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A B S T R A C T

Accurately sensing the global position and posture of vehicles in traffic surveillance videos is a challenging but
valuable issue for future intelligent transportation systems. Although in recent years, deep learning has brought
about major breakthroughs in the six degrees of freedom (6-DoF) pose estimation of objects from monocular
images, accurate estimation of the geographic 6-DoF poses of vehicles using images from traffic surveillance
cameras remains challenging. We present an architecture that computes continuous global 6-DoF poses
throughout joint 2D landmark estimation and 3D pose reconstruction. The architecture infers the 6-DoF pose of a
vehicle from the appearance of the image of the vehicle and 3D information. The architecture, which does not
rely on intrinsic camera parameters, can be applied to all surveillance cameras by a pre-trained model. Also, with
the help of 3D information from the point clouds and the 3D model itself, the architecture can predict landmarks
with few and/or blurred textures. Moreover, because of the lack of public training datasets, we release a large-
scale dataset, ADFSC, that contains 120 K groups of data with random viewing angles. Regarding both 2D and 3D
metrics, our architecture outperforms existing state-of-the-art algorithms in vehicle 6-DoF estimation.

1. Introduction

Precise localization is important in many endeavors, such as self-
driving cars, Mobile Mapping Systems (MMS), Advanced Driving
Assistance Systems (ADAS), and Augmented Reality (AR). The aim of
this work is on global 6-DoF vehicle pose estimation from dynamic
videos using static point clouds of traffic scenes, which has immediate
application for autonomous driving and Internet of Vehicles (IOV).
Existing localization systems can be classified into two types of

approaches: local and global. Local approaches sense dynamic traffic
environments using the perception of each vehicle itself. These ap-
proaches are convenient, but have two inherent limitations. First, the
drivers in the vehicles, or the sensors mounted on the vehicles, have
limited fields of view and can see only nearby vehicles from a parallel
perspective. Second, vehicles and objects in complicated traffic en-
vironments block each other, further restricting the vision of the dri-
vers/sensors. Global approaches estimate a scene through a birds view
of the entire scene and greatly avoid the aforementioned limitations in
the local approaches. However, such a birds eye view often must ori-
ginate from an on-site surveillance video of the existing traffic system.

But, these videos/images from built-in surveillance infrastructures do
not provide the coordinates of individual vehicles. Ideally, installing
LiDAR equipment on traffic poles and then combining that equipment
with regular cameras may provide a convenient solution for obtaining
6-DoF poses of vehicles. Unfortunately, in practice, LiDAR equipment is
very expensive. Also, to obtain the 6-DoF poses of vehicles, the col-
lected data must undergo a nontrivial multi-step pipeline (vehicle de-
tection to distance estimation to calculation of 3D coordinates to or-
ientation/location estimation). Hence, using LiDAR equipment at many
traffic intersections for vehicle pose estimation is prohibitive.
It is highly desirable to explore the effective estimation of global 6-

DoF poses of vehicles from available traffic surveillance cameras. The
critical issue, which remains a challenge in computer vision, is esti-
mating 6-DoF poses of multiple vehicles from a single RGB image.
Reasoning 3D poses from 2D landmarks is ill-posed in general. After
projection, the possible 3D poses consisting of 2d landmarks are infinite
(Tome et al., 2017). Also, from a single RGB image, it is impossible to
obtain the 3D yaw angle of a vehicle from its 2D heading, because the
2D heading relies not only on the 3D yaw angle, but also on the view
distance and view angle (Mousavian et al., 2017).
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Traditional image-based 3D reconstruction methods first detect 2D
semantic keypoints and then fit 3D keypoints to these 2D keypoints to
obtain the 6-DoF pose of a 3D object. These methods provide accurate
orientation, but the 3D coordinates of their outputs are relative with a
variable scale. Even with a broad assumption of ground surfaces, ac-
curacy in 3D positioning cannot be guaranteed. An example is shown in
Fig. 1. When the camera is at an angle of °30 to the ground, for a vertical
displacement of the vehicle of 1m, there is a horizontal displacement of
1.732m. When extracting the ground from images, the distance of the
ground from the camera depends on the intrinsic parameters of the
camera, regardless of the method used. With the same 2D-3D corre-
spondences, cameras with different focal length will produce different
estimates of the ground. In this work, we reconstruct a 3D dynamic
traffic environment for autonomous driving, which requires a true
spatiotemporal relationship to reconstruct an authentic traffic en-
vironment. To this end, we adopt 3D point clouds to model the ground
surface.
With remote sensing, especially Mobile Laser Scanning (MLS),

global static high-precision point clouds of a road can be obtained. Such
point clouds of traffic scenes, obtained by MLS or Terrestrial Laser
Scanner (TLS), can be registered to frames of a video captured from
traffic management. This geo-registered image can be used to tackle the
ill-posed problem of estimating the geographic location and 3D pose
from these video frames, i.e. 2D images. Therefore, unlike autonomous
driving systems that require real-time 3D point clouds in the driving
process, our proposed architecture requires only pre-scanned point
clouds of a scene to estimate the 6-DoF poses of vehicles within a video.
Consequently, running our system does not depend upon expensive 3D
sensing equipment.
In many existing CNN architectures, the 6-DoF pose of one (and only

one) camera from an intact image is regressed (Kendall and Cipolla,
2017; Kendall et al., 2015). The pre-trained network of these ap-
proaches is built implicitly on a fixed set of intrinsic parameters, which
limits accuracy when this pre-trained network is generalized to handle
images captured by different cameras. One example is illustrated in

Fig. 2. Except for the focal lengths, the two cameras have the same
extrinsic and intrinsic parameters. The focal length of camera 2 is half
the focal length of camera 1. Networks trained using images from
camera 1 may not effectively estimate images from camera 2. (More
results from practical experiments are shown in Table 1.) Therefore,
because it is impractical to train a new network for each traffic sur-
veillance camera, the generality of these approaches is limited. In
contrast, we propose a CNN architecture to directly estimate the global
6-DoF poses of multiple vehicles from a single image taken by a camera
with arbitrary intrinsic parameters.
To build a network that is independent of camera intrinsic para-

meters, landmark estimation networks, such as (Wei et al., 2016), can
be used to detect 2D landmarks of a vehicle first. Then, corresponding
3D landmarks in the point clouds can be obtained from 2D-3D (image
and point clouds) registration. Finally, the 6-DoF pose of the vehicle can
be determined by the corresponding 3D landmarks. The accuracy of this
approach relies only on the detection of landmarks by the local and
global features of vehicles, not camera positions or distances. However,
the main shortcoming of these existing landmark estimation networks is
their reliance on color and texture information. They do not detect
landmarks near regions with little texture or in images with blurred
textures. To overcome this limitation, we propose to use the geometric
information of the ground and 3D vehicle models to enhance the 2D
landmark prediction, making the prediction more robust against sha-
dows, illuminations, and texture variance.

Fig. 1. An example of the error due to incorrectly estimating ground surface.

Fig. 2. Evaluation of 6-DoF pose from cameras with different intrinsic parameters. (a) is an image in training data, which with a random background. (b) and (c)
come from different cameras used to test.

Table 1
The evaluate results by Kendall and Cipolla (2017) of image (b) and (c) in
Fig. 2.

Item Rotation Translation

Ground truth °45 °0 °0 0m −7.07m 7.07m
image (b) °47.33 °1.30 °1.95 0.26m −6.81m 7.37m
image (c) °49.82 °8.99 °8.25 −0.87m −9.90m 11.46m
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Based on the above observations, we propose a novel architecture to
perform full global 6-DoF pose estimation of multi-vehicles from an
image. By using landmark detection and 2D-3D registration techniques,
our predictions are insensitive to the internal parameters of the ac-
quisition camera. This system will then have desirable applications for
existing traffic surveillance systems. Our proposed CNN architecture
takes advantage of the joint estimation of both 2D and 3D landmark
locations. The architecture learns to combine 2D image appearance
based on landmark detection, 3D structure information of vehicle CAD
models, and ground geometry information provided by point clouds.
We compared the estimated poses, both in 2D and 3D, with the results
from the state-of-the-art 6-DoF estimation algorithms (Mousavian et al.,
2017; Kendall and Cipolla, 2017; Wei et al., 2016; Kendall et al., 2015;
Xiang et al., 2016), and found that our approach clearly outperforms all
these existing methods.
Another contribution of this work is building new datasets. Datasets

with registered pairs of point clouds and images and corresponding 2D-
3D landmarks are highly valuable for training pose estimation net-
works. To the best of our knowledge, no such datasets exist. We con-
struct a large-scale dataset, Autonomous Driving For Smart City
(ADFSC), and will release it publicly for comparative study.
The two main contributions of this paper are as follows: (1) Images

and point clouds are combined to create a new effective CNN archi-
tecture to estimate continuous global 6-DoF poses of multiple vehicles
from one image. This architecture for estimation outperforms existing
state-of-the-art architectures. (2) A large- scale dataset, ADFSC, that can
be used as training data and a benchmark for autonomous driving-re-
lated tasks, such as 6-DoF pose estimation, semantic segmentation, and
dynamic traffic environment reconstruction is presented.
The remainder of the paper is organized as follows: Related work for

both 6-DoF pose estimation and datasets with 2D-3D alignment is dis-
cussed in Section 2. Our architecture for Global 6-DoF pose estimation
is amplified in Section 3. Construction of the ADFSC dataset is pre-
sented in Section 4. Experimental results comparing our design with
existing state-of-the-art approaches are given in Section 5. Concluding
remarks are given in Section 6.

2. Related work

2.1. 6-DoF pose estimation

The 6-DoF pose estimation is a fundamental problem in the com-
puter vision field. We classify the methods to solve this problem into
three main categories: perspective-based, template-based, and Deep
Convolutional Neural Network (CNN) based.

Perspective-based methods. Perspective-based methods include
Perspective-n-Point (PnP) approaches and deformable model ap-
proaches. The PnP problem is to estimate the pose of a calibrated
camera from n 3D-to-2D corresponding keypoints. Both linear and non-
linear methods have been developed to solve PnP problems. Notable
linear methods include the following three: N-Point Linear (NPL)
method (Ansar and Daniilidis, 2003), Perspective-four-Point (P4P)
(Josephson and Byrod, 2009), and Perspective-three-Point (P3P) (Kneip
et al., 2011). Effective non-linear methods include the following five:
Efficient PnP (EPnP) (Lepetit et al., 2009), Direct Least Squares method
(DLS) (Hesch and Roumeliotis, 2011), Unified PnP (UPnP) (Penate-
Sanchez et al., 2013), Maximum Likelihood PnP (MLPnP) (Urban et al.,
2016), and Fast and Robust PnP (FRPnP) (Cao et al., 2018). The main
limitation of PnP based pose estimation is its sensitivity to the predic-
tion of keypoints, which can be imprecise when the background is
complicated, or there is occlusion. Furthermore, accurate PnP based
estimations rely on the availability of a good instance-specific 3D model
for each object being estimated. This limits the general applicability of
PnP estimation.
To address the above PnP problems, Miao et al. (2018) and Pavlakos

et al. (2017) extended 6-DoF pose estimation from an object to a class of

objects by combining deformable models with the camera model. When
some of the keypoints are missing or incorrectly detected, these ap-
proaches are more robust. Zia et al. (2015) augmented a deformable
model to explicitly include vertex-level occlusion and embedded all
instances in a common coordinate frame. However, the coordinates
they obtained are relative coordinates, and the application in this paper
requires 3D coordinates that can be measured in real traffic scenes.
Although great progress has been made with perspective-based
methods, these approaches rely on the camera imaging principle. Every
trained model, which works best for only a set of fixed intrinsic camera
parameters, does not generalize well when dealing with images taken
from various heterogeneous traffic surveillance cameras.

Template-based methods. Template-based approaches use either
holistic or partial templates to estimate poses. Holistic template-based
approaches compare an input image with a set of template images of
the object to find the 3D pose of the object (Hinterstoisser et al., 2012;
Cao et al., 2016). To construct this holistic template, different view-
points around a model object are used to generate different images.
Partial template-based approaches learn/extract features and use their
matching to vote for the pose of the object (Fidler et al., 2012; Xiang
et al., 2014; Tejani et al., 2018). Zia et al. (2013) designed a detailed 3D
geometric object class model for robust model-to-image matching.
Given object detection and Structure From Motion (SFM) point tracks,
Dhiman et al. (2016) presented a 3D model for occlusion-aware 3D
localization in road scenes. Hejrati and Ramanan (2012) presented an
approach to detect and analyze the 3D configuration of objects in real-
world images with heavy occlusion and clutter. Liebelt and Schmid
(2010) proposed a part-based appearance detection method, yielding
an approximate 3D pose estimation and an evaluation score for 3D
geometric consistent with 2D part detections. Li et al. (2011) proposed
a method of randomized subset-based matching to align a shape model.
Generally, template-based approaches often perform well for texture-
less objects and on scenes with occlusions. However, in this paper, we
are committed to applying algorithms directly to aid autonomous
driving. This application requires that all vehicles have a true size and
must be on the ground in the reconstructed traffic environment. Only in
this way can we calculate the spatiotemporal relationship between
vehicles. When dealing with images from different cameras, template-
based approaches that rely solely on images do not guarantee that the
predicted vehicle model will be on the ground.

Deep Convolutional Neural Network (CNN)-based methods.
CNN based estimations extract features that integrate both local and
global appearance information from an image. For example, Su et al.
(2015) use features extracted by AlexNet (Krizhevsky et al., 2012) to
classify camera rotation. Many approaches (Xiang et al., 2016; Tulsiani
and Malik, 2015), which use object detection results to regress camera
rotation, do not predict the translation of a camera. Using Szegedy et al.
(2015),Kendall et al. (2015) and Kendall and Cipolla (2017) proposed
an architecture for full camera 6-DoF pose regression from an intact
image. Li et al. (2017, 2018) employed a probabilistic framework to
formalize the notion of intermediate concepts, which, compared with
the standard end-to-end training, points to better generalization
through deep supervision. Tekin et al. (2018) proposed a CNN archi-
tecture single-shot 6D pose prediction that naturally extends the single
shot 2D object detection paradigm to 6D object detection. Assuming
known full-image camera intrinsics, Kundu et al. (2018) presented an
inverse-graphics framework to understand instance-level 3D scenes.
Leveraging the off-the-shelf 2D object detector, Li et al. (2019) and
Manhardt et al. (2019), in the case of knowing the intrinsic camera
parameters, proposed approaches to predict the 3D box of a vehicle by
the detected corresponding 2D box. Generally, CNN-based methods are
based on explicit or implicit use of intrinsic camera parameters. Their
predictions cannot be applied well to different traffic surveillance
cameras with unknown intrinsic camera parameters. Moreover, their
methods are based, not on the global coordinate system, but on the
local coordinate system of the camera. This makes the results of their
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algorithms incompatible with high-precision maps. The predicted re-
sults of different cameras cannot be combined, thereby further limiting
their practical value.
In the field of human pose estimation, Wei et al. (2016) implicitly

model long-range dependencies between variables in structured pre-
dictions. They take advantage of multi-stage Convolutional Pose Ma-
chines (CPM) that directly operate on belief maps from previous stages
to deal with vanishing gradients during training, producing increas-
ingly refined estimation results.
Tome et al. (2017) fuse probabilistic knowledge of 3D human poses

with CPM and use the knowledge of plausible 3D landmark locations to
refine the locations of 2D landmarks. These strategies, using geometric
features, can globally optimize the position of landmarks, and there-
fore, can enhance accuracy and predict the locations of texture-less
landmarks. Zamir et al. (2017) established a feedback-based approach
in an iterative manner, and achieved competent final results. Inspired
by the above two approaches, to directly obtain the global 6-DoF poses
of multiple vehicles in an image, we combine CPM with posture in-
formation provided by the ground point clouds and the geometric in-
formation provided by the vehicle model.

2.2. Datasets with 2D-3D registration

We reviewed three classes of datasets related to 2D-to-3D align-
ment: image-based, RGB-D image-based, and point clouds-based.

1) Image-based datasets are comprised of images of CAD models from
different viewpoints, such as ETH-80 (Leibe and Schiele, 2003),
EPFL Car (Ozuysal et al., 2009), ICARO (Lopez-Sastre et al., 2010),
IKEA (Lim et al., 2013), Microsoft coco (Lin et al., 2014), PASCAL3D
+ (Xiang et al., 2014), ShapeNet (Chang et al., 2015), CompCars
(Yang et al., 2015), ObjectNet3D (Xiang et al., 2016). These datasets
are annotated by a 2D bounding box of the objects, a 6-DoF camera
pose, intrinsic camera parameters, etc. They can be used to predict
the pose of a camera from an image. However, because they never
provide the 3D scene and 2D-3D corresponding landmarks and a 2D
pixels to the 3D coordinates mapping table, we cannot use them in
our network.

2) RGB-D image-based datasets, such as NYU Depth dataset (Silberman
et al., 2012), LabelMe3D (Russell and Torralba, 2009) and SUN
RGB-D (Song et al., 2015), provide images combined with 3D depth
information that make the 3D detection and pose estimation model
more powerful. The 3D depth coordinates in these datasets can be
converted to world coordinates. However, these datasets are limited
in scale and do not provide 2D-3D corresponding landmarks and 2D
pixels to the 3D coordinates mapping table. Thus, they do not meet
the needs of our network structure.

3) Point cloud-based datasets can provide a precise and wide range of
GPS position and geometric information. NYC3DCars (Matzen and
Snavely, 2013) is augmented with detailed geometric and geo-
graphic information. This dataset labels full camera poses derived
from the method of structure from motion, labels 3D vehicle an-
notations by manual operation, and obtains geographic information
by combining estimated viewpoints. However, this dataset,

containing only fewer than 3,000 photos annotated with 3D in-
formation and 567 K sparse points, is too small and not suitable as a
dataset for deep learning. Furthermore, this dataset does not provide
2D-3D corresponding landmarks and 2D pixels to a 3D coordinate
mapping table. KITTI (Geiger et al., 2012) provides ground point
clouds, from which partial mapping information between pixels and
3D coordinates can be obtained. Its scale is large enough for deep
learning. However, the point clouds in KITTI are acquired by the
Velodyne system, and the data is very sparse. The 3D landmarks we
used to generate 3D-2D corresponding landmarks cannot be ob-
tained. Besides, the vehicle-mounted camera has a limited per-
spective of images. The network trained by those images cannot
predict a birds-eye-view image.

In summary, to the best of our knowledge, there is no ready-made
public dataset available for this particular application, which recovers
the global 6-DoF poses of vehicles from traffic surveillance camera vi-
deos. Thus, we built a suitable dataset.

3. Global 6-DoF pose estimation

Our architecture (shown in Fig. 3) uses an image and pre-scanned
geo-registered point clouds of the scene as input and returns the global
6-DoF pose of the vehicle in an end-to-end manner. The network is
trained with a 2D loss that fuses multi-tasking, multi-stage, 2D and 3D
information. First, point clouds of the scene are registered to a frame
from the video to build the 2D-3D mapping. Second, every vehicle in a
video is detected and tracked by the off-the-shelf framework based on
pre-trained Single Shot Multibox Detection (SSD) (Liu et al., 2016) and
a Kalman filter. The image of the tracked vehicle is cropped as the input
of our network. Third, to estimate the vehicle 2D orientation in the
image, shared features extracted by the VGG network (Simonyan and
Zisserman, 2014) are used to classify the heading of the vehicle into
sixteen classes. Moreover, the shared features are used to retrieve the
3D vehicle model, proceed CPM stages and revise stages in the left
steps. The 2D orientation class is applied to both the retrieved 3D model
and revised stages. Fourth and the most important, the classified
heading, retrieved 3D model, estimated belief maps from the output of
the M CPM stages, and the 2D-3D mapping are used as input in our N
revised stages, and then, through the 2D-3D mapping, used as output in
the location of 3D landmarks and global 6-DoF pose of vehicles. Finally,
the sequence of the global 6-DoF poses of vehicles in different frames,
including trajectories, speeds, 3D orientations, and 3D positions, is
optimized (Hastie and Stuetzle, 1989) as the output in our architecture,
and that output is used to predict traffic accidents.
In summary, our network takes advantage of the stacked structure,

which consists of M CPM stages and N revised stages. To preclude an
overall network with many layers at the risk of vanishing gradients, by
enforcing intermediate supervision periodically through the network,
CPM replenishes gradients and guides the network to produce in-
creasingly accurate belief maps. Based on the results of CPM stages, we
add the supervision of ground information and the internal geometric
relationship of 3D landmarks into our revised stages to further optimize
belief maps.

Fig. 3. The architecture of global 6-DoF pose estimation.
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3.1. 2D-3D registration

In a real traffic scene, because correspondences are difficult to es-
tablish due to great noise in reflectance values, registering the point
clouds with the image is non-trivial. To ensure accuracy, one frame in
the video and scanned point clouds are registered together by manually
selecting corresponding points, such as the calibration in KITTI (Geiger
et al., 2012). Optimization is carried out by the method of Alternating
Direction Multipliers (ADMM) (Zhong and Kwok, 2013). After seg-
menting the ground and non-ground points by a voxel-based upward
growing method (Yu et al., 2015), by projecting the ground point
clouds to pixel coordinates using the calibrated camera parameters, an
incomplete 2D-3D mapping table is obtained.
In this incomplete 2D-3D mapping table, most of the pixels of

ground have corresponding 3D coordinates. Most of the ground pixels
have 3D points corresponding to them, but some pixels have no cor-
responding 3D points due to the lack of point clouds in some places or
low density of point clouds. To ensure that every pixel in the ground
area of an image has corresponding 3D coordinates, we present an in-
terpolation method to complete the 3D points for the pixels, which do
not have corresponding 3D coordinates. A 3D coordinate of a pixel is
inserted by the method of 2D-3D lifting introduced in Section 3.4.2. An
example of 2D-3D registration in a real traffic scene is shown in Fig. 4.
For modeling the road surface in an image, we adopt point clouds

captured by MLS/TLS sensors, which allows us to estimate the 6-DoF
pose of true dimensional 3D model that falls to the true ground. This
facilitates calculating the spatial relationship of the vehicle in autono-
mous driving. Point clouds have global coordinates. All predicted ve-
hicle 6-DoF pose has global coordinates, all predicted vehicle 6-DoF
poses from different cameras are in the global coordinate system.

3.2. Landmarks selection

To predict 2D landmarks, the architecture takes advantage of the
belief map, the intensity of which indicates the confidence that the
respective 2D landmark is located at this position. Five 2D landmarks
on the ground that can connect a static scene with dynamic vehicles are
selected to build the 2D-3D connection directly. The landmarks include

four wheels positioned on the ground (wheel landmarks) and the center
point of four wheels positioned on the ground (center landmark). These
five 2D landmarks in the image have corresponding 3D landmarks in
point clouds. These five landmarks, lying on the ground, annotated in a
3D model are shown in Fig. 5. The orientation of a vehicle is presented
in 2D with the two most confident landmarks among the four wheel
landmarks. The location of a vehicle is presented in the center 2D
landmark. The 3D coordinates of the center 2D landmark and wheel 2D
landmarks composed of 2D orientation are obtained by the 2D-3D
mapping table. Combining these 3D coordinates with the road point
cloud of the traffic environment, the 6-DoF pose of a vehicle can be
determined. Its coordinate system is consistent with the point clouds.
The two wheel 2D landmarks that make up the selected direction

and the center 2D landmarks are mapped into their 3D landmarks by
the 2D-3D mapping table. The three 3D landmarks are put into the
point clouds of the traffic environment. On the ground point cloud, the
location of the vehicle is determined by the center 3D landmark; the 3D
direction of the vehicle is determined by the wheel 3D landmarks.
Finally, we obtain the 6-DoF in the point clouds of the traffic en-
vironment.
The 3D model provides the spatial positional relationship of the

landmarks; the roll and pitch angle of the vehicle with the landmarks on
the ground can be inferred. Selecting landmarks in this way allows our
architecture to use geometric information from both simultaneously.
Unlike with the methods to estimate a camera 6-DoF pose, which re-
quires a complicated coordinate transformation to put the model into
the point clouds, the global 6-DoF of a vehicle can be obtained im-
mediately by the 2D-3D mapping table of pixel coordinates and global
3D point clouds.
A problem that merits discussion is whether it is necessary to regard

the center landmark on the ground as an additional landmark, because,
from the coordinates of the four wheel landmarks, the central location
can easily be inferred. Our reasoning is that, suffering from vehicle
internal occlusion, the landmarks of the four wheels cannot all be
predicted from belief maps, and their average prediction performances
are worse than that of the center landmark (See Table 5). Therefore, to
predict the center landmark directly is more effective.

Fig. 4. An example of 2D-3D registration for real traffic scene. In (b), the red circle is the placement of traffic surveillance camera. In (e), the green point is the
inserted point.
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3.3. Image-based 3D model retrieval

To reduce retrieval space, all of the images in a shape library are
classified by their 2D orientation. The retrieval space of an image is the
class of the heading nearest the image. For each CAD model, we furnish
images every °22.5 in the yaw angle interval ° °[0 , 360 ]. Consequently,
the shape library is split into sixteen classes. There are m vehicle CAD
models in the shape library. For each yaw angle class, a subset

= …S S S{ , , }m1 is built by furnishing images with white backgrounds for
each vehicle model, = …S s s{ , , }i i i,1 ,12 , every °15 in the roll angle interval

° °[30 , 75 ], and every °15 in the pitch angle interval ° °[ 15 , 15 ]. The
height from camera to the ground is set to 4.5 m. Thus, if we know the
heading of the query image, a total of twelve (four in the roll angle
interval [ ° °30 , 75 ] × three in the pitch angle interval [ ° °15 , 15 ]) are
retrieved.
By detecting and tracking vehicles from the video, a sequence of

cropped images for each vehicle and their angle classification are ob-
tained. For a vehicle, c images are sampled from the sequence of
cropped images, = …I II { , , }n1 , at intervals of t frames (here, we set

=t 45). For a sampled image, a CAD model is retrieved from the class of
shape library to which the heading of the model belongs. ObjectNet3D
(Xiang et al., 2016) provides a method for retrieving a 3D car model
from a 2D image from all of the image shapes. In our architecture, we
omit the retrieval space. The retrieved CAD model, i, of an image, I k, is
given as follows:

=
= =

i cos f I f smax ( ( ), ( ))
i k

n

j
k i j

1 1

12

,
(1)

where f ( ) represents the features extracted from the image. This
feature extraction network is the same as the network for extracting
shared features.

3.4. 2D landmark detection combined with 3D revision

We believe that more accurate results are obtained by adding, based
on CPM, geometric information about the model and the ground to
revise 2D landmarks during training. CPM iteratively refines landmark
locations with a combination of shared features extracted from an
image and the prediction of the previous stage. Using CPM as the
backbone, we propose the revised stages as shown in Fig. 6. In this
figure, the contents of the left hand side from top to bottom are: (a)
CNN networks for shared feature extraction, belief map predictions, and
coarse orientation estimation (2D orientation classification). (b) Lift the
predicted 2D landmarks into 3D to obtain the 6-DoF pose of the vehicle
with the retrieved CAD model. Then project the 3D landmarks onto the
image as revised 2D landmarks. (c) Fuse the belief maps generated from
the revised 2D landmarks and the predicted belief maps as the output of
one stage. These fused belief maps and the shared features are treated
as the input of the next stage.
As discussed in the following sections, each revised stage can be

divided into three parts: 2D landmarks estimation, 3D revision opera-
tion, belief map fusion.

3.4.1. 2D landmarks detection
First, using the CPM stages, we predict the belief maps using crop

images as the input. In each stage of CPM except the first, the share
feature of image concatenates the features of the belief maps together to
predict the belief maps, and output the belief maps to the next stage.
Belief map, b u v[ , ]t

p , at the stage, t and for a landmark, p, represents the
degree of confidence that the landmark occurs in any given pixel, u v( , ).
We transform the belief maps into location Lp simply as follows:

=L b u vargmax [ , ]p
u v

t
p

, (2)

To revise the predicted landmarks and achieve better performance,
the 2D orientation of the vehicle must be calculated. However, ac-
cording to the ordered landmarks, orientation can be obtained directly
from the belief maps. For example, from belief maps of the left rear
wheel b u v[ , ]t

lr and left front wheel b u v[ , ]t
lf , the locations of the left rear

wheel, Llr , and the left front wheel, Llf , are known. In this paper, the
orientation is denoted by a vector. Thus, the 2D orientation is
L L( )lf lr . However, unfortunately, due to the symmetry of the wheels,
the results of CNN may not conform to this order restriction, and belief
map b u v[ , ]t

p may correspond to wheel q where p q.
To overcome this problem, we propose a mini classification network

to make coarse 2D orientation estimations. The feature used for clas-
sification is the shared feature for belief map prediction in CPM. For a
coarse orientation estimate, we divide 360 degrees into sixteen classes
where each class represents an interval. A mini network contains one
Spatial Pyramid Pooling (SPP) (He et al., 2015) layer and two fully
connected layers. SPP combines the features of multi-scales and gen-
erates fixed-length feature representation. Using this representation,
which has multi receptive fields, our classification network converges
rapidly and performs better on the 2D orientation classification.
Combining the detected belief maps, the 2D orientation classifica-

tion and the 2D-3D mapping table in each stage, the 2D pose of a ve-
hicle in the image is obtained. Given any two wheels and the center
from the belief maps, there are two possible orientations: the direction
between the two wheels and the direction between their midpoints and
the center, because it is not known if the two wheels are on the same
side. These two directions are orthogonal. If one of the directions falls
within the angle interval calculated in the 2D orientation classification,
this direction is selected as the 2D orientation. The 2D location of the
vehicle is determined by the center landmark. We obtain the 2D pose of
a vehicle in the image.

3.4.2. 3D Revision
By lifting the predicted 2D landmarks to 3D, the 3D landmarks may

contain existing predicted errors and may not meet geometric con-
straints, such as four wheel 3D landmarks that compose a fixed scale
rectangle. The center 3D landmark is the center of the four 3D wheel
landmarks. Tome et al. (2017) proved that plausible 3D landmark lo-
cations can refine the locations of 2D landmarks in human pose esti-
mation. We adopt a similar strategy to further refine the predicted re-
sult. Our 3D revision stages use ground and model geometry
information to revise the output of the belief maps from the previous
stage and return revised belief maps. The process is divided into two

Fig. 5. An example of landmarks selection. The red points in the figure are the selected landmarks.
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parts: 2D-3D lifting and 3D-2D projection.
2D-3D lifting. In the previous stages, a predicted 2D pose of a ve-

hicle was obtained. The 2D-3D lifting operation lifts the 2D pose of a
vehicle to its 6-DoF pose in the point cloud traffic environment and
obtains plausible 3D landmarks after posing its 3D model in point
clouds.
In theory, given the 2D pose of a vehicle, the corresponding 3D

center and 3D orientation can be obtained from the 2D-3D mapping
table. However, in fact, there are two obstacles to this approach.
Because the 2D-3D mapping table is quite large, continuously searching
the 2D-3D mapping table for every training data in every revision stage
will greatly reduce the speed. Besides, the cropped image, after de-
tecting and tracking and as the input to our architecture, must be re-
sized to a fixed size, which leads to a change in the correspondence
relationship between 2D pixel and 3D point coordinates.
To solve the above problems, the 3D coordinates of the four corners

of the cropped image, the center of the original image (principal point),
and the position of camera are stored with the cropped vehicle image.
Given the following, the problem can be expressed mathematically: (1)
a pixel coordinate, u v( , ), the height, h, and width, w, 3D coordinates of
four corners, of the cropped image; (2) the position, pc, of the camera;
(3) the 3D coordinate of the center of the original image (principal
point), pp. The 3D coordinates of the left upper corner, right upper
corner, left lower corner, right lower corner are p p p p, , ,ul ur dl dr , re-
spectively. The question becomes how to find the corresponding 3D
coordinate, p, of pixel coordinate u v( , ). A geometrical representation of
this problem is given in Fig. 7. Table 2 summarizes inputs and outputs
for 2D-3D lifting.
Solution of the lifting problem. In Fig. 7, in addition to known

points, the points, p p,u d, have the same U coordinate, u, with the point,
p, in the image coordinate system. According to the imaging principle of
cameras, a plane that passes through pp and is vertical to the vector
between pc and pp, is parallel to the actual imaging plane of the camera.
This plane is seen as an imaging plane, because it has the same function
as the actual imaging plane. The rays from pc to
p p p p p p p, , , , , ,ul u ur dl d dr , intersect the imaging plane at pul, pu, pur , p′,
pdl, pd, pdr , respectively. Among the intersections, the four corners, pul,
pur , pdl, pdr , are computed by the intersections between the lines and the
imaging plane. Because the cropped image is a square, the quad-
rilateral, pul pur pdr pdl, is a square. In square, pul pur pdr pdl, the pixels in the
cropped image are evenly distributed. The horizontal and vertical pixel
distances of a pixel to pixel, (0, 0), in the cropped image are propor-
tional to the horizontal and vertical 3D distances of the corresponding

3D point to point, pul. Therefore, the 3D coordinates of pu, pd, and p′ are
computed as follows:

=
+
+
+

p
p
p

p p p u w
p p p u w
p p p v h

( ) ( 1)/( 1)
( ) ( 1)/( 1)
( ) ( 1) ( 1)

u

d

ul ur ul

dl dr dl

u d u (3)

The 3D coordinate, p, of the pixel u v( , ) is obtained by computing
the intersection between ray, pcp′, and the ground plane determined by
points, p p p p p p p, , , , , ,ul u ur dl d dr .
Using the above method, the three landmarks that compose the 2D

pose are lifted to their corresponding 3D coordinates. The 3D position
and orientation of a vehicle on the ground are obtained. Note that the
3D model of the vehicle is retrieved, and the five 3D landmarks in the
model are rotated by quaternion rotation (Vicci, 2001), and then
translated into the 3D position. Plausible 3D landmarks of an input
image are obtained. The next step is to project those five plausible 3D
landmarks onto 2D pixel coordinates.

3D-2D projection. 3D-2D projection is used to project the plausible
3D landmarks onto corresponding 2D landmarks, called plausible 2D
landmarks. To maintain the independence of the intrinsic camera
parameters, we do not project the 3D coordinates of the revised land-
marks onto 2D pixel coordinates by intrinsic and extrinsic camera
parameters. As with 2D-3D lifting, we solve this problem geometrically.
Based on the meaning of the symbols in 2D-3D lifting (Fig. 7), the

3D-2D projection, expressed mathematically, is as follows: Given a 3D
coordinate, p, how can the pixel coordinate, u v( , ), of p be obtained?
Table 3 summarizes inputs and outputs for 3D-2D projection.
Solution of the projection problem. The coordinates of p′ are ob-

tained by calculating where line, p pc , intersects the imaging plane, pul
pur pdr pdl. The quadrilateral, pul pur pdr pdl, is a square. The distance com-
puted from point, p′, to line, p pul dl, is designated as du. The distance
computed from point, p′, to line, pul pur , is designated as dv. According to
the principle of camera imaging, u v( , ) is calculated as follows:

=
+
+

u
v

d w p p
d h p p

( 1)/| | 0.5
( 1)/| | 0.5

u ul ur

v ul dl (4)

Shown in Fig. 8 is the performance of the belief maps of CPM and
the belief maps of 3D revised by our method. CPM results are in the first
row. Our 3D revision results are in the second row. The white point is
the ground truth of a landmark. Red indicates the probability of a
landmark at a position. The darker the red, the higher the credibility.
From this figure, it is seen that, if a landmark is mis-detected by CPM,

Fig. 6. The illustration of revision stages.
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our revision completes it; if there is a large error in predicting the po-
sition of a landmark, our revision corrects it.

3.4.3. Belief map fusion
Given 2D revised landmarks projected from the 3D space, we in-

itialize a belief map where the value of a pixel is “one” at the landmark
position and “zero” at other positions. Then, the pixels are convolved to
form an initial belief map, upon which a revised belief map is generated
using Gaussian filters.
The output of one stage is the fusion between the belief maps pre-

dicted by the CNN-based model bt
p and the revised belief maps bt

p
ac-

cording to the following equation (Tome et al., 2017):

= +f w b w b_ (1 _ ) ,t
p

t t
p

t t
p

(5)

where w_t is the weight to control the degree of revision. If w_t is too
small, it is difficult for the whole architecture to converge and offer
precise results. In contrast, if w_t is too large, the revision is rendered
meaningless. To achieve a balance, w_t is set to be a trainable variable.
The fused belief maps, integrated with the shared features, are

passed on to the next stage. For the last stage, we output the Global 6-
DoF pose in the approach introduced in 2D-3D lifting.

3.5. The loss function

The loss function, ct , minimized at each stage, is the l2 distance

Fig. 7. Diagram to illustrate the 3D geometrical relation in revision.

Table 2
Notation of inputs and outputs for 2D-3D lifting.

2D-3D lifting Symbol Description

Input u v( , ) A 2D landmark
h Height of the cropped image
w Width of the cropped image
p p p p, , ,ul ur dl dr Four corners of the cropped image
pc Camera position
pp Principal point

Output p The corresponding 3D landmark

Table 3
Notation of inputs and outputs for 3D-2D projection.

3D-2D projection Symbol Description

Input p A 3D landmark
h Height of the cropped image
w Width of the cropped image
p p p p, , ,ul ur dl dr Four corners of the cropped image
pc Camera position
pp Principal point

Output u v( , ) The corresponding 2D landmark

Fig. 8. Performance of the belief maps of CPM and the belief maps of 3D revised by our method.
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between fusion belief maps, ft
p, and ground truth belief maps, b p. The

loss function at stage t (the same as that of Wei et al. (2016)) is as
follows:

=
=

c f z b z( ) ( )t
p z Z

t
p p

1

6

2
2

(6)

where z is a pixel coordinate in the belief map of a landmark, Z is a set
includes the coordinates of all pixels. There are a total of six trust maps,
five of which are used to represent landmark positions and one to re-
present background information.
For end-to-end training, the total loss is the sum over the loss of all

stages. For the architecture of T stages, the total loss function is given as
follows:

=
=

C c
t

T

t
1 (7)

4. Constructing ADFSC dataset

In traffic scenes, a camera is mounted fixed to a shelf, and the ve-
hicles move in different positions on the ground. Because of symmetry,
keeping the vehicles still, we can obtain the same image by taking
images with cameras around the vehicles. Using the camera model in
Fig. 10, we built a dataset to simulate real traffic scenarios.
In the ADFSC dataset, a total of 120,796 groups of data are gener-

ated at present. Each group of data includes an image, 2D and 3D
landmarks, 2D and 3D bounding box, 2D-3D mapping table, intrinsic
and extrinsic camera parameters, pixel labels to distinguish among cars
and shadows and backgrounds. Fig. 9 shows some examples from the
ADFSC dataset. In this figure, the 3D models and their 3D landmarks
(red points) are shown in the first row. The second row shows the
corresponding rendered images and 2D bounding boxes of 3D models in
the first row. We add shadow and random background for each image.
The third row shows the corresponding semantic annotations for ve-
hicle, shadow, and background for images in the second row. The last
row shows the corresponding generated point clouds of the ground, and
the 3D bounding box of the vehicles. The ADFSC dataset is built in the
following steps: 3D CAD model acquisition and 3D landmarks detec-
tion, 2D image rendering and 2D landmarks annotation, 2D-3D regis-
tration generation.

4.1. 3D shape acquisition and 3D landmarks detection

The 3D vehicle models we used are from ShapeNet (Savva et al.,
2015). We obtained 3D landmarks and 3D bounding boxes through the
following steps: First, the size of the model in ShapeNet is not the real

size; therefore, we searched the Internet for the real length for each
model and then zoomed in the size of the model based on the ratio of
the real and model lengths. Second, we rotated and translated a vehicle
model in ShapeNet to place each model at the origin in the xoy plane
and the heading direction parallel to the x-axis. Third, in two simple
steps, we located four wheel landmarks, found the points with the
smallest z coordinate, and selected the wheel point with the largest
absolute x coordinate in each quadrant. Finally, traversing the vertexes
of the model, we calculated the 3D bounding box of the model.

4.2. 2D image rendering and 2D landmarks annotation

We propose a new automatic tool that provides all kinds of vehicle
models from any perspective and view distance and simultaneously
generates annotation of 2D landmarks. This tool, with a light source of
random position and intensity, simulates illumination from the sun to
produce vehicle shadows that avoid affecting the network. With this
tool, rendered images, intrinsic and extrinsic camera parameters, 2D
landmarks projected by 3D landmarks, 2D bounding boxes, and pixel
categories are generated in the following ranges for azimuth/yaw,
elevation/roll, and in-plane rotation/pitch angles:
° ° ° ° ° °0 ~360 , 10 ~85 , 30 ~30 , respectively.
The camera model used in the tool is shown in Fig. 10. To minimize

the gap between rendered and real test images, using the tracing al-
gorithm (Cook et al., 1984), we added shadow to vehicles and added
backgrounds to rendered images as did Su et al. (2015).

4.3. Generating 2D-3D registration

The steps used to simulate real traffic scenes in 2D-3D registration
are as follows: In the xoy plane, with the origin as the center and one
hundred meters as the side length, a uniform point distribution was
used to generate a square point cloud. The distance between the points
in the generated point cloud is one cm. Our tool automatically

Fig. 9. The data in ADFSC dataset.

Fig. 10. The camera model of rendering images. X Y Z, ,c c c are axes of the
camera coordinate system. X Y Z, ,w w w are axes of the world coordinate system.
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generates these point clouds and projects those points onto the rendered
image by camera imaging principle to build the 2D-3D mapping table.
Projection is followed by interpolation to complete the point cloud for
the pixel that has no corresponding 3D coordinate. The interpolation
algorithm is the same as 2D-3D lifting.

5. Experimental results

In this section, we first describe how to train our architecture. Then
we compare our architecture with the state-of-the-art. Finally, we dis-
play performance and an analysis of the runtime of our architecture.

5.1. Training details

To hasten the prediction of landmarks, the number of feature maps
in each layer is half that of the corresponding maps in the original CPM
network. Before training our revised stages in an end-to-end manner,
we independently pre-trained the stages of the CPM network on our
dataset. Then, we restored the parameters in our architecture. To in-
crease global contrast and lead to a better view of vehicles in an image,
we resized each input image to ×384 384, converted them to grayscale
images, and processed them using a histogram equalization method.
For predicting real traffic images, Adaptive Batch Normalization (ABN)
(Li et al., 2018) replaces the mean and variance of the BN layer learned
in the training set to diminish domain shift.
The number of CPM stages and revised stages are determined by

experiments. We selected at random 30,000 training images and 6,000
validation images from our ADFSC dataset and compared the perfor-
mance across different combinations between the CPM stages and re-
vision stages (See Table 4). Four metrics are used for evaluation: 2D
location error of center (pixel), 2D location error of wheels (pixels), 3D
orientation error (degree), and 3D Intersection over Union (IoU). Lo-
cation error is measured by l2 distance on image and point clouds.
When calculating 3D IoU, for simplicity, we consider only the surface
on the road plane of the 3D bounding box. As shown in Table 4, =M 4
and =N 2 have the best results for 2D wheels location and 3D or-
ientation; =M 6 and =N 3 have the best results for 2D central location
and 3D IoU. Because 3D IoU is superior in autonomous driving, we
finally selected =M 6 and =N 3 for comparison with the state-of-the-
art methods.

5.2. Comparison with state-of-the-art

We compared our architecture with the following five state-of-the-
art methods: CPM (Wei et al., 2016), objectNet3D (Xiang et al., 2016),
PoseNet1 (Kendall et al., 2015), PoseNet2 (Kendall and Cipolla, 2017),
3D-Deepbox (Mousavian et al., 2017) based on deep learning to esti-
mate 6-DoF poses. Among them, the following three were used to es-
timate the 6-DoF poses of the camera: objectNet3D (Xiang et al., 2016),
PoseNet1 (Kendall et al., 2015), PoseNet2 (Kendall and Cipolla, 2017).
For a fixed vehicle 3D 6-DoF pose, different intrinsic parameters of the
cameras produce different images, which, conversely, leads to different
6-DoF poses of the camera. Therefore, these methods are affected by the
intrinsic parameters of the camera, but our method is not. To verify the
effects the intrinsic parameters have on different methods, we divided
the experiment into two parts: comparisons under the same camera

intrinsic parameters and comparisons under different camera intrinsic
parameters. In a comparison, if a method does not estimate the full pose
of a vehicle, we use ground truth data to replace the missing value.
For comparison, through a series of operations, the 6-DoF pose of

the camera is transferred to the global 6-DoF pose of the vehicle. The
four steps in these operations (Fig. 11) are as follows: (1) Transform the
3D landmarks of the 3D model to camera 1 coordinate space by the
estimated 6-DoF of the camera. (2) Align the 6-DoF pose of Camera 1
with the 6-DoF pose of Camera 2 in the real scene to transform the 3D
landmarks from Camera 1 space to Camera 2 space. (3) Transform the
3D landmarks in Camera 2 space to the global coordinate system with
the 6-DoF pose of Camera 2. After this operation, the vehicle may be off
the ground because of the deviation of the estimated 6-DoF of Camera
1. (4) Project the 3D landmarks onto the global coordinate system to the
ground by the Camera 2 position and point clouds of the ground.
Because the methods PoseNet1 (Kendall et al., 2015), PoseNet2

(Kendall and Cipolla, 2017) require integral images for training and
evaluation, we randomly generated 36,000 images (30,000 for training;
6,000 for evaluating) with sizes of ×384 384 related to 602 vehicle
models with the same intrinsic parameters for the experiment under the
same camera intrinsic parameters. Moreover, we generated another
6,000 evaluation images, with changed intrinsic camera parameters,
from among the same car models, for experiment under different
camera intrinsic parameters. Specifically, the camera focus was
changed from ( , )x y to ( 1.1, 1.1)x y , and the principal point was
changed from u v( , )0 0 to + +u v( 10, 10)0 0 .
We compared the performance of the pre-trained networks with that

of competitors by evaluating data that have the same intrinsic camera
parameters as the training data. Fig. 12 shows the 2D and 3D com-
parison results at different tolerances. As seen in Fig. 12a and b, our
architecture achieves performance comparable to that of state-of-the-
art methods for detecting the 2D landmarks of center and wheel of
vehicles. For wheels with a tolerance distance of two pixels, our method
scores 92.84%, which is 7.27% higher than that of the closest compe-
titor. As Fig. 12c and d shows, our approach outperforms all other
methods under both 3D orientation and 3D-IoU metrics, proving that
our 3D revision also benefits the 3D pose estimation. This result shows
that our 3D revision, by combining appearance and geometric proper-
ties, effectively improves both the prediction of 2D landmarks and 3D
pose estimation.
The average results with the evaluation set (See Table 5) show more

vividly the improvement of our architecture. Under all four metrics, our
method outperforms all other competitors.
We compare the performance of the pre-trained networks with that

of competitors by evaluating data that have different intrinsic camera
parameters as the training data. As shown in Fig. 13, intrinsic camera
parameters greatly affect the methods that estimate directly the 6-DoF
poses (objectNet3D, PoseNet1, and PoseNet2). Our methods and CPM
are independent of those parameters. Again, our architecture achieves
the best performance under all four metrics.

5.3. Performance display and runtime analysis

Performance display. The estimated results on 2D landmarks and a
practical application in a real traffic environment are displayed.
Fig. 14 shows the comparison of our method against competitors

Table 4
Performance comparison with different CPM stages and revision stages.

M 4 4 4 5 5 6 6 6
N 2 3 4 3 4 2 3 4

2D center 0.8355 0.8301 0.8594 0.8440 0.8781 0.8269 0.7741 0.8871
2D wheels 1.0720 1.1178 1.1354 1.1089 1.1284 1.1634 1.1359 1.2251
3D orientation 3.9952 4.4334 4.5349 4.0653 4.4175 4.7712 4.7662 5.1484
3D IoU 0.8170 0.8160 0.8137 0.8175 0.8144 0.8112 0.8209 0.8089
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with identical intrinsic camera parameters. As the comparison shows,
among the generated images, our method achieves the best results.
Another performance of our architecture in detecting 2D landmarks is
shown in Fig. 15. In this figure, the first row is the estimated 2D
landmarks on ADFSC dataset. The last row is the estimated 2D land-
marks on a real video. The circle is the estimated landmarks. The yellow
arrow is the vehicle heading. It turns out that our architecture, trained
with the ADFSC dataset, can effectively estimate the 6-DoF poses of
vehicles in a real scene. Furthermore, our architecture has definite ro-
bustness to change shadows and resolutions.
Given a frame captured by a traffic surveillance camera, every ve-

hicle in the frame is detected by pre-trained Single Shot Multibox
Detection (SSD) (Huang et al., 2017) and tracked by Kalman filter. To
ensure that the aspect ratio of a vehicle remains constant, an image is
cropped (i.e. the aspect ratio is maintained) if the tracked bounding box
is larger than 80 × 80 pixels and resized to 384 × 384. This image is the
input for our architecture and the architecture outputs 6-DoF pose of
the vehicle. To further improve accuracy, a principal curvature opti-
mization algorithm (Hastie and Stuetzle, 1989) is used to optimize the
6-DoF pose of the vehicle within 30 frames by using the inter-frame

relationship of the video. Examples are shown in Fig. 16, where, given a
video from a traffic surveillance camera and the static point clouds of
the traffic environment, the 6-DoF pose for every vehicle in each frame
is estimated and the 3D scene reconstructed. Fig. 16a shows the esti-
mated results of a frame. The estimated results of the positional re-
lationship, historical trajectory, vehicle driving speed, and traffic ac-
cident prediction are marked, respectively, with yellow 3D bounding
boxes, cyan lines, green lines, fuchsia lines, and two red colliding

Fig. 11. The transformation from camera 6-DoF pose to global vehicle 6-DoF pose.

Fig. 12. The comparison against competitors under correct camera intrinsic parameters.

Table 5
The average performance comparisons against competitors under the same
camera intrinsic parameters.

Methods Center (pixel) Wheels (pixel) 3D orientation (°) 3D IoU (%)

Ours 0.7741 1.1359 4.7662 82.09
CPM 0.9238 1.8349 7.5393 80.58

PoseNet1 1.4632 2.3964 5.6238 74.59
PoseNet2 1.0865 2.1752 7.7169 78.61
ObjectNet3D 2.2061 4.8364 18.5911 62.41
3D-Deepbox – – 8.0749 73.52
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rectangles. Fig. 16b shows the 3D scene of the frame (colored point
clouds) reconstructed from Fig. 16a; the camera is highlighted at the
bottom in an orange ellipse. Fig. 16c shows an accident predicted from
Fig. 16a that happened in a future frame. Fig. 16d shows retrieved 3D
vehicle models, which, in Fig. 16e, are then overlaid on the frame using
estimated poses.
Given a frame in KITTI captured by the autonomous driving

platform Annieway, we first fit the ground of its point clouds with a
plane and sample the dense points on this plane. (The error depends on
whether the ground is flat.) Then, using the provided transform matrix
of KITTI, the sampled points are projected onto the corresponding
image to obtain a 2D-3D mapping table. Because the traffic surveillance
camera looks down upon the vehicle, the KITTI camera is almost par-
allel to the vehicle. Therefore, it is easier to see the contact point

Fig. 13. The comparison against competitors under different camera intrinsic parameters.

Fig. 14. The performance comparisons against competitors in the image under the same camera intrinsic parameters.
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between the wheels and the ground in the KITTI data than it is in the
traffic surveillance camera data. Also, there is a greater possibility of
occlusion by other vehicles. For vehicles that are not occluded, our
algorithm runs in the KITTI dataset to estimate vehicle poses more
easily than in traffic surveillance camera datasets. We do not consider
occluded vehicles in this paper. The performance of our algorithm on a
frame without occlusion in KITTI is shown in Fig. 17. As seen in this
figure, our algorithm performs well when the vehicles are on flat
ground and there is no occlusion. The average orientation error and 3D
IoU are 1.48°, 79.59% respectively. The gray points in Fig. 17c are the
fitted ground.

Runtime analysis. For an application of autonomous driving or
IoV, the 2D-3D mapping table and the shape library can be written into
the hardware in advance. Furthermore, because of the similarity in the
appearance and size of the vehicles, it is unnecessary to add every car to
the library. Here, we chose only 602 vehicle models to generate the
shape library. When analyzing the runtime of our method, we collected
videos with a varying number of vehicles. The frame size was 1088 ×
1920, and the runtime analysis was performed on a desktop with one
NVIDIA GeForce GTX-1080 TI550 GPU. The runtime was split into two
parts: detection/tracking and 6-DoF pose estimation. For each vehicle
in a frame, detection and tracking took 55ms; whereas, 6-DoF pose
estimation took an average of 44ms. Because the runtime of the 6-DoF
pose estimation in every frame increases linearly with the number of

vehicles, our method achieves a speed of 4 fps with 5 vehicles.
If we sacrifice some accuracy, we can hastenthe pose estimation

network. We resize each input image from 384 × 384 to 96 × 96, re-
place the convolution block in the feature extraction part (Fig. 6) with
split-shuffle-non-bottleneck (SS-nbt) (Ma et al., 2018), and reduce the
CPM stages and revision stages to 2 and 2, respectively. The perfor-
mance of lightweight architecture with different stages is shown in
Table 6. The speed of 6-DoF pose estimation for one vehicle is ac-
celerated from 44ms to 8.57ms. The average value of the 3D IoU
metric is reduced to 77.84%. Finally, with five vehicles, our method
achieves a speed of 10 fps.

6. Conclusions

Dynamic 3D reconstruction of traffic on road is a challenging but
valuable task in smart transportation and autonomous driving. In this
work, we proposed a near real-time architecture to estimate the global
6-DoF poses of multiple vehicles in a frame from a traffic surveillance
camera with support from static 3D laser scanning point cloud of the
same scene. This architecture, independent of the intrinsic and extrinsic
parameters of the camera, benefits on 3D geometric information to
refine results. Moreover, we contributed a dataset used for 6-DoF pose
estimation, segmentation, classification, dynamic traffic accident 3D
reconstruction, etc.

Fig. 15. The performance of our architecture in detecting 2D landmarks.

Fig. 16. The performance of our architecture used in an actual traffic environment.
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