapped
by extracted road markings.

TABLE II

QUANTITATIVE ASSESSMENT OF ROAD MARKING EXTRACTION

After pixel analysis, Precision, Recall, and F1-score were
calculated to express the accuracy of experimental results.
Fig. 16(a) presents the manual interpreted road marking poly-
gons, and Fig. 16(b) shows the validation results of the pro-
posed road marking extraction algorithm with the assistance
of 4 cm resolution UAV orthoimagery.

As shown in Table II, the proposed road marking extraction
method can achieve 93.87% in precision, 93.76% in recall, and
93.73% in F1-score. Both precision and recall of Dataset 1
are very high, as Dataset 1 is a short and straight road
without barriers or obstacles. Similarly, Dataset 2 is a straight
road corridor of YanWu Bridge and yet much longer than
Dataset 1. The recall of Dataset 3 is relatively low, as lane
reduction areas exist. The number of lanes is reduced from
three lanes to two lanes in the same direction. As the effective
width of roads is decreased, it is challenging to estimate
local optimal thresholds for lane reduction areas. Moreover,
the recall for Dataset 3 is low due to misclassification, which
some road surface points are misclassified into road marking
points. In Dataset 4, two moving vehicles block parts of road

Fig. 17. Lane centerline validation results using user-defined buffer zones.

markings on the left side of the road, thus resulting in low
precision. Moreover, the occlusions of shadows and obstacles
are common shortcomings of MLS systems, as laser pulses
cannot penetrate most objects.

Furthermore, the estimated lane centerlines were overlapped
with an UAV orthoimagery. Buffer zones with the width
of 10 - 30 cm were manually drawn in base maps as ref-
erences, and the experimental results were thus evaluated by
determining whether the estimated lane centerlines located
in the buffer zones. Otherwise, the offsets should be calcu-
lated. All estimated lane centerlines were evaluated through
manual inspection. The experimental results demonstrate that
the estimated lane centerlines of Datasets 1, 2, and 3 can
correctly match the real centerlines, located in 10-cm-wide
buffer zones. The simulated lane centerline of Dataset 4 had a
small deviation due to some misclassification and incomplete
extraction of road markings. The maximal localization error
is approximately 15 cm. Thus, a 30-cm-wide buffer zone was
defined to cover all lane centerlines of Dataset 4. It is well-
known that the width of vehicles is normally less than 2 m,
and the width of a single traffic lane in China is at least 3.5 m.
Thus, a 0.4 m lateral clearance enables to ensure driving safety.
According to the Enhanced Digital Mapping Project Final
Report released by the Department of Transportation of the
USA, the localization accuracy specification of lane centerline
estimation is 0.3 m. Therefore, all generated lane centerlines
in this article meet national and industrial standards. Fig. 17
presents the lane centerline validation results of Dataset 3.

E. Comparative Study

To evaluate the performance of the proposed methods,
a comparative study was conducted. We compared the pro-
posed road edge detection method with the one presented
in [31]. Remarkably, the method presented in [31] and the
proposed method in this article achieved similar precision,
recall, and F1-score values for Dataset 1. But for Dataset 4,
the proposed method is more superior to the one presented
in [31]. The comparison results demonstrate that the method
presented in [31] is not capable of handling urban road scenes
with horizontal curves and obstacles. Table III presents the
quantitative evaluation results of these two methods.
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TABLE III

ACCURACY ASSESSMENT RESULTS USING DIFFERENT
ROAD EDGE DETECTION METHODS

TABLE IV

ACCURACY ASSESSMENT USING DIFFERENT ROAD MARKING

The proposed road marking extraction method was com-
pared with some existing methods, including those methods
presented in [18], [25], [42]. In [25], MLS point clouds were
firstly converted to 2D georeferenced intensity images. Then,
they extracted road markings from such 2D images with the
assistance of software including ENVI and ArcGIS. However,
in [18] and [42], the proposed methods directly extracted road
markings from MLS point clouds.

Table IV indicates the quantitative evaluation results. It is
perceived that the proposed method achieves the highest
precision among the four methods. However, our approach is
inferior to the method presented in [25] method in terms of
recall. Consequently, the outlier removal algorithm and cluster-
ing algorithm certainly require further refinement. Moreover,
the proposed method outperforms both methods presented
in [18] and [42] in both precision and recall. The method
presented in [42] only focuses on line-shaped markings.
Additionally, the methods proposed in [18], [25] rarely have
inconstant intensity and blurring data problems, thus achieving
relatively high precision.

VI. CONCLUSION

In this article we have presented a semi-automated method
to extract lane centerlines from MLS point clouds. The
proposed method first removes non-ground points using a
voxel-based upward growing algorithm. Then, a road edge
detection algorithm is performed to detect road curbs for
road surface segmentation. Next, road markings including
arrows, symbols, and words, are preliminarily detected using
a global intensity filter. Semantic clusters of these textual and
directional road markings are afterward extracted by statistical
analysis outlier removal algorithm and conditional Euclidean
clustering algorithm. Moreover, lane markings are derived by
local intensity analysis and distance-to-road-edge thresholding
methods based on road design standards. Finally, centerline

points located between two adjacent lanes are estimated based
on the coordinates of extracted lane markings. Accordingly,
HD maps with precise road boundaries, road markings, and
lane centerlines are created.

Four datasets were tested to prove the feasibility and robust-
ness of the developed road marking extraction method. The
average precision, recall, and F1-score obtained from four test
datasets are 93.87%, 93.76%, and 93.73%, respectively. The
accuracy assessment results demonstrate the practicability of
the proposed method, which can successfully and accurately
extract lane features from MLS point clouds. Furthermore,
according to the buffer overlay analysis, the proposed algo-
rithms were capable of achieving lane centerline generation
with 30 cm wide localization accuracy with the assistance
of 4 cm resolution UAV orthoimagery. Therefore, the proposed
method can reliably and efficiently estimate lane centerlines in
urban road environments from four MLS point cloud datasets
in 30 cm localization accuracy. Our comparative analysis indi-
cates that the proposed methods can achieve higher accuracy
and robustness than most of state-of-the-art methods. Our
future studies will focus on compound and spiral road curves
such as roundabouts.

REFERENCES

[1] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localization
and mapping: A survey of current trends in autonomous driving,” IEEE
Trans. Intell. Vehicles, vol. 2, no. 3, pp. 194–220, Sep. 2017.

[2] J.-F. Bonnefon, A. Shariff, and I. Rahwan, “The social dilemma of
autonomous vehicles,” Science, vol. 352, no. 6293, pp. 1573–1576,
Jun. 2016.

[3] H. Chu, L. Guo, B. Gao, H. Chen, N. Bian, and J. Zhou, “Predictive
cruise control using high-definition map and real vehicle implementa-
tion,” IEEE Trans. Veh. Technol., vol. 67, no. 12, pp. 11377–11389,
Sep. 2018.

[4] H. Luo et al., “Semantic labeling of mobile LiDAR point clouds via
active learning and higher order MRF,” IEEE Trans. Geosci. Remote
Sens., vol. 56, no. 7, pp. 3631–3644, Jul. 2018.

[5] W. Yao, S. Hinz, and U. Stilla, “Extraction and motion estimation of
vehicles in single-pass airborne LiDAR data towards urban traffic analy-
sis,” ISPRS J. Photogramm. Remote Sens., vol. 66, no. 3, pp. 260–271,
May 2011.

[6] H. Fan, W. Yao, and L. Tang, “Identifying man-made objects along
urban road corridors from mobile LiDAR data,” IEEE Geosci. Remote
Sens. Lett., vol. 11, no. 5, pp. 950–954, May 2014.

[7] Y. Yu, J. Li, H. Guan, C. Wang, and C. Wen, “Bag of contextual-
visual words for road scene object detection from mobile laser scanning
data,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 12, pp. 3391–3406,
Dec. 2016.

[8] Y. Yu, J. Li, H. Guan, and C. Wang, “Automated detection of three-
dimensional cars in mobile laser scanning point clouds using DBM-
hough-forests,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 7,
pp. 4130–4142, Jul. 2016.

[9] L. Ma, Y. Li, J. Li, C. Wang, R. Wang, and M. Chapman, “Mobile laser
scanned point-clouds for road object detection and extraction: A review,”
Remote Sens., vol. 10, no. 10, p. 1531, Sep. 2018.

[10] Y. Xu et al., “Classification of LiDAR point clouds using supervoxel-
based detrended feature and perception-weighted graphical model,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13,
pp. 72–88, Feb. 2020.

[11] Y. Yu, J. Li, H. Guan, C. Wang, and J. Yu, “Semiautomated extraction
of street light poles from mobile LiDAR point-clouds,” IEEE Trans.
Geosci. Remote Sens., vol. 53, no. 3, pp. 1374–1386, Mar. 2015.

[12] E. Che, J. Jung, and M. Olsen, “Object recognition, segmentation, and
classification of mobile laser scanning point clouds: A state of the art
review,” Sensors, vol. 19, no. 4, p. 810, Feb. 2019.

[13] B. Yang, Y. Liu, Z. Dong, F. Liang, B. Li, and X. Peng, “3D local feature
BKD to extract road information from mobile laser scanning point
clouds,” ISPRS J. Photogramm. Remote Sens., vol. 130, pp. 329–343,
Aug. 2017.

Authorized licensed use limited to: Jonathan Li. Downloaded on November 12,2020 at 01:02:22 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YE et al.: ROBUST LANE EXTRACTION FROM MLS POINT CLOUDS TOWARDS HD MAPS ESPECIALLY IN CURVE ROAD 13

[14] P. Huang, M. Cheng, Y. Chen, H. Luo, C. Wang, and J. Li, “Traffic
sign occlusion detection using mobile laser scanning point clouds,”
IEEE Trans. Intell. Transport. Syst., vol. 18, no. 9, pp. 2364–2376,
Sep. 2017.

[15] B. Yang, L. Fang, and J. Li, “Semi-automated extraction and delin-
eation of 3D roads of street scene from mobile laser scanning point
clouds,” ISPRS J. Photogramm. Remote Sens., vol. 79, pp. 80–93,
May 2013.

[16] L. Yan, H. Liu, J. Tan, Z. Li, H. Xie, and C. Chen, “Scan line based road
marking extraction from mobile LiDAR point clouds,” Sensors, vol. 16,
no. 6, p. 903, Jun. 2016.

[17] C. Cabo, A. Kukko, S. García-Cortés, H. Kaartinen, J. Hyyppä, and
C. Ordoñez, “An algorithm for automatic road asphalt edge delineation
from mobile laser scanner data using the line clouds concept,” Remote
Sens., vol. 8, no. 9, p. 740, Sep. 2016.

[18] Y. Yu, J. Li, H. Guan, and C. Wang, “Automated extraction of urban
road facilities using mobile laser scanning data,” IEEE Trans. Intell.
Transport. Syst., vol. 16, no. 4, pp. 2167–2181, Aug. 2015.

[19] H. Guan, J. Li, Y. Yu, C. Wang, M. Chapman, and B. Yang, “Using
mobile laser scanning data for automated extraction of road markings,”
ISPRS J. Photogramm. Remote Sens., vol. 87, pp. 93–107, Jan. 2014.

[20] D. Zai et al., “3-D road boundary extraction from mobile laser scanning
data via supervoxels and graph cuts,” IEEE Trans. Intell. Transport.
Syst., vol. 19, no. 3, pp. 802–813, Mar. 2018.

[21] B. Riveiro, H. González-Jorge, J. Martínez-Sánchez, L. Díaz-Vilariño,
and P. Arias, “Automatic detection of zebra crossings from mobile
LiDAR data,” Opt. Laser Technol., vol. 70, pp. 63–70, Jul. 2015.

[22] P. Kumar, P. Lewis, C. P. McElhinney, P. Boguslawski, and T. McCarthy,
“Snake energy analysis and result validation for a mobile laser scanning
data-based automated road edge extraction algorithm,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 2, pp. 763–773,
Feb. 2017.

[23] Y. Xu, R. Boerner, W. Yao, L. Hoegner, and U. Stilla, “Pairwise
coarse registration of point clouds in urban scenes using voxel-based
4-planes congruent sets,” ISPRS J. Photogramm. Remote Sens., vol. 151,
pp. 106–123, May 2019.

[24] S. Xu, R. Wang, and H. Zheng, “Road curb extraction from mobile
LiDAR point clouds,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 2,
pp. 996–1009, Feb. 2017.

[25] M. Cheng, H. Zhang, C. Wang, and J. Li, “Extraction and classification
of road markings using mobile laser scanning point clouds,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 3, pp. 1182–1196,
Mar. 2017.

[26] M. Soilán, B. Riveiro, J. Martínez-Sánchez, and P. Arias, “Segmenta-
tion and classification of road markings using MLS data,” ISPRS J.
Photogramm. Remote Sens., vol. 123, pp. 94–103, Jan. 2017.

[27] B. Yang, Z. Dong, Y. Liu, F. Liang, and Y. Wang, “Computing multiple
aggregation levels and contextual features for road facilities recognition
using mobile laser scanning data,” ISPRS J. Photogramm. Remote Sens.,
vol. 126, pp. 180–194, Apr. 2017.

[28] Y. Li, L. Li, D. Li, F. Yang, and Y. Liu, “A density-based clustering
method for urban scene mobile laser scanning data segmentation,”
Remote Sens., vol. 9, no. 4, p. 331, Mar. 2017.

[29] A. Kheyrollahi and T. P. Breckon, “Automatic real-time road marking
recognition using a feature driven approach,” Mach. Vis. Appl., vol. 23,
no. 1, pp. 123–133, Jan. 2012.

[30] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62–66,
Jan. 1979.

[31] H. Guan, J. Li, Y. Yu, M. Chapman, and C. Wang, “Automated road
information extraction from mobile laser scanning data,” IEEE Trans.
Intell. Transport. Syst., vol. 16, no. 1, pp. 194–205, Feb. 2015.

[32] P. Kumar, C. P. McElhinney, P. Lewis, and T. McCarthy, “Automated
road markings extraction from mobile laser scanning data,” Int. J. Appl.
Earth Observ. Geoinf., vol. 32, pp. 125–137, Oct. 2014.

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[34] Z. Luo, J. Li, Z. Xiao, Z. G. Mou, X. Cai, and C. Wang, “Learning high-
level features by fusing multi-view representation of MLS point clouds
for 3D object recognition in road environments,” ISPRS J. Photogramm.
Remote Sens., vol. 150, pp. 44–58, Apr. 2019.

[35] Y. Yu, J. Li, H. Guan, F. Jia, and C. Wang, “Learning hierarchical
features for automated extraction of road markings from 3-D mobile
LiDAR point clouds,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 8, no. 2, pp. 709–726, Feb. 2015.

[36] C. Wen, X. Sun, J. Li, C. Wang, Y. Guo, and A. Habib, “A deep learning
framework for road marking extraction, classification and completion
from mobile laser scanning point clouds,” ISPRS J. Photogramm. Remote
Sens., vol. 147, pp. 178–192, Jan. 2019.

[37] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[38] A. Boyko and T. Funkhouser, “Extracting roads from dense point clouds
in large scale urban environment,” ISPRS J. Photogramm. Remote Sens.,
vol. 66, no. 6, pp. S2–S12, Dec. 2011.

[39] A. Nurunnabi, G. West, and D. Belton, “Robust locally weighted
regression techniques for ground surface points filtering in mobile laser
scanning three dimensional point cloud data,” IEEE Trans. Geosci.
Remote Sens., vol. 54, no. 4, pp. 2181–2193, Apr. 2016.

[40] B. Yang, Z. Dong, G. Zhao, and W. Dai, “Hierarchical extraction of
urban objects from mobile laser scanning data,” ISPRS J. Photogramm.
Remote Sens., vol. 99, pp. 45–57, Jan. 2015.

[41] J. Jung, E. Che, M. J. Olsen, and C. Parrish, “Efficient and robust
lane marking extraction from mobile lidar point clouds,” ISPRS J.
Photogramm. Remote Sens., vol. 147, pp. 1–18, Jan. 2019.

[42] X. Chen, B. Kohlmeyer, M. Stroila, N. Alwar, R. Wang, and J. Bach,
“Next generation map making: Geo-referenced ground-level LIDAR
point clouds for automatic retro-reflective road feature extraction,” in
Proc. 17th ACM SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst.
(GIS), 2009, pp. 488–491.

[43] J. Zhao, S. You, and J. Huang, “Rapid extraction and updating of road
network from airborne LiDAR data,” in Proc. IEEE Appl. Imag. Pattern
Recognit. Workshop (AIPR), Oct. 2011, pp. 1–7.

[44] X. Hu, Y. Li, J. Shan, J. Zhang, and Y. Zhang, “Road centerline
extraction in complex urban scenes from LiDAR data based on mul-
tiple features,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11,
pp. 7448–7456, Nov. 2014.

[45] Z. Hui, Y. Hu, S. Jin, and Y. Z. Yevenyo, “Road centerline extraction
from airborne LiDAR point cloud based on hierarchical fusion and
optimization,” ISPRS J. Photogramm. Remote Sens., vol. 118, pp. 22–36,
Aug. 2016.

Chengming Ye received the Ph.D. degree in Earth
exploration and information technology from the
Chengdu University of Technology, Chengdu, China,
in 2011. He is currently an Associate Professor
with the College of Geophysics, Chengdu University
of Technology. He was a Visiting Scholar with
the Department of Geography and Environmental
Management, University of Waterloo, Canada, from
2016 to 2017. He has published more than 20 articles
in peer-reviewed journals including the IEEE JOUR-
NAL OF SELECTED TOPICS IN APPLIED EARTH

OBSERVATIONS AND REMOTE SENSING (JSTARS). His main research inter-
ests include geo-hazard remote sensing applications, ecological remote sens-
ing, and LiDAR data processing.

He Zhao received the B.Eng. degree in electri-
cal engineering from Qingdao University, China,
in 2015, and the M.Sc. degree in geomatics from the
University of Waterloo, Canada, in 2017. His M.Sc.
thesis was about the development of the algorithms
and software tools for creating HD maps using
mobile laser scanning (MLS) point clouds to support
autonomous vehicles. He has been with SenseTime
Inc., Shanghai, China, since 2017. His research inter-
ests include artificial intelligence, machine learning,
HD maps, and urban remote sensing.

Authorized licensed use limited to: Jonathan Li. Downloaded on November 12,2020 at 01:02:22 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Lingfei Ma (Graduate Student Member, IEEE)
received the B.Sc. degree in GiScience from the
China University of Geoscience, Beijing, China,
in 2015, and the B.Sc. and M.Sc. degrees in geo-
matics from the University of Waterloo, Canada,
in 2015 and 2017, respectively. He is currently
pursuing the Ph.D. degree in remote sensing with
the Mobile Sensing and Geodata Science Laboratory.
His research interests include autonomous driving,
HD mapping, mobile LiDAR, point cloud process-
ing, 3D scene modeling, and deep learning.

Han Jiang received the B.Sc. degree in GiScience
from the China University of Geosciences, Beijing,
China, in 2015, and the M.Sc. degree in geomatics
from the University of Waterloo, Canada, in 2017.
His M.Sc. thesis was entitled Semi-automated gen-
eration of road transition lines using mobile laser
scanning data. His research interests include mobile
LiDAR, point cloud processing, HD maps for
autonomous vehicles, deep learning, and AI.

Hongfu Li received the B.Eng. degree in space
science and technology from the Chengdu University
of Technology, China, in 2019, where he is currently
pursuing the master’s degree in Earth exploration
and information technology. His main research inter-
ests comprise geo-hazard remote sensing applica-
tions, mobile LiDAR, point cloud processing, and
deep learning.

Ruisheng Wang (Senior Member, IEEE) received
the B.Eng. degree in photogrammetry and remote
sensing from Wuhan University, China, the M.Sc.E.
degree in geomatics engineering from the University
of New Brunswick, Canada, and the Ph.D. degree
in electrical and computer engineering from McGill
University, Canada.

He is currently an Associate Professor with the
Department of Geomatics Engineering, University
of Calgary. Prior to that, he worked as an Indus-
trial Researcher at HERE (formerly NAVTEQ) in

Chicago, USA, from 2008 to 2012. His researches interests include mobile
LiDAR data processing for next generation map making, AI algorithms
for point cloud processing, and navigation. He has published more than
60 research articles in peer-reviewed journals including ISPRS Journal of
Photogrammetry and Remote Sensing, the IEEE TRANSACTIONS ON GEO-
SCIENCES AND REMOTE SENSING, and the IEEE JOURNAL OF SELECTED

TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

(JSTARS). He is an Associate Editor of the Journal of Applied Remote Sensing
and Photogrammetric Engineering and Remote Sensing.

Michael A. Chapman received the Ph.D. degree
in photogrammetry from Laval University, Quebec
City, QC, Canada.

He is currently a Professor of geomatics engi-
neering with the Department of Civil Engineering,
Ryerson University, Toronto, ON, Canada. Prior
to joining Ryerson University, he was a Profes-
sor with the Department of Geomatics Engineer-
ing, University of Calgary, Canada, for 18 years.
He has authored or coauthored over 200 technical
articles. His research interests include algorithms

and processing methodologies for airborne sensors using global navigation
satellite system (GNSS) and inertial measurement unit (IMU), geometric
processing of digital imagery in industrial environments, terrestrial imaging
systems for transportation infrastructure mapping, mobile mapping for HD
maps, and algorithms and processing strategies for bio-metrology applications.

José Marcato Junior (Member, IEEE) received the
Ph.D. degree in cartographic science from Sao Paulo
State University, Brazil.

He is currently a Professor with the Faculty of
Engineering, Architecture and Urbanism and Geog-
raphy, Federal University of Mato Grosso do Sul,
Campo Grande, Brazil. His current research inter-
ests include UAV photogrammetry and deep neural
networks for object detection, classification and seg-
mentation. He has published more than 30 articles in
refereed journals and over 70 papers in conferences,

including articles published in ISPRS Journal of Photogrammetry and Remote
Sensing, the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH
OBSERVATIONS, Remote Sensing, Sensors, and The Photogrammetric Record.

Jonathan Li (Senior Member, IEEE) received
the Ph.D. degree in geomatics engineering from
the University of Cape Town, Cape Town, South
Africa. He is currently a Professor and the
Head of the Mobile Sensing and Geodata Science
Group, Department of Geography and Environmen-
tal Management, University of Waterloo, Canada.
He has coauthored more than 400 publications,
more than 200 of which were published in refer-
eed journals, including the IEEE TRANSACTIONS

ON GEOSCIENCE AND REMOTE SENSING (TGRS),
the IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

(TITS), the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH

OBSERVATIONS AND REMOTE SENSING (JSTARS), ISPRS-JPRS, and RSE.
His research interests include information extraction from LiDAR point clouds
and from earth observation images. He is the Chair of the ISPRS WG I/2 on
LiDAR, Air- and Space-borne Optical Sensing from 2016 to 2020 and the
ICA Commission on Sensor-Driven Mapping for the period of 2019–2023,
and the Associate Editor of the IEEE TRANSACTIONS ON INTELLIGENT
TRANSPORTATION SYSTEMS, the IEEE JOURNAL OF SELECTED TOPICS

IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, and Canadian
Journal of Remote Sensing.

Authorized licensed use limited to: Jonathan Li. Downloaded on November 12,2020 at 01:02:22 UTC from IEEE Xplore.  Restrictions apply. 


