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A B S T R A C T

As one of the most important features for human perception, contours are widely used in many graphics and
mapping applications. However, for large outdoor scale point clouds, contour extraction is considerably chal-
lenging due to the huge, unstructured and irregular point space, thus leading to massive failure for existing
approaches. In this paper, to generate contours consistent with human perception for outdoor scenes, we pro-
pose, for the first time, 3D guided multi-conditional GAN (3D-GMcGAN), a deep neural network based contour
extraction network for large scale point clouds. Specifically, two ideas are proposed to enable the network to
learn the distributions of labeled samples. First, a parametric space based framework is proposed via a novel
similarity measurement of two parametric models. Such a framework significantly compresses the huge point
data space, thus making it much easier for the network to “remember” target distribution. Second, to prevent
network loss in the huge solution space, a guided learning framework is designed to assist finding the target
contour distribution via an initial guidance. To evaluate the effectiveness of the pro-posed network, we open-
sourced the first, to our knowledge, dataset for large scale point cloud with contour annotation information.
Experimental results demonstrate that 3D-GMcGAN efficiently generates contours for the data with more than
ten million points (about several minutes), while avoiding ad hoc stages or parameters. Also, the proposed
framework produces minimal outliers and pseudo-contours, as suggested by comparisons with the state-of-the-
art approaches.

1. Introduction

Recently, rapid development of Light Detection and Ranging
(LiDAR) technology makes it possible to acquire 3D geospatial in-
formation for large-scale outdoor scenes identified as point clouds. Due
to the unstructured, irregular, and non-uniform characteristics of raw
point cloud data, various features must be extracted as the basis for
further processing.
Unlike point-based features, which have received wide attention in

previous efforts (Guo et al., 2014), contour extraction in real practice,
especially for large-scale point cloud data greater than 108 points, is
considerably challenging. A primary reason, as (Hackel et al., 2016)
points out, is that the definition of “contour” is difficult to formalize
with various rules, because a perceptible contour is actually relevant to
complicated factors, such as sudden changes in curvature, sufficient
length, uniform local directionality, etc.

In addition, as the scan of point clouds for large outdoor scenes
tended to become less difficult and lower in cost, for the large-scale
dense point clouds, previous research (Lin et al., 2017; Lin et al., 2015)
focused primarily on “line features” rather than “contour” extraction,
where line-like structures are detected by explicit and formalized rules
(e.g. intersection of two nonparallel surfaces). Although using such a
definition enables the detection of fine line primitives, the definition
suffers from two problems: (1) When an operator plans to mark a
contour on a point cloud, the decision-making process can be very
complicated and involve many factors, such as curvature, continuity,
directionality, etc. In this sense, “contour” should be described as a line
like structure, consistent with human perception. (2) Feature based line
extraction techniques often rely on pre-constructed models or surfaces.
However, as (Hackel et al., 2016) points out, intuitively, contours must
be extracted first. Then the contours are used to guide the further
processes, such as surface reconstruction, semantic segmentation,
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model refinement, etc.
To address these problems, recent point cloud contour detection

methods provide some beneficial inspirations. Hackel et al. (2016)
proposed the first learning based framework, which avoids the endless
rule definition for complicated contour cases. Nevertheless, the training
process is based on some pre-defined local features; thus, a high order
Markov field is solved subsequently to obtain the final contours. In-
spired by recent point cloud learning networks (Qi et al., 2017a; Qi
et al., 2017b), in the following study, Yu et al. (2018) proposed a more
direct way, “EC-Net”, to extract contours. The aim of their work is to
extract object contours by remembering the distance distribution from
each point to the edges. This approach works in point space, resulting in
making it possible for this approach to reach its limit for large-scale
point cloud processing.
As it turns out, contour extraction for large scale point clouds is

considerably challenging, due to huge, unstructured, and irregular
point data. For such tasks, we propose a deep neural network based
learning framework, 3D guided multi-conditional GAN (3D-GMcGAN),
as shown in Fig. 1. The technique contributions of this paper rely on
two types of efforts, aiming to make the network capable of re-
membering and generating the desired contour distribution consistent
with human labeled ground truth.
First, because contours can be easily represented in parametric

space, both the training and testing processes are designed to directly
modify the parameters of the line like structures via a novel similarity
measurement of two parametric models. This parametric space based
learning framework significantly compresses the huge point data space,
making it much easier for the network to “remember” the target dis-
tribution. Second, to prevent network loss in huge solution space and
convergence to some bad local extrema, a guided learning framework is
designed to assist finding the target contour distribution via an extra
guidance branch in the network.
In additional, we have also open-sourced a public dataset, with

considerable scale, for large scale point clouds contour extraction.
Specifically, it is built based on a widely employed public dataset for
large scale point cloud segmentation Semantic3D (Hackel et al., 2017),
while with complete contour annotation system. Such a dataset, to our

knowledge, is the first public dataset for large scale point cloud contour
extraction, and can effectively support the dataset Semantic3D.

2. Related work

Contour extraction is a long-standing, yet still active topic, for 2D
images (Von Gioi et al., 2010; Arbelaez et al., 2011) or 3D models re-
constructed by multiview images (Heuel and Forstner, 2001; Jain et al.,
2010; Attene et al., 2005). Based on the methodology for 2D images,
early 3D line extraction methods basically followed a two-part defini-
tion-and-detection strategy (Demarsin et al., 2007; Schnabel et al.,
2010): (i) Define what a line is according to some criteria; (ii) Then,
detect the line structures by some strategies. Specifically, these works
can be further divided into two types: multiview image based and
surface fitting based methods.

Multiview image based methods. Due to the expensive cost of 3D
laser scan sensors, early 3D models were often built from multiview
stereo images (Schmid and Zisserman, 1997; Ok et al., 2012; Ceylan
et al., 2012; Hofer et al., 2015). The first batch of 3D line extraction
methods tended to consider the 3D model as a collection of 2D images
from different views. Thus, the major problem is the matching of var-
ious lines over different views. By regarding the total squared distance
between the observed 2D and projected 3D lines, Taylor and Kriegman
(1995) reconstructed 3D lines according to a well-designed objective
function. To match lines over multiple views, Heuel and Forstner
(2001) used statistical hypothesis testing to explore relations between
geometric entities points, lines, and corresponding half planes in 2D
and 3D spaces. Inspired by the idea to represent line correspondences
via a pre-defined matrix Matinec and Pajdla (2003), Jain et al. (2010),
reconstructed 3D line segments from different stereo images, and then
merged them by depth evaluation and connectivity constraints. By
using shaded images, Lin et al. (2015) extracted line features by com-
bining both the shaded images and point clouds.

Surface fitting based methods. As point cloud acquisition became
much easier, the following works focused more on 3D scattered point
cloud data. Based on implicit surface fitting, by defining the ridge-
valley lines as curves along a sharply changed implicit surface of mesh

Fig. 1. Contour extraction for large-scale point clouds.
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vertices, Ohtake et al. (2004) detected ridge vertices by estimating
curvature tensors and derivatives on the fitted surface and then con-
nected them to form the ridge-valley lines. Following such an idea, Kim
(2013) fit the points via a modified moving least-squares (MLSs) and
connected the ridge vertices along the principal curvature direction to
extract ridge-valley lines. Daniels et al. (2007) proposed an approach to
project locally fitted points onto the intersection of various surfaces and
then derived 3D polylines from the projected points. Noting that most
man-made scenes are piecewise-planar, plane fitting based methods
extract line like structures by defining adjacent or discontinuous planes
(Moghadam et al., 2013; Borges et al., 2010; Lin et al., 2017). As an
alternative case to surface fitting based works, plane fitting based
methods produce more robust results under strong noise and outliers.
In fact, most of these approaches essentially tend to formally define

line like structures by combining features such as curvature, surface,
plane etc. However, as (Hackel et al., 2016) points out, such a rule-
based manner may lead to an adverse situation. A rule-based manner
must struggle exhaustively to cover various expected types of lines, thus
making it increasingly difficult to tune such a system manually for
complicated large scale point clouds.
To address this problem, Timo Hackel et al. (2016) first proposed a

learning based 3D contour extraction approach for outdoor point
clouds, where each point is first predicted with a classifier to denote the
contour-like likehood. Then, the optimal set of contours is selected by
solving high-order MRFs. Inspired by recent deep neural networks for
point clouds, such as PointNet (Qi et al., 2017a) and PointNet++ (Qi
et al., 2017b), Yu et al. attempted an end-to-end framework for contour
extraction of small point cloud objects. However, due to the highly
complex data, such a distance bias based approach is not suitable for
close-range large scale point clouds.

3. Method

The huge data space of large scale point clouds (i.e. more than 108

points) makes it considerably challenging to create a deep neural net-
work based contour generation framework. On the one hand, when
human operators label the contours of point clouds, they often employ
local lines to approximate various curve contours, thus forming a nat-
ural parametric representation of training samples. On the other hand,
by combining with previous works (Lin et al., 2017; Yu et al., 2018;
Hackel et al., 2016), it is easy to acquire the initial line feature de-
scription for a point cloud.
Such observations inspire us to use a parametric space based guided

learning framework, i.e., the goal of the learning network is to learn the
parameter distribution of the human labeled contours and generate the

parametric representation of the contours, rather than directly produce
the contour points in the raw point space. Such a framework sig-
nificantly compresses the huge data space, thus making it much easier
for the network to “remember” the distributions of the human labeled
samples.
Thus, we propose a 3D-GMcGAN, a guided learning network

adapted for the processing of large scale point cloud data. With extra
initial guidance, the network can effectively avoid convergence at some
bad local extrema. Then, to evaluate whether the parameter distribu-
tion of the ground truth is appropriately simulated, a simple yet effi-
cient measurement is designed to measure the similarity of the two
parametric models.

3.1. Network architecture

In the proposed 3D-GMcGAN, besides the original point cloud and
human labeled ground truth, an initial line feature description (gener-
ated from previous work (Lin et al., 2017)) is employed to jointly guide
the training of the network. Such guidance provides several benefits:
first, the initial line feature description can be easily represented as
parameters (6 parameters for each 3D line), thus making it possible to
apply most of the operations in parametric space (except the feature
extraction of the original point cloud). Second, the introduced guidance
provides a natural initialization for the input data, thus enabling the
network to generate the desired contours by calculating a set of “bia” to
adjust the initial line distribution. Such a manner effectively prevents
the network converging to some bad local extrema.
Denote the input point cloud, initial guidance, human labeled

ground truth and the output of the generator as P L R, , and g respec-
tively. Then, the number of points in P and the number of lines in
L R g, , can be denoted as N and M. It should be noted that, except for
the original point cloud data, P, the other data L R, and g are a set of
lines, which can be easily manipulated in parametric space. The ar-
chitecture of the network is shown in Fig. 2.
The whole network includes mainly two branches. The first is si-

milar to traditional GAN, which aims to make the output of the gen-
erator g as similar as possible to ground truth R. The other branch,
which is inspired by the “triplet loss” (Schroff et al., 2015), takes gui-
dance into account and aims to maximize the distance between the
output, g, and the guidance, L, while minimizing the distance between g
and the ground truth, R. Then, the generator is jointly trained by the
two branches to generate a set of bias to modify the guidance, L, to form
the desired parameterized contour.
Specifically, in our proposed network, one generator (denoted as G)

and two discriminators (denoted as D1 and D2) are involved. Due to the

Fig. 2. Network architecture.
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irregular and non-uniform characteristics of the scanned point cloud, it
is difficult to process the point cloud by traditional Convolutional
Neural Networks (CNN). Encouraged by the point learning network,
PointNet++ (Qi et al., 2017b), the generator of our approach contains
mainly three parts.

Encoder. The first part is an encoder, in which four set abstraction
levels are employed to extract the features of the input point cloud, P.
Each level of the encoder contains three sublayers: a sampling layer, a
grouping layer and a PointNet layer. The aim of this part is to build a
hierarchical grouping of the point features.

Decoder. The second part is the decoder, which consists of three
interpolation layers, one max pooling layer, and a fully connected layer.
The interpolation layer, which is guided by the parameterized initial
line distribution, L, aims to extract features according to the constraint
of the guidance and the skipped links from the encoding layers. Then,
based on the attention mechanism, the four hierarchical features are
combined. Such a mechanism is essentially the weighted sum of the
four decoding layers, where the weights are derived from the output of
the max pooling layer and the fully connected layer.

1D-convolutional layers and connected layers. The third part of the
generator contains two 1D-convolutional layers and two fully con-
nected layers. Such a design aims to promote the feature fusion between
various local areas, thus making the network more capable to learn the
desired distribution. In our experiments, it was found that the fully
connected layer is very important for a satisfied generation result. We
assume the reason is that such a layer effectively builds the connection
between the feature of various local areas, thus significantly expanding

the ability of the learning network. It should also be noted that, in point
space, such a fully connected layer can be quite resource consuming,
thus making it extremely difficult for application to large-scale point
cloud data.
The first discriminator, based on the PointNet, is composed of five

1D-convolutional layers, one max pooling layer, and two fully con-
nected layers. The major task of D1 is to identify whether the generated
contour is satisfied. The other discriminator, D2 is designed to take into
account the relationship of the original point cloud P, the guidance L
and the generated parameterized contour g. Encouraged by the idea of
“triplet loss” (Schroff et al., 2015), the output contour, g, is considered
as anchor samples; the ground truth, R, and the guidance, L, are con-
sidered as positive and negative samples, respectively. Then, the aim of
G is to force the generated contour, g, to be similar to the ground truth
R, yet different from the guidance L.Mathematically, the distance
d g R( , ) is minimized, while the distance d g L( , ) is maximized. The
structure of D2 is similar to the encoder, where three set abstraction
levels are involved, which enables it to extract the hierarchical spatial
distribution of g and R.

3.2. Network loss functions

To form a learning framework in parametric space, the most im-
portant thing is to evaluate the similarity between the generated con-
tour and human labeled reference. To achieve this, first two primary
generative losses are designed: the model similarity metric and the
parameter similarity metric.

Fig. 3. Label description and visualization of labels.

Fig. 4. Some samples of our labeled data.
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Model similarity metric. The model similarity metric aims to di-
rectly measure the similarity of two line models derived from the
parameters. Thus, we propose a Mean Measure (MM) to evaluate the
similarity between the generator outputs, g, and the human labeled
ground truth, R. Here, our goal is to approximate the model, R, by
adjusting the data, g. The proposed model similarity metric, L (·,·)l , is
defined as the ratio of the error from the data to the model (EDM) and
the measure of the data g| |:

=
+

L G
d x R

n l
( )

( , )

| |l
x g

m

g g (1)

where d (·,·)m represents the EDM, ng is the total number of sampled
points in g l; g denotes the total length of the data g. To prevent the zero
divisor, is applied. It should be noted that both g and R are

represented as parameters; therefore, in our implementation, to calcu-
late EDM, we first uniformly sample the lines in g and R.
According to Nyquist’s law of sampling, the sampling rate of g

should be twice that of R. Then EDM is calculated as the average of the
minimum distance for each sample point from g to R.
Our proposed MM, which is insensitive to noise, is quite suitable for

estimating the similarity of the two models.
Theoretically, it should be sufficient to build the loss by applying

only the model similarity metric; however, in practice, we found that
because the contour distribution of the large-scale point could be very
complicated, employing only the model similarity metric, MM, may not
prevent outliers or pseudo contours. Thus, we propose the parameter
similarity metric to jointly measure the similarity between g and R.

Parameter similarity metric. The aim of such a metric is to measure
the similarity of the parameter distribution between g and R.
A 3D line, defined by two points in 3D space, can be represented as a

six dimension vector. Then, the parametric representations of g and R
can be considered as two point sets in 6D space, and the parameter
similarity metric essentially measures the distance between two 6D
point sets. In our approach, the Chamfer Distance (CD) (Fan et al.,
2017), which is a commonly applied metric for two point sets, is em-
ployed to build this loss. Here, to adapt the three dimensional CD metric
to our task, we modify it to six dimensions. Because the scale of the
parametric space is quite small, such a loss can be calculated rapidly.
Specifically, loss is defined as follows:

=

+

L G x y
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1

g
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where ng and nR represent the number of points in g and R, respectively.
· represents l2 distance.
Then, for the discriminator D1, traditional conditional adversarial

(Mirza and Osindero, 2014) loss is employed. It is defined as follows:

=
+
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where x y, and c represent the sampled points corresponding to P R,
and L, respectively. Pd represents the joint distribution of the input data.

Fig. 5. Results of network with different structures. (a)(b) are the input point
cloud slices. (c)(d) are the results of network working in parametric space with
no guidance. (e)(f) are the results of previous work (Lin et al., 2017). (g)(h) are
the results of network working in point space with guidance. (i)(j) are the re-
sults of our approach working in parametric space with guidance. (k)(l) are th.e
ground truths.

Fig. 6. Precision-recall curves of previous work (Lin et al., 2017) and networks
with differen.t architectures.
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For the loss of discriminator D2, encouraged by the “triplet loss”,
three inputs g L R, , are fed into the discriminator, and the corre-
sponding output feature vectors are considered as anchors, positive
samples and negative samples, respectively. The aim of loss L D( )d2 2 is to
minimize the difference between the distance d g L( , ) and d g R( , ),
which can be formalized as follows:

=

+

L D d D G x c x c

D y d D G x c x c D c

( ) max (0, ( ( ( , )| , ),

( )) ( ( ( , )| , ), ( )))

d
y x c P R P L

2 2
, , ( , , )

1 2

2 2 2

d

(5)

On the one hand, for generator G, the aim of loss L G( )d2 , which is
opposite to L D( )d2 2 , is to maximize the difference between the distance
d g L( , ) and d g R( , ). Specifically, the loss is formalized as follows:

= +L G d D G x c x c

D y d D G x c x c D c

( ) max (0, ( ( ( , )| , ),

( )) ( ( ( , )| , ), ( )))

d
y x c P R P L

2
, , ( , , )

2 2

2 2 2

d

(6)

where d (·,·) represents the l2 distance. Both 1 and 2 are set at 1.
With the above designed losses, the overall objective of our network

can be written as follows:

= + + +G arg k L G k L G L G L Gmin[ ( ) ( ) ( ) ( )]
G

p l d d1 2 1 2 (7)

=D arg L Dmin ( )
D

d1 1 1
1 (8)

=D arg L Dmin ( )
D

d2 2 2
2 (9)

where, generator G is jointly trained by terms L G L G L G( ), ( ), ( )d d p1 2 and
L G( )l to generate the contours as close as possible to ground truth, R.
The discriminators D1 and D2 are trained by the terms L D( )d1 1 and
L D( )d2 2 respectively, to identify the output of the generator, g, thus
forming the adversarial process.

4. Results and analysis

4.1. Dataset and Implementation details

In our experiments, two sets of data were selected to comprehen-
sively evaluate our proposed approach. To our knowledge, there are
several outdoor large-scale 3D point cloud datasets for classification
and localization. However, no such dataset with contour annotation
information is publicly available. So we first create a dataset, with
considerate scale, for the large scale point cloud contour extraction.
Specifically, such a data set is consist of two parts.
The first part is acquired by our RIEGL VMX-450 MLS system (with

two full-view RIEGL VQ-450 laser scanners, and can produce 1.1 mil-
lion range measurements per second, capable to acquire nearly 100 GB
point clouds data in 1 h.) and RIEGL VZ-1000 TLS system (with the
accuracy of 8 mm, precision of 5 mm, scan range varies from 2.5 to
1000 m). Most of these data are collected in various regions in China,
and cover different scenes such as urban, town, village, etc. The other
part, is based on a public dataset semantic3D.net (Hackel et al., 2017),
which covers various urban scenes with a total of over four billion
points. For both of the dataset, we remove some objects which are
extremely incomplete or difficult to recognize the contours even for
human, such as the vegetation, pedestrians and hard scape like garden
walls, fountains, etc.
Different from previous work (Hackel et al., 2016), rather than di-

rectly labeling the points on contours, we label the contours with 3D
lines represented as parameters (as mentioned in Section 3.1). Such
annotations can not only simply generate contour points used in Hackel
et al. (2016) by sampling the points near the labeled contour lines, but
also provide parametric contour information. For both of the dataset,
we tend to label the objects with clear contour structure, such as
buildings, roads, cars, etc., and use several short lines to fit curved
contours. For the objects with slightly incomplete parts caused by oc-
clusion, we will complete the contour when labeling, otherwise, the
incomplete parts will be ignored. Fig. 3 shows the labeling process and
some of the examples. During contour labeling, we label the two end-
points of a fitted line segment, whose coordinates are concatenated as
the parametric label for this line segment(shown in the bottom right of
Fig. 3(a)). Fig. 3(b) shows the complete labeled contours with red lines
on the original point cloud. More samples can be viewed in Fig. 4.
The human labeled reference contours were created by eight op-

erators working for two months. The overall scale of the effective
training data is more than 1 TB. Here, we have already open-sourced
the results for the large scale point cloud semantic labeling data set 1,

Fig. 7. Comparisons to previous works. (a)(b) are the input point cloud slices.
(c)(d), (e)(f), (g)(h), (i)(j) are the results of Lin et al. (2017), Borges et al.
(2010), Lu et al. (2019) and our approach, respectively. (k)(l) are the .ground
truths..

1 http://www.semantic3d.net/.
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and can be downloaded from 2. For the rest of the data, we plan to open
it after approved by the national government.
In this work, TensorFlow framework is used to build the entire

network on a PC with one Titan X GPU. The training process is based on
Adam solver (Kingma and Ba, 2014); the learning rate is 0.001. The
weights of the networks are initialized from a Gaussian distribution
with mean, =µ 0 and standard deviation, = 0.02. The number of
training epochs is set at 300; the learning rate linearly decreases to zero.
The weights k1 and k2 are set at 1 and 0.2, respectively. By considering a
huge number of original points and the limited capability of the GPU,
the density of the input point cloud data is reduced first; the ratio de-
pends on the memory of the GPU and the number of points.
Using the two datasets, two groups of experiments were performed

to comprehensively evaluate the proposed approach. The purpose of the

first group of experiments is to evaluate how different parts of the losses
affect the extraction results. Then, using both of the datasets, we
compared our approach with several state-of-the-art approaches. We
present typical results, along with quantitative evaluations, to show the
performance of our proposed learning framework.

4.2. Analysis of the network structure

Evaluation. For the quantitative measurement, precision-recall
curves (Arbelaez et al., 2011) are employed to evaluate the perfor-
mance of various methods. Here, precision is defined as the probability
that a point on an extracted contour belongs to the ground truth; recall
is defined as the probability that a ground truth point lies on an ex-
tracted contour. Actually, the original input point cloud is binary la-
beled as contour or non-contour points. For each contour point, defined
by our generated result, we calculate the minimum distance to the
corresponding point in the ground truth, d g R( , )p . Then, a distance
threshold, t, is designated to determine whether a point lies on the
extracted contours; we draw the precision-recall curve as moving from
the minimum to maximum value of d g R( , )p . It is readily seen that high
precision means low false positives; whereas, high recall means low
false negatives. The ideal curve has both high precision and high recall,
as indicated by the larger area under the curve.
The solution space for a 3D case in a learning task is far more

complicated than for a 2D case. Also, the scale of points for an outdoor
scene could be huge (often more than 108 for a middle-sized building
acquired by RIEGL VMX-450 or VZ-1000 scanning systems), thereby
making it surprisingly difficult for the network to find a satisfactory

Fig. 8. Precision-recall curves of different methods for the point clouds in Fig. 7(a)(b).

Fig. 9. Comparison to previous work (Hackel et al., 2016). (a) is the result of Hackel et al. (2016). (b) is the result .of our approach.

Table 1
Computing time of Lin et al. (2017), Lu et al. (2019) and our approach on point
clouds of different scales.

Point cloud Number of
points

Running time(s)

Lin et al.
(2017)

Lu et al.
(2019)

3D-GMcGAN

Fig. 7(a) 40874 0.513 0.176 15.932
Fig. 7(b) 782197 8.756 3.425 273.3
Fig. 9 31179770 527.105 142.194 11055.103

2 ftp://182.61.174.17/contour_semantic3D/.
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approximation of the desired ground truth.
To address such a problem, we propose two ideas in this work to

help the network. (1) Manipulated spaces are simplified to parametric
spaces, thereby significantly compressing the potential solution spaces.
(2) A guided learning framework is proposed to introduce an initial
distribution to assist the network to find the satisfactory solution.
To evaluate the effectiveness of the two proposed schemes, in this

part, two groups of experiments are applied: (1) manipulate data in
point space. (2) use network without the guidance branch. Both of the
input point clouds, shown in Fig. 5(a)(b), are sliced data cut from the
large scale point cloud of the outdoor scene. For each slice, 696,196 and
275,435 points are involved. The results of directly working in para-
metric space, with no guidance, are shown in Fig. 5(c)(d). Here, the
network does not remember the distribution of training samples and
obtains bad results. Shown in Fig. 5(e)(f) are the results of previous
work (Lin et al., 2017), where chaotic line like features are detected and
some pseudo contours are apparent. With such results as a guide, the
point space manipulated results, where CD distance is employed to
measure the similarity of two point cloud models, are shown in Fig. 5(g)
(h). Because of the huge solution space, it is difficult to recognize the
contours from the large number of outliers. The results of our approach,
with the proposed guided learning framework in parametric space, are
shown in Fig. 5 (i)(j). This network denotes the contours consistent with
the human labeled ground truths, which are shown in Fig. 5(k)(l).
To study the contributions of the generator and discriminators in

our network, we conduct ablation experiments with different network
architecture: (1) network with only the generator G. (2) network with
the generator G and the discriminator D1. (3) network with the gen-
erator G and the discriminator D1 and D2. For all experiments, we
manipulate data in point space and use the network with guidance
branch. Fig. 6 shows the precision-recall curves of previous work (Lin
et al., 2017) and these three groups of experiments on test set. Com-
pared to previous work (Lin et al., 2017) (the red curve in Fig. 6), our
network with only the generator G (the blue curve in Fig. 6) has higher
precision and recall. The yellow curve and green curve show the result
of our network with G D, 1 and G D D, ,1 2 respectively. It is seen that
adding discriminator D2 can improve the performance of our network.

4.3. Comparisons with state-of-the-art approaches

To comprehensively evaluate our proposed approach, we compare it
to the latest methods (Lin et al., 2017; Borges et al., 2010; Hackel et al.,
2016; Lu et al., 2019). In the first group of results shown in Fig. 7,
previous feature based works (Lin et al., 2017; Borges et al., 2010; Lu
et al., 2019) are used for comparison. To better compare each method,
we incorporate a blue-to-red image (Lin et al., 2017) sequence to vi-
sualize contour extraction results. Various colors indicate the distance
from each point in an extracted contour to its nearest ground truth
point. Red represents the highest distance; blue represents the lowest.
The input point cloud slices are shown in Fig. 7(a)(b). The left cloud
slice is from the dataset of Hackel et al. (2016); the right one was ac-
quired by our VMX-450 systems. The results of Borges et al. (2010), Lin
et al. (2017), Lu et al. (2019) and our approach are shown in Fig. 7(c)
(d), (e)(f), (g)(h) and (i)(j), respectively. Ground truth is shown in
Fig. 7(k)(l). From Fig. 7(c)(d), it is seen that some salient contours are
missing from the results for Borges et al. (2010), thus leading to in-
complete extraction results. From Fig. 7(e)(f), it is seen that, due to the
line features defined as local plane intersections, there are visible
pseudo contours in the results for Lin et al. (2017). From Fig. 7(g)(h), it
is viewed that the results of previous work (Lu et al., 2019) are largely
relied on the 2D contour detection process, due to the 3D-2D projection.
So some of the contours may miss when the point cloud is sparse, as
shown in Fig. 7(g); or the results will be sensitive to the surface textures
when the point cloud is dense, due to the CannyLines detector. In
contrast, our approach (Fig. 7(i)(j)) provides contours consistent with
human labeled ground truth, while barely producing pseudo lines.

Then, corresponding precision-recall curves are shown in Fig. 8,
where the precision-recall curves of previous works (Lin et al., 2017;
Borges et al., 2010; Lu et al., 2019) and our approach for the two ex-
amples in Fig. 7(a)(b) are presented. It is seen that, for the previous
works (Borges et al., 2010; Lin et al., 2017; Lu et al., 2019), because of
incomplete extractionor or highly false extracted results, precision is
relatively low; whereas, most often, the results of our approach are
visibly better than those of the two competitors.
In the second group of results, the proposed 3D-GMcGAN is com-

pared with the latest large-scale point cloud contour detection approach
based on learning framework (Hackel et al., 2016). Because we did not
have labeled training samples, our network, showing an intuitive
comparison, was run on a typical large-scale point cloud in dataset
(Hackel et al., 2016). Shown in Fig. 9(a) are the results of Hackel et al.
(2016) with the marked contour points on the original data (For better
viewing, some patches are zoomed in.). The corresponding results of
our approach are shown in Fig. 9(b). Intuitively, we see that our results,
which are less sensitive to fine local structures, provide more explicit
contours. Actually, although both of the works are based on a learning
framework, the mechanisms are quite different: for the work of Hackel
et al. (2016), a simple classifier is first trained by some pre-defined local
features and applied to provide the likelihood of each point belonging
to the contour. Then optimal contours are generated by solving high
order MRFs. Our approach, which tends to conduct a deep neural net-
work based guided learning framework, provides a convenient solution
for contour detection of large-scale point clouds.
In terms of computational complexity, we show the computing time

of previous work (Lin et al., 2017; Lu et al., 2019) and our approach on
point clouds of different scales. Lin et al. (2017) and Lu et al. (2019) are
the feature based approaches without learning, while our approach is
based on a designed deep neural network that requires training on
GPUs. We use the source code for Lin et al. (2017), Lu et al. (2019)
provided by authors and conduct the experiment on a PC with Intel
Core i5-9400 2.9 GHz CPU and 16 GB RAM. Table 1 demonstrates the
statistic results of examples in Fig. 7(a)(b) and Fig. 9. From Table 1 it is
seen that feature based approaches(Lin et al., 2017; Lu et al., 2019) are
faster than learning based approach. However, when the computing
resources are sufficient, learning based method can provide results
more consistant with human perception, while without complicated
hyperparameter optimization.

5. Conclusion

In this paper, we proposed 3D guided multi-conditional GAN (3D-
GMcGAN), the first deep neural network based learning network for
large scale point cloud contour extraction. The contributions of this
paper rely on two aspects: (1) Both the training and testing processes
are designed to directly modify the parameters of the line-like struc-
tures via a novel similarity measurement of two parametric models.
Such a parametric space based learning framework significantly com-
presses the huge point data space, making it much easier for the net-
work to “remember” the target distribution. (2) To prevent network loss
in the huge solution space and convergence to some bad local extrema,
a guided learning framework was designed to assist finding the target
contour distribution via an extra guidance branch in the network.
Our approach is the first contour extraction framework for large

scale point clouds based on a deep neural network. Huge labeled
training samples are the major limitation of such a task. We have la-
beled our outdoor large scale point cloud data for various kinds of ci-
ties, towns or villages acquired by RIEGL VMX-450 MLS and VZ-1000
TLS systems and a widely employed public dataset Semantic3D. After
two months of labeling by eight professional operators, we obtained
about 1 TB of labeled data, and we have open-sourced the first dataset
based on Semantic3D with contour annotation information for large
scale point cloud. In the future, more labeled data is required, and we
still seek to have our data released.
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