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Abstract— Extracting the power lines and pylons automatically
and accurately from airborne LiDAR data is a critical step
in inspecting the routine power line, especially in the remote
mountainous areas. However, challenges arise in using existing
methods to extract the targets from large scenarios of remote
mountainous areas since the terrain is undulating, and the fea-
tures are difficult to distinguish. In this article, to overcome these
challenges, we propose a graph convolutional network (GCN)-
based method to extract power lines and pylons from Airborne
LiDAR point clouds. First, data augmentation and near-ground
filtering methods are developed to overcome the problems of
insufficient and imbalanced samples in the LiDAR data. Then,
a GCN-based framework is proposed to extract the power
lines and pylons, which consist of two main modules, i.e., the
neighborhood dimension information (NDI) module and the
neighborhood geometry information aggregation (NGIA) module.
These two modules are designed to strengthen the model’s
ability to portray local geometric details. Besides, an attention
fusion module is investigated to further improve the NDI and
NGIA features. Finally, a line structure constraint algorithm is
proposed to identify individual power lines, where the power
corridor is reconstructed using a polynomial-based algorithm.
Numerical experiments are conducted based on two different
power line scenarios acquired in mountainous areas. The results
demonstrate the superior performances of the proposed method
over several existing algorithms, where the F1 score and quality
of the power line are 99.3% and 98.6%, and the results of the
pylon are 96% and 92.4%, respectively. The identification rate
of power line identification is above 98%.

Index Terms— Airborne LiDAR, graph convolutional network
(GCN), neighborhood information, power line extraction, pylon
extraction.
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I. INTRODUCTION

ELECTRICITY plays an indispensable role in social pro-
duction, and a large number of transmission lines have

been built to meet the civil and industrial needs [1]. Since
power grids are interconnected, blackouts in a local region
can trigger a cascade reaction, leading to super-regional black-
outs [2]. To ensure the reliable transmission of electricity,
periodical power line patrol should be arranged since power
lines are susceptible to vegetation erosion and natural disasters,
which would be a challenge, especially in remote mountainous
areas.

The traditional power line extraction methods are labor-
intensive, time-consuming, and expensive [3]. With sensor
technology development, more and more remote sensing
data are used to improve extraction performance. They can
be divided into two categories: the image-based data such
as synthetic aperture radar (SAR) images [4] and aerial
images [5], and 3-D point-based data such as airborne laser
scanning (ALS) or airborne LiDAR data [6] and mobile laser
scanning (MLS) data [7]. Several image-based methods have
highly impressive results, which would still suffer from distur-
bances such as occlusion, self-occlusion, and light changes [8].
ALS can obtain 3-D shape information of the power line
accurately and efficiently over a large area, especially in the
difficult-to-reach mountainous areas. Therefore, ALS point
clouds would be more suitable for the extraction of power
lines and pylons. In this article, we focus on the extraction of
power lines and pylons from ALS point clouds.

Power line and pylon extraction methods using point clouds
can be divided into three stages: data preprocessing, power
line and pylon segmentation, and refinement [9]. The pre-
processing step aims at removing the outliers and part of
the ground points away from the scene. Note that the power
lines are usually located far above the ground for safety
reasons, ground filtering, such as triangular irregular network
densification filtering [10] and cloth simulation filtering [11]
have been undertaken to identify and separate the ground
points. However, these methods would lose part of the pylon
points because the surface of mountainous areas is undulating.

Power line and pylon segmentation is the most important
stage in the extraction process. In this phase, the objects in
the scene are classified as power lines, pylons, and others.
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Existing point clouds segmentation methods can be divided
into two categories: traditional descriptor-based methods
and deep learning (DL)-based methods. The traditional
descriptor-based methods aim at designing the local geometric
features by handcrafting to obtain segmentation results. These
methods can be further subdivided into unsupervised [12]–[15]
and supervised [16]–[19] methods. A multiheight threshold
method was proposed [13] for separating power lines and
pylon points in multiple subspaces of the original point clouds.
In [14], principal component analysis (PCA) was utilized to
extract power lines and pylons. In [16], some features, e.g.,
height, were designed to describe power lines and pylons, and
the segmentation results were then obtained by feeding it to
the random forests method. To improve the robustness, in [18],
a multiscale oblique cylindrical neighborhood-based method
was developed to extract spatial structural features. Several
image processing methods can be used after transforming the
point clouds into regular data representations, such as 3-D
voxel [20]–[22] and 2-D images [23], [24]. Similarity detection
and random sample consensus (RANSAC) methods were
combined in [20] to detect the data distribution characteristics
and estimate the power line model. Hough transform (HT) and
compass line filter [23] were applied to determine the trans-
mission line area and direction, and combined F distribution
to extract power line points. However, these methods usually
require additional supporting information, such as intensity,
preclassified data, or return numbers. Moreover, the parameter
setting for these methods would be complicated with different
point clouds distribution in different scenarios. Even worse,
these methods cannot learn the complete structure information
for pylons.

The above segmentation methods may achieve satisfactory
results in simple scenes. However, features learned by these
methods are usually shallow and difficult to distinguish, which
would be unfavorable in complex scenes, such as remote
mountainous areas. In recent years, DL [25] has demonstrated
good performance in feature extraction [26], classifica-
tion [27], and segmentation [28]. On 3-D point clouds process-
ing, DL-based methods can be divided into four categories:
view-based [29], [30], voxel-based [31], [32], point-based [33],
[34], and graph-based [35], [36]. PointNet [33] was the first
one to process point clouds directly, which process each point
independently and merges per-point features into a global fea-
ture by the max-pooling operation. In this way, local features
between neighborhood points may lose. Therefore, several
improved methods are proposed, such as PointNet++ [37]
and PointConv [38]. However, these methods do not fully
exploit the information among different points. To obtain local
features, graph-based methods take the k nearest neighbor
points into consideration when calculating the features of
each point. DGCNN [35] constructed local graphs to represent
local information, and updated the graph in the feature space
to extract features hierarchically. These methods can achieve
promising results in some indoor [39], [40] and outdoor [41],
[42] datasets, where a large amount of labeled data are
required. As far as we know, there is no result in the literature
using DL to segment power lines and pylons using 3-D point
clouds, which would be caused by the following two reasons:

insufficient data and unbalanced samples in the scenarios.
These motivate us to propose a data augmentation method and
a near-ground filtering method to solve these two challenges.

The refinement phase consists of two steps, i.e., the indi-
vidual power line identification and reconstruction. First,
each power line is further identified from the classified
power line points, for example, using the clustering and
fitting polynomial-based methods or detection-based methods.
RANSAC [14], [20] is applied to determine the points belong-
ing to the same line according to the distance constraints. The
alignment characteristics of the wires [22] in voxelized point
clouds are utilized to extract a single wire point. The fitted
polynomials are used for the power line reconstruction [43].

There are still several challenges in extracting power lines
and pylons using point clouds. One of the problems is the
immense data volume of point clouds, which leads to the
computational bottleneck of the target extraction. Note that
several objects, such as ground and vegetation points, are
much denser than power lines and pylons points. Reliable
extraction of points of interest with imbalanced samples would
be the second challenge. Existing methods may achieve good
results. However, these tend to use several additional supple-
mental data types, for example, the intensity, preclassified data,
and return numbers. Moreover, the extracted object structures
of interest are usually incomplete as the adopted features are
not easy to distinguish, time-consuming and complicated in
parameter settings.

In this article, we aim at investigating a new method for
extracting power lines and pylons from ALS point clouds using
only the xyz coordinate information. Our main contributions
are as follows.

1) In theory, we explore the graph convolution on point
cloud feature extraction and propose two modules,
neighborhood dimension information (NDI) and neigh-
borhood geometry information aggregation (NGIA),
to study the effect of point neighborhood information
on point cloud representation learning. Numerical exper-
iments show that these modules can strengthen the
ability of the proposed method to characterize the details
and to extract objects completely. This indicates that
the neighborhood information is helpful to improve the
point cloud feature extraction. Besides, we propose an
effective method for data augmentation and near-ground
filtering to mitigate the challenges of insufficient data
and imbalanced samples, which is of great help to the
training of our method.

2) In practice, we propose a framework based on graph
convolution, which can extract power lines and pylons
efficiently and accurately. Specifically, our method
extracts the target with more complete structural infor-
mation and takes less time than traditional methods.
Compared with DL-based methods, the extracted targets
by our method contain more detailed information. More-
over, our method is more robust to occlusion and can
be applied to several complex scenes. The experimental
results demonstrate the superior performances of the
proposed method, where the F1 score and quality of
the power line are 99.3% and 98.6%, and the results
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Fig. 1. Key steps of our proposed methods. The first and second steps are preprocessing stages, while the last three steps are the main parts.

of the pylon are 96% and 92.4%, respectively. The
identification rate of power line identification is above
98%.

The rest of this article is organized as follows. Section II
presents the proposed GCN-based method, and Section III
conducts the numerical experiment. Section IV shows the key
points and limitations of the proposed method, and Section V
concludes this article.

II. PROPOSED METHOD

In this section, we present the proposed method to extract
the power lines and the supporting pylons. Our input is
the unorganized point clouds involving only xyz coordinate
information obtained by ALS, and we do not require any
supplemental information, such as reflection intensity or pre-
classified data. The outputs are the individually segmented
power lines and pylons. Our proposed method consists of four
main steps: 1) data augmentation to provide sufficient training
data; 2) near-ground filtering to remove outlier points within
a certain height from the ground; 3) GCN-based method to
segment the power line and pylon points; and 4) power line
identification and reconstruction to identify individual power
lines and recover broken sections, respectively. The key steps
of the proposed method are shown in Fig. 1.

A. Data Augmentation and Near-Ground Filtering

Data Augmentation: Generally, with more training data,
more descriptive features of the model can be learned from
the point clouds [44]. Therefore, a feasible data augmentation
strategy must be designed first. Two possible methods are
rotation and sample overlap for power line scenarios, but these
two augmentation methods will cause limited data diversity
and volume.

To solve the above issues, we design a feasible data aug-
mentation method, as shown in Fig. 2. This method consists
of three main steps: 1) segmenting the training data into sev-
eral segments with given predesigned sizes; 2) dividing each
segment into three categories: ground (including vegetation),
pylon, and power line; and 3) selecting randomly from each
category and combining them to obtain new samples.

Near-Ground Filtering: Sample imbalance is unavoidable
in the power line scenario. The ground (including vegetation)

Fig. 2. Flowchart of our data augmentation approach.

points usually account for more than 90% of the total points.
Using unbalanced data to train the model will lead to an
unsatisfactory result [16]. In the transmission line scene,
the ground points are dense and the power line points are
usually distributed with a relative height. Therefore, we pro-
pose a multithreshold near-ground (MTNG) filtering method to
reduce ground points as much as possible while maintaining
power line and pylon points, which contains the following
steps: 1) dividing the original scene into multiple small scenes
with a length and width of 20 m, and ranking all points from
the highest to the lowest z; 2) checking whether there are
power line points according to the difference between the
maximum and average value in the small scene; and 3) using
a multithreshold strategy to extract nnew points in the small
scene:

nnew =

⎧⎨⎨⎨⎨
⎨⎨⎨⎩

15000, if (max(z)-mean(z)) ≥ 10&n ≥ 15 000

n, if (max(z)-mean(z)) ≥ 10&n < 15 000

10000, if (max(z)-mean(z)) < 10&n ≥ 10 000

n, if (max(z)-mean(z)) < 10&n < 10 000

(1)
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Fig. 3. Flowchart of the proposed GCN method. NDI module provides local information to improve the ability to capture detail spatial structure, while
NGIA module is designed to obtain neighborhood geometry information from each point to improve local shape description ability. EdgeConv module obtains
neighboring edge features. AF module is utilized to aggregate the features extracted from the upper and lower branches.

where n is the original number of points in each part, max(·)
and mean(·) represent the maximum and average values in
each part respectively, and nnew is the number of points
extracted in each part.

B. Power Lines and Pylons Segmentation

GCN models have been proved powerful in mining global
shape features. To accurately and efficiently segment power
lines and pylon points from the scene, we propose a
dual-branch network method, as shown in Fig. 3, which
consists of four modules: NDI module, NGIA module, edge
convolution (EdgeConv), and attention fusion (AF) module.
NDI module is designed to calculate the dimension features
of the point clouds, thereby enriching the input information
and providing the network with local geometric features of
the input point clouds. After multiple convolutions of the input
information based on the NDI module, a distinguished global
feature can be obtained. However, extraction of local geo-
metric features is still challenging. Therefore, NGIA module
is proposed to obtain shallow geometric information and to
aggregate information through multilayer perceptron (MLP)
and max-pooling layer to enhance the local geometric descrip-
tiveness of the network. EdgeConv module is applied to
extract and integrate local information, and the attention fusion
module is utilized to aggregate the features extracted from the
upper and lower branches. The proposed dual-branch method
is described in detail as follows.

1) NDI Module: The original point clouds contain only
the xyz-coordinate values, which may be insufficient for the
extraction of power lines and pylons because it is difficult
for the model to distinguish power line features from natural
landscapes. Inspired by the studies [14] and [45], we find that
in power line scenes, different types of objects vary greatly
in shapes. In a certain neighborhood, the power lines, pylons,
and ground points are liner, planer, and spherical structure,
respectively. Given a point p ∈ P and a radius ζ , we can
obtain a set of neighborhood points {pi ||p − pi | ≤ ζ }. Then
eigenvalues λ1, λ2, and λ3 (λ1 ≥ λ2 ≥ λ3) can be generated
by PCA and the three-dimensional features can be defined as
follows:

(a1D, a2D, a3D) =
�

λ1 − λ2

λ1
,
λ2 − λ3

λ1
,
λ3

λ1

�
(2)

where a1D + a2D + a3D = 1.

Fig. 4. Structures of (a) NDI and (b) NGIA modules.

In the case of scattered points, such as ground points,
we observe that λ1

∼= λ2
∼= λ3 and there is no dominant

direction. While in the case of a line structure, such as power
line points, the principal direction is the tangent at the curve,
where λ1 � λ2 and λ1 � λ3. Through this local geometric
description algorithm, we can increase the prior knowledge of
the model, therefore enhancing the model discrimination of
objects with different kinds of shapes.

As shown in Fig. 4(a), we use the k-nearest neighbor (k-NN)
search algorithm to search for the k neighbors in the neigh-
borhood of the points to calculate the dimension features and
normalization, respectively, and then feed them into different
channels of the input data. Each point is represented by a 9-D
vector, i.e., (xyz, a1Da2Da3D, normalized locations).

2) NGIA Module: NDI module can enrich the input infor-
mation and provide a local feature of the shape, but it is
difficult to retain the acquired geometric information after
MLP completely. Therefore, we design a short branch, which
involves convolution and max-pooling operation to aggregate
geometric shallow features to describe local details.

When constructing a directed graph G, it is necessary to
search for neighborhood points, which create conditions for
us to calculate the geometric features of local point clouds.
Meanwhile, the distribution of ground points is disordered and
uneven, and the density is relatively high, while the distribution
of power lines and pylon points has obvious geometric charac-
teristics. Therefore, we use dimension and roughness features
to describe the geometric information of point clouds. The
dimension features have been calculated in the NDI module,
and we apply them again to reduce the amount of calculation.
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Fig. 5. Structures of (a) EdgeConv and (b) AF modules.

In a certain neighborhood, it is difficult for some points to
have obvious geometric structure, especially at the junction
of two classes of points, so we add the following roughness
feature to enhance the description ability of these points. For
the input n points, we calculate the plane z = ax + by + c to
make

�n
i=1(zi − z)2 = �n

i=1(zi − (axi + byi + c))2 and get
the minimum value. The roughness feature is then defined as
follows:

Ra =
�n

i=1(zi − z)2

K
(3)

where z is the plane obtained by the least-squares fitting
method, zi represents the z coordinate of point pi , and K
represents the number of neighboring points.

As shown in the second module in Fig. 4(b), after obtaining
the dimension feature and the roughness feature, the 4-dim
feature vector (a1D, a2D , a3D, Ra) is extracted for each point.
We use MLP and max-pooling aggregate information to obtain
feature map Vp, which is computed as

Vp = max(MLP(a1D, a2D, a3D, Ra)) (4)

where Vp denotes the features with shape N × 64 (N
points with features of 64 dimensions) and max(·) represents
max-pooling operation.

3) EdgeConv Module: Regular structure, such as image,
uses the size of the convolution kernel to define the local
region in the image [46]. For the irregular structure of the
graph, k nearest to a point is defined as the neighbor of
the center points. EdgeConv [35] computes a directed graph
G = (V, E) to represent the local point clouds structure,
where V = {1, . . . , n} and E ⊆ V × V are the vertices and
edges, respectively. They define the edge feature as ei j =
hθ (xi , x j − xi), where hθ is a nonlinear function with a set
of learnable parameters θ . As shown in Fig. 5(a), the local
feature x �

im can be computed as

x �
im = max

j :(i, j)∈E
ReLU

	
θm · 	x j − xi


 + φm · xi



(5)

where x �
im is a tensor with shape N×an (N points with features

of an dimensions) and θ = (θ1, . . . , θn, φ1, . . . , φn) represent
the parameters of the neuron in the MLP.

4) AF Module: As shown in Fig. 3, the network can be
divided into up and down branches, and each branch obtains
different levels of features based on different inputs. Fusing

features is the key task in the multimodule methods. Attention
mechanism has proved its effectiveness in many fields, such as
image classification [47] and object detection [48]. Therefore,
we use the attention mechanism proposed in [49] to aggregate
the features extracted from the up and down branches.

The output Vup and Vdown of up and down branch are
combined by a connection operation to obtain a C-dim feature
map V , which is the input of AF module. Then, as shown
in Fig. 5(b), an average pooling operation along with the
channel are taken on V to generate the global feature zC , and
a soft attention mask S is computed by using a two-layer fully
connection (FC) and a sigmoid function as follows:

S = sigmoid(FC(zC)) (6)

where the attention mask S can be considered as a feature
filter to adaptively select meaningful features and restrain the
useless ones. To fuse the attention mask more effectively,
the residual connection is applied, and the final output can
be represented as

OAF = V × (1 + S) (7)

where × denotes the elementwise multiplication.
After adding AF module, each channel of the feature map

obtained by the up and down branches gets the weight.
Therefore, the model has a more distinguishing ability for the
characteristics of each channel.

C. Power Line Identification and Reconstruction

In this section, candidate power line points need to be
further processed to obtain individual wire. Power lines con-
form to the fact that they do not intersect by each other, and
they maintain enough clearance to avoid unsafe contact [50].
Based on these characteristics, we design a line structure
constraint (LSC) algorithm, which stably identifies individual
power line points and reconstructs the power line by fitting a
polynomial equation. The steps are presented as follows.

1) Span Extraction: The transmission wires in a power line
corridor are made up of number of segments (spans). Pylons
connect these spans to each other. In the previous step, we have
extracted the complete pylon points. After determining the
position of the pylons by density-base clustering, the points
P for each span are obtained. The span extraction reduces the
number of data points and makes further processing of line
points easier.

2) Power Line Identification: The flowchart of our LSC is
shown in Fig. 6. Let Pr ⊂ P be the set of points that have not
been processed, and the initial seed point is selected randomly
from Pr . The point ps ∈ Pr is selected as a reasonable initial
seed point when the distance from ps to its nearest point is
less than ds given by the user. We denote RC as the initial
point set of an individual power line and add the reasonable
seed point and its nearest into RC .

Next, the criterion that controls the growth from the seed
points to their neighborhood points is defined as the point-
to-plane distance threshold dp1 and dp2 given by the user. For
the neighborhood point pi ∈ Pk

S , the plane p1 and vertical
plane p2 are fitted by all the points in RC , so pi is added to
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Fig. 6. Flowchart of our LSC approach. P is the power line points of a
span. ds , dp1 , and dp2 are the distance thresholds given by the user.

the RC if d1 < dp1 and d2 < dp2 where d1 and d2 represent the
distance from to plane p1 and p2, respectively. Then, the point
pi ∈ RC is removed from Pr .

The newly added point is set as the new seed point. The
region growth from the newly selected seed points and the
selection of new seed points are performed iteratively until no
unique seed point can be chosen. Then, the points in RC are
labeled and added to the output set R. For points in the Pr ,
iterative processing until all points have been processed.

3) Power Line Reconstruction: After extracting and identi-
fying the point of an individual power line, the final step is to
reconstruct these power line points for subsequent applications
such as 3-D measurement.

The 3-D power line reconstruction problem is to find the
correct model to fit the power line and realize the 3-D
visualization. We use polynomial equations (8) in 3-D space to
calculate the parameters based on individual power line points,
and finally reconstruct the power lines by

z = a
	
x2 + y2


 + b
�

x2 + y2 + c (8)

where a, b, and c represent the parameters to be fitted.

Fig. 7. Overview of datasets. The power line, pylon and ground (including
vegetation) are colored in red, blue, and gray respectively. (a) SI . (b) SI I .

TABLE I

STATISTICS OF TEST DATA

III. EXPERIMENTS AND ANALYSIS

A. Experimental Data and Environment

To evaluate the effectiveness of our proposed method,
we conducted qualitative and quantitative evaluations on two
different types of power line scenarios with simple and com-
plex conditions from airborne LiDAR data. The experimental
data are collected by HawkScan X3, the flying speed is 24 m/s,
the altitude is 150 m, the scanning frequency is 400 kHz, and
the point density is about 80 points/m2. SI is a simple case, and
most areas have a single transmission line corridor. As shown
in Fig. 7(a), the length is approximately 1500 m and 300 m
of which are chosen as test scenes. As shown in Fig. 7(b), SI I

is a complex case, with multiple transmission line corridors
in most areas. The length is approximately 1300 m, 200 m of
which is chosen as the test scene. Table I lists several statistical
data of the test scenes, which shows that the ground fluctuates
obviously. To better demonstrate our method, we divide the
SI into T1, T2 and T3 and SI I into T1, T2. These divisions
into multiple scenarios here are only for a better display.
In practical applications, our method can be applied to scenes
of any size.

As shown in Fig. 7, although the data include a wide range
of power line corridors, the number of pylons is sparse. For the
network, to learn more discriminating features of the pylons,
it is necessary to perform data augmentation. The number
of original scenarios with pylons is only a dozen, and after
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data augmentation, we generate 200 different training scenes
per dataset, which significantly increases the training data for
learning.

Our experimental platform is Ubuntu 18.04, Inter
(R) Xeon(R) E5-2678 v3 2.50 GHz, and 64-GB memory.
We trained our method with TensorFlow on NVIDIA GeForce
RTX 2080 Ti. Adaptive moment estimation was used with a
momentum of 0.9. We set the initial learning rate to 0.001 and
decrease by half in every 20 epochs. The batch size is 16,
and the number of training epochs is 30. For convenience,
we refer to [35] and set the number of neighborhood points
to 20. Considering the real situation, we set the parameters
ds , dp1 and dp2 in our LSC method to 0.1, 0.25, and 5 m,
respectively. In the power line and pylon points segmentation
stage, we use F1 score (F1) and quality (Qu) as the evaluation
index

F1 = 2 × Precision × Recall

Precision + Recall
(9)

Qu = T P

T P + F P + F N
(10)

where T P denotes the power lines and pylons that are cor-
rectly segmented. F P represents the others that are incorrectly
segmented as power lines and pylons. F N denotes the power
lines and pylons are incorrectly segmented as others. Precision

and Recall denote precision and recall rate, respectively.

B. Near-Ground Filtering Results

To evaluate the near-ground filtering performance, we used
the test scene as an example to compare the changes in the
number of points of each category before and after filtering.
It can be seen from Table II that after near-ground filtering,
the loss of power line and pylon points are no more than 2%,
but the ground points (including vegetation) are reduced by
nearly two-thirds (more than 400 000 points). In scene SI I /T1,
since the ground is undulating and the high vegetation is near
the pylon, some points are removed incorrectly. This result
can be improved by further reducing the size of the scene. Our
approach can be adapted to the slope by dividing the original
scene into multiple subscenes and ordering the points within
the small scenes. Both the work in [13] and our experimental
results demonstrate the feasibility of removing some of the
ground points in mountain areas by dividing them into small
scenes. In conclusion, there is almost no change in the number
of the pylon and power line points, while the ground points are
greatly reduced, which proves the effectiveness of this method.
All of our next experiments are based on samples after the
near-ground filtering.

C. Power Line and Pylon Segmentation Results

To further verify the effectiveness and robustness of our
method, we compared our method with several existing seg-
mentation methods. Since we did not find an open-source
algorithm, we tried to reproduce two representative methods,
which use PCA to calculate dimension features and use small
angles between the power line points to segment the power
lines and pylon points, called PCA and SAL, respectively.
These two methods use CSF filtering [11] to separate ground

TABLE II

COMPARISON OF THE NUMBER OF RAW DATA AND FILTERED RESULTS

and non-ground points, and then classify power line and
pylon points by setting reasonable thresholds. In addition,
we also used the methods in [33] and [38] for comparative
experiments.

Table III and Fig. 8 show quantitative and qualitative com-
parison results of different methods, respectively. Compared
with the traditional methods PCA and SAL, in the scene
where the pylon exists, the F1 and Qu of the power line
are improved by 31.5% and 45.5%, and that of the pylon
increases by nearly 47.1% and 58.8%. In the scene without
pylons, the F1 and Qu of the power line rise by nearly
2.2% and 3%. It is also obvious from Fig. 8 that there are a
large number of misclassified points in the traditional method,
and most of these points should be easily distinguished.
Our method can well distinguish these points. The reason
is that our method can extract more distinctive features than
traditional methods. Compared with PointNet, our method also
has great advantages. Specifically, PointNet performs poorly
in some scenarios, such as SI /T2 and SI I /T1, while our
method increases F1 and Qu of power lines by 19.5% and
31.5%, and that of pylons by 44.6% and 57.8%, respectively.
Fig. 8 also shows that our method can extract targets well,
and the targets extracted by our method are complete. This
is due to the neighborhood points and the local geometric
information involved in our method. As shown in Tables III
and V, PointConv achieves much better results than DGCNN,
but there is still a gap when compared with our method.
Specifically, in the scene where the pylon exists using our
methods, the F1 and Qu of the power line are increased by
2.5% and 4.6%, and that of the pylon are improved by 4.1%
and 7.1%. Moreover, our method also has obvious advantages
in the scene without pylons. The reason is that our proposed
module can learn more detailed features, which is also proved
in Fig. 8.

We also compared the time efficiencies of different methods
in Table IV. Obviously, DL-based methods take less running
time (RT) than the traditional method because the adopted
parallel computing, while the traditional methods need to
process point-by-point. Compared with DL-based methods,
our method takes more RT because of the EdgeConv, NDI,
and NGIA in our GCN framework. Such time-consumption is
acceptable when considering the much better final extraction
results.

D. Effectiveness of Each Proposed Module

To evaluate the effectiveness of our proposed module,
we designed a series of ablation experiments. Table V shows
the performance changes of the model with the addition of
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TABLE III

PERFORMANCE COMPARISONS AMONG DIFFERENT SEGMENTATION METHODS IN F1 SCORE (%) AND QUALITY (%)

Fig. 8. Segmentation results. The power line, pylon, and ground (including vegetation) are colored in red, blue, and gray, respectively.

different modules. As shown in Table V, DGCNN has a good
effect in the scene with only power lines, while the scene with
pylons has a poor effect. Specifically, DGCNN achieves more
than 99% in both F1 and Qu in the former case, while in the
latter case, the power line is only 95.8% and 92%, and that of
the pylon is only 94.3% and 89.3% in the dataset SI . What is
worse, in the dataset SI I , the F1 and Qu of the power line are
only 93.8% and 88.3%, and that of the pylon is only 85.2%
and 74.2%. From this phenomenon, it can be seen that for

the DGCNN, the appearance of pylons seriously affects the
segmentation result. Our proposed method achieves 100% in
both F1 and Qu , and has a significant improvement compared
to DGCNN.

NDI module is designed to enrich the input information
and provide the network with local geometric features of
the point clouds. Table V shows that after adding the NDI
module, the segmentation results have improved significantly.
For SI /T2, the F1 and Qu of the power line are increased by
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TABLE IV

COMPUTATION TIME COMPARISONS AMONG DIFFERENT
SEGMENTATION METHOD IN SECONDS (s)

1.5% and 2.8%, and that of the pylon is increased by 2.3%
and 4.1%. Meanwhile, for SI I /T1, the results of power lines
are improved by 1.2% and 2.1%, and that of the pylons are
improved by 5.9% and 10.2%. This demonstrates that the local
geometric features acquired by our NDI module can obtain a
distinguished global feature.

As discussed in Section III, the local geometric features
provided by the NDI module cannot be completely retained
after MLP. Therefore, we designed the module to use the
shallow local geometric features as input and aggregate the
features through MLP and max-pooling operations. Table V
presents the comparative results. It can be seen that after
adding the NGIA modules, our method has been further
improved compared to “DGCNN + NDI." Compared with
DGCNN, in SI /T2, the F1 and Qu of the power line are raised
by 2.7% and 5.1%, and that of the pylon is increased by 3.2%
and 5.8%. Meanwhile, in SI I /T1, the F1 and Qu of the power
line are increased by 3.2% and 5.8%, and that of the pylon is
improved by 7.4% and 5.8%, respectively. This proves the
effectiveness of adding aggregated neighborhood geometric
features to the final feature map through short branches.

AF module is proposed to aggregate the feature extracted
from the up and down branches. It can be seen from Table V
that compared with the DGCNN, in scenario SI /T2, our
method exceeds 3.2% and 6% in F1 and Qu of the power
line, and that of the pylon also improves 3.9% and 7.7%.
Meanwhile, in scenario SI I /T1, our method also obtains 3.5%
and 6.4% improvement of F1 and Qu of the power line, and
that of the pylon also improves 7.4% and 13.7%. This is
attributed to the feature selector-like attention fusion module,
which generates a soft attention mask to enhance useful
features and discard unimportant features.

Besides, we evaluated the time consumption of each mod-
ule. Table VI shows the RT of each module. It can be observed
that NDI module is the most time-consuming because NDI
needs to calculate the covariance matrix and solve the eigen-
values to obtain the dimension features. Besides, NGIA mod-
ule takes only the result of the NDI module as input and
computes the roughness features, which leads to the highest
time efficiency. Compared with the basic method, our method
only requires additional 0.5 s (0.48 s in SI , and 0.49 s in SI I )
but increases the F1 and Qu by 4.5% and 8.5%, respectively.

E. Power Line Identification and Reconstruction Results

To verify the effectiveness of power line identification,
we compared it with existing methods. The metric is

Fig. 9. Power line identification and reconstruction results. In the identifi-
cation stage, all points of an individual power line are labeled with the same
color.

identification rate, which is defined as

Identification rate = 1

n

n�
i=1

Nidentifiedi

Nrawi

(11)

where n denotes the number of individual power lines in the
scene. Nrawi and Nidentifiedi represent the number of the raw
and identified i th individual power lines, respectively.

The alignment characteristics of the wires in the voxel
grid [22] are used to extract single wire points, which is
referred to as Baseline_1. HT and elevation threshold [24]
is denoted as Baseline_2. Table VII shows the comparison
results. It can be seen that compared to Baseline_1, the iden-
tification rate of our method is improved by 10%. In the dataset
SI I , where there are two types of power lines, the identification
rate of Baseline_1 is only about 85%, while our LSC method
is above 99%. Meanwhile, our method is also 2% higher than
the Baseline_2. The best performance of our method lies in
the LSC. It can fit planes to ensure that the points of the
same power line are identified, then the stable and complete
identification results can be obtained. Moreover, the parameter
setting of our method is simple. There is no need to set the
number of power lines in advance. Line reconstruction is the
final and important step. As shown in Fig. 9, several broken
parts of power lines are well reconstructed.

F. Parameter Sensitivity Test

There are three important parameters in our GCN frame-
work: the number of nearest points k in the segmentation phase
and the distances dp1 and dp2 in the power line identification
phase. To evaluate the influence of different settings on the
performance of our method, we conducted several comparison
experiments. Specifically, the optimization spaces for k, dp1 ,
dp2 were set as {10, 20, 30}, {0.11, 0.13, 0.15, 0.17, 0.19,
0.21, 0.23, 0.25, 0.27, 0.29} and {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
where the optimal parameter set is {20, 0.25 m, 5 m}.

1) Number of Nearest Neighbor Points k: We evaluate the
performance of our method by varying k. Fig. 10(a) and (b)
shows that when k increases from 10 to 20, the performance
of our method improves significantly. This is because our
method can encode more local information with a larger k.
As k increases to 30, our method has a small improvement
since more neighborhood points cannot provide more local
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TABLE V

PERFORMANCE COMPARISONS AMONG DIFFERENT MODULES IN F1 SCORE (%) AND QUALITY (%)

Fig. 10. Performance of different parameters. (a) and (b) Performance of k (number of points) in SI and SI I , respectively. (c) Time comparison of different
k in both two scenes. (d) and (e) Performance of dp1 and dp2 in both two scenes, respectively.

TABLE VI

COMPUTATION TIME COMPARISONS AMONG
DIFFERENT MODULES IN SECONDS (s)

information for our model. As shown in Fig. 10(c), the time
consumption with k = 30 is significantly larger than that with
k = 20. To balance the performance and time consumption,
we set k = 20.

2) Point-to-Plane Distance Threshold dp1 and dp2: dp1 and
dp2 represent the distance thresholds from the point to the
fitting plane p1 and vertical plane p2, respectively, which are
used to make the identified points be classified as the same
power line. We used the grid search strategy to find the optimal

TABLE VII

PERFORMANCE COMPARISONS AMONG DIFFERENT
IDENTIFICATION METHOD IN IDENTIFICATION RATE (%)

combination. We evaluated different values of dp1 on two test
datasets while keeping dp2 = 5 m. As shown in Fig. 10(d),
when dp1 goes from 0.11 to 0.19 m, the identification rate
increases, and the recall rate increases as the increase of dp1 .
It is also observed that dp1 within the range of [0.19 m, 0.25 m]
could produce stable results. That is, most of the points have
been correctly identified for the ith individual power line.
As dp1 increases, the identification rate decreases sharply

Authorized licensed use limited to: Lanzhou University. Downloaded on May 15,2021 at 15:04:08 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: GCN-BASED METHOD FOR EXTRACTING POWER LINES AND PYLONS FROM AIRBORNE LIDAR DATA 11

Fig. 11. Generated two kinds of complex scenes. (a) Trees exist around the
pylon. (b) Trees occlude the pylon.

Fig. 12. Performance comparisons with different (a) distance and (b) occlu-
sion rate in quality.

because the ith power line points are incorrectly identified as
the jth power line. Similarly, we evaluated different values
of dp2 on two test datasets while keeping dp1 = 0.25 m.
Fig. 10(e) shows dp2 within the range of [1 m, 7 m] can
produce promising results. Therefore, we set dp1 = 0.25 m
and dp2 = 5 m to provide excellent performance.

G. Robustness Test

In this section, we evaluated the robustness for the semantic
segmentation stage and line identification stage, respectively.
To evaluate our semantic segmentation method in the occlusion
case, we used scene SI /T2 to generate complex scenes to
test the performance of our method. To test the robustness
of our segmentation method, we conducted experiments for
two cases. For case 1, as shown in Fig. 11(a), we changed
the distance between the tree and pylon and evaluated the
performance of our method. For case 2, as shown in Fig. 11(b),
we tested the performance of our method with a given occlu-
sion rate, which is defined as follows:

Occlusion rate = volume of occlusion space

volume of pylon space
= ho

h p
(12)

where ho/h p is the height of occlusion/pylon space.
Fig. 12(a) shows the influence of distance on the perfor-

mance of our method. It can be seen that when the distance
= 0, the Qu of the extracted pylon is still above 93%. For
the distance within the range of [0, 5 m], the Qu of the
extracted pylon increases as the distance increases and remains
stable after the distance above 5 m. Fig. 12(b) shows the
results of our method with different occlusion rates. When
the occlusion rate is less than 0.3, our method can extract

the pylon completely. Even in the situation of occlusion
rate = 0.5, Qu of the pylon is above 56%. The result of
the second case is worse because the pylon in the first case
remains a relatively complete structure, which can provide
more useful information. In addition, Qu of the power line
is always above 97% in both cases. This experiment proves
that our semantic segmentation method is robust to occlusion.

Most of the current methods can only be applied to a
single scene. To verify our power line identification method
in different cases, we used two types of power lines to gen-
erate complex scenes to test the performance of our method,
including disconnection in the middle (case 1), disconnection
on both sides (case 2), cross (case 3) and compound cases
(case 4). To better describe the complex scene we generated,
the cross-angle is defined as the angle between the two types of
power line horizontal plane projections, and the disconnection
rate defined as

Disconnection rate = disconnection length

total length
. (13)

We generate scenes with a disconnection rate of 10% and
20% for both cases 1 and 2, and case 3 with a cross-angle of
10◦ and 20◦. Case 4 is a scene with all disturbance.

Fig. 13 shows the identification results of our method in four
cases. In this stage, all points of an individual power line are
labeled with the same color. Table VIII shows the identification
rate of our method, which has achieved satisfactory results,
larger than 98% in various scenarios. These experiments prove
that our LSC method is robust and can be applied to various
complex scenarios.

IV. DISCUSSION

Experiments show that the proposed method outperforms
other existing methods. Moreover, the proposed method only
uses the unstructured ALS point cloud in the XYZ format,
which makes the proposed method more widely used. The
superior results of our method can be attributed to the follow-
ing reasons.

1) In the preprocessing stage, the proposed data augmen-
tation method generates a sufficient amount of diverse
training samples. Besides, the designed near-ground
filtering method can remove ground points as much
as possible while preserving the power line and pylon
points.

2) In the power line and pylon segmentation stage, we pro-
pose a new method based on GCN, which mainly
includes two modules, NDI and NGIA. These two
modules are designed to provide local geometry and
detailed features of objects. Finally, the AF module is
used to fuse multichannel features to obtain shallow
geometric features effectively and high-level semantic
features.

3) In the power line identification stage, our LSC method
robustly identifies all points of an individual power line
and reconstruct the broken power lines simultaneously
by fitting a polynomial.

Future Work: As shown in Fig. 8, our method also has
incomplete extraction results of pylon and power line points
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TABLE VIII

IDENTIFICATION RATE (%) IN DIFFERENT COMPLEX SCENARIOS.
NOTE THAT THE PERCENTAGE (%) AND ANGLE (◦) IN THE SECOND

ROW OF TABLE REPRESENT DISCONNECTION RATE

AND CROSS-ANGLE, RESPECTIVELY

Fig. 13. Results of four disturbance cases. (a) Disconnection in the
middle with different percentages. (b) Disconnection on both sides with
different percentages. (c) Cross with different angles. (d) Compound cases
with all disturbances. The percentage and angle refer to interruption rate and
cross-angle respectively and all points of an individual power line are labeled
with the same color.

in some extremely complex scenes, especially at the junction
of two types of objects. In future work, we will combine
multisource data such as images to improve the extraction
results.

V. CONCLUSION

This article presented a new method based on GCN to
efficiently and accurately extract pylon and power line points
from ALS data. First, for the power line scenes, an effec-
tive data augmentation algorithm and near-ground filtering
algorithm were proposed to solve the problem of insufficient
data and sample imbalance. Second, based on the GCN
network, a dual-branch network method was designed. The up
branch uses the NDI module to enrich the input information
and obtains rich low-level geometric and high-level semantic
information by multiple EdgeConvs and MLP. The down
branch uses the NGIA module to enhance the description
ability of the pylon and power line. We used the attention
mechanism to strengthen the feature aggregation effect of
the up and down branches. Finally, an LSC algorithm was
proposed to identify power lines, and we used the least-squares
method to fit polynomials to reconstruct power lines. Our
experiments proved that our extraction method could effec-
tively extract pylon and power line points. The F1 score and
quality of the power line reach 99.3% and 98.6%, and the
results of the pylon reach 96% and 92.4%, respectively. The
identification rate of our power line identification method is
above 98%.
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