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A B S T R A C T   

Human settlements are guided by the proximity or availability of a natural resource such as river or lake basins 
containing set of streams. The harmonious development of human activity and natural conditions along 
watershed areas needs close attention and in-depth study. In this paper, the urban agglomerations and ecological 
spaces in the Yangtze River Delta, China, the Chao Lake Basin and its surrounding watershed ecosystem is taken 
as research subject for its serious environmental degradation problems during social and economic development. 
This paper adopted an effective machine learning algorithm (kernel-ELM) to extract land use and land /cover 
information, and to analyze the land use/cover pattern evolution rules of the Chao Lake Basin with long term 
Landsat imagery. Subsequent studies were then carried out to demonstrate the flood-affected area and its 
ecological impact in the basin in 2020, to reveal the occupation on land cover types. The results indicate Con-
clusions are drawn from the experiment results: (1) There has been significant change in cultivated land, forest 
land and construction land out of six key land cover types with dynamic degree of − 10.17%, 4.61, 67.04% 
respectively. (2) Algae bloom pollution was extracted from pattern classification results and it was up to 15% of 
the total water area by the year 2018. (3) The occupation on land use/cover types of the flood was revealed. The 
results prove effective application of remote sensing technology in environmental analysis and planning for data- 
driven evaluation of governing policy. This work serves as a scientific basis for environmental management and 
regional planning in the Chao Lake Basin and can be served as a basis and a reference for evaluating an ecological 
policy and its impact for other economic developing watershed human settlements with ecological issues.   

1. Introduction 

Human existence is embedded in the availability of natural re-
sources. The human civilization evolved using these natural resources 
such as water, fertile land and adequate climatic conditions for their 
development. Human settlements are guided by the proximity or 
availability of these resource. Areas of land that contain a common set of 
streams, rivers and lakes that all drain into a single larger body of water 
be it lake or river or an ocean have seen human settlements. The 
harmonious development of human activity and nature along these 
natural watershed areas such as Lakes is of interest for this research. 

Adrian et al. (2009) state that the lake environments record the changes 
of regional ecology on a spatio-temporal frame. Lakes are integral part of 
the ecosystem processing various ecosystem functions and provide 
habitat for a range of species and form essential components on the earth 
surface(Dörnhöfer and Oppelt, 2016). The lake is a water-filled area, 
located in a reservoir, surrounded by land, apart from any river or other 
source that feeds or drains the lake. The natural ecosystem and spatial 
pattern of the lake basin are both of critical significance to the lake itself 
and its perimeter. The inconsistency between urban growth and con-
servation of the lake is also becoming increasingly obvious (Wu et al., 
2019). Monitoring and recognizing the state of the evolution of the lakes 
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and the associated watershed are highly relevant for scientists and de-
cision makers alike (Palmer et al., 2015). 

To date, the widely used criteria for monitoring lakes and basins 
primarily involves the following: (a) monitoring land cover changes of 
the lake basin or surrounding wetlands (Aghsaei et al., 2020; Guo et al., 
2008; Wolter et al., 2006); (b) spatio-temporal volumetric variation 
analysis of water body in area, variations in water level (De Wit and 
Stankiewicz, 2006; Duan and Bastiaanssen, 2013); (c) presence or 
occurrence of water surface vegetation and algae detection (Kutser et al., 
2006; Wang and Shi, 2008). There is a strong correlation between urban 
development and the changes in lake basin. It is therefore, of utmost 
importance to accurately monitor and understand the spatio-temporal 
changes to the lake basin due to land use and land cover change 
(LUCC) of its perimeter. Sun et al. (2014) states that we can use remote 
sensing technology to accurately describe these variations and assess the 
impact of human activities on the neighboring ecosystem on a spatio- 
temporal frame. In addition, owing to the diversity of remote sensing 
image resolution, various types of satellite imagery have been used in 
lake monitoring studies of different scale, from a partial basin to an 
interconnected lake basin, or even to a large number of lakes in the 
entire area. (Dube et al., 2014; Lin et al., 2018; Liu et al., 2014; Luo et al., 
2017; Stow et al., 2004; Zhao et al., 2012). 

The land use cover change (LUCC) is a widely used indicator 
describing the strong relation between human activity and the changes 
in the lake ecosystem to monitor the overall physiological shift in lake 
conditions, including water depth, water level and water surface vari-
ations (Tong et al., 2016; Wasige et al., 2013). Along with the LUCC 
statistic, we may also use environmental parametric indices as addi-
tional metrics(Anderson, 1976) to monitor lake basin of varying scales 
to the whole catchment area (Jorgenson and Grosse, 2016; Nsubuga 
et al., 2017). For example, change analysis studies were conducted with 
Support Vector Machines (SVM) using QuickBird images of Poyang Lake 
wet land basin for the period of 1973 to 2013 (Han et al., 2015). Similar 
studies were carried out and validated by Were et al. (2013) and 
post-classification comparative analysis was performed to detect the 
changes in Eastern Mau forest reserve and Lake Nakuru drainage basin, 
Kenya for the period of 1973 and 2011. Lin et al. (2018) applied ma-
chine learning classification techniques to detect changes in distribution 
of vegetation and land cover types for estuary basin and wetlands. 

The transformation of the land surface to urban use is one of the most 
irreversible human impacts on the ecosystem. The Yangtze River Delta 
cities have seen drastic urbanization due to rapid economic growth since 
the late 1990′s. This resulted in gradual restructuring of land use type 
and deeply transforming the land functions. The land functions are 
determined by the availability and proximity to natural resources such 
as water, fertile land and biodiversity. Now the economy of Yangtze 
River Delta in China has turned to a stage of high-quality development. 
This prompted the Chinese government to establish a Regional Inte-
grated Development plan for the Yangtze River Delta in 2019. This re-
gion comprises of Yangtze River Economic Belt and East China region, 
Shanghai, Jiangsu, Zhejiang and Anhui provinces. The environmental 
effects of urban growth go far beyond urban areas themselves on several 
levels. Future urbanization would pose a significant challenge to the 
neighboring ecosystems, if it does not accommodate scientific impact 
assessment during planning. The region of Chao Lake Basin falls in this 
Economic Belt and has been designated as a national tourism region 
since 2015. This study focuses on a long-term monitoring of the spatial 
pattern of land use change in the Chaohu Lake Basin, and then on the 
quantitative analysis of the impact on water environment caused by the 
socio-economic activities around the lake. Especially, the Chao Lake 
Basin has suffered from frequent flooding in the past few months, 
impacting the ecosystem drastically. 

To guarantee the classification accuracy and efficiency and describe 
land use pattern evolution and its influences simultaneously, the com-
bination of information extraction, automatic imagery interpretation 
and change detection is the tendency of future monitoring methods. 

Numerous studies have been conducted in the recent years on the 
retrieval of land use pattern information and subsequent spatial or 
temporal interpretation with remote sensing imagery classification. 
Based on multi-temporal classification results, the LUCC between each 
two phases can also be calculated precisely. Most machine learning 
methods have been normally used to extract land cover information 
from remote sensing data. It is to be noted that the accuracy of infor-
mation extraction is directly influenced by the accuracy of the machine 
learning classification algorithms used and proper machine learning 
methods are suitable to overcome challenges in spatial data handling 
and improve classification performance (Du et.al, 2020). For example, 
the performance of SVM classification technique with the maximum 
likelihood classification (MLC) technique have been applied for a 
rapidly changing landscape of an open-cast mine to validate the preci-
sion and efficiency, and the SVM has improved the classification accu-
racy on Landsat satellite images (Karan and Samadder, 2016). Many 
recent publications have already demonstrated the benefits of machine 
learning approaches for land/user cover analysis and eventual system-
atic implementation (Cai et al., 2018; Duro et al., 2012; Khatami et al., 
2016; McIver and Friedl, 2002; Rodriguezgaliano et al., 2012). It is of 
great importance to choose an appropriate method to conduct classifi-
cation experiments precisely and efficiently. 

In this study we used an optimized Single-hidden Layer of Feed- 
Forward Network (SLFN) classification technique, referred as Extreme 
Learning Machine (ELM) with a kernel function to perform land cover 
classification. For this purpose, the scope of the study is to monitor and 
to quantitively analyze the spatial pattern of land use evolution in the 
Chao Lake Basin in over twenty years with long-term series remote 
sensing images. These objectives are outlined here:  

1) to validate the accuracy of the developed classification method that 
is the K-ELM algorithm through local remote sensing data in the 
Chaohu Lake Basin;  

2) to conduct quantitatively land use pattern analysis over twenty years 
based on the remote sensing classification results;  

3) to demonstrate the spatial distribution of two ecological events in 
Chaohu Lake: persistent algae bloom outbreaks on lake surface for 
multi years, and the 2020 mega-flood disaster in July 2020;  

4) to reveal the long-term evolution of land use spatial pattern and to 
draw critical insights that serve as reference for future local and 
regional urban planning. 

2. Study area and datasets 

2.1. Study area 

The study area selected for this research is Chao Lake, situated on the 
outskirts of Chaohu and Hefei in Anhui Province, China. It is the fifth 
largest fresh water lake in China with a water surface area admeasuring 
over 700 km2 and sits on the south side of the Chao Lake rift basin. The 
geographical location of the whole basin is about east longitude 
116◦24′30′′ − 118◦0′0′′ and north latitude 30◦58′40′′- 32◦6′0′′, located 
between the Yangtze River and the Huaihe River systems. The Chao Lake 
area is a valley surrounded by low mountainous regions and hilly areas. 
The topography tends to be high in the west and gradually decrease 
towards the east and flat in the middle. The region has warm-temperate 
subtropical monsoon climate zones, where the precipitation varies 
considerably from year to year and precipitation distribution is irregular 
and mostly concentrated in summer. In the neighboring vicinity of the 
Chao Lake Basin is the Hefei City which serves as urban conglomeration 
along the Yangtze River and has direct impact on its ecosystem. There 
are efforts to conserve the Chao Lake Basin for ecology-based tourism 
zone. However, the region surrounding Chao Lake Basin has seen drastic 
increase in the population to twice in 2018 as compared to the popu-
lation in 1995, which also attributed to high-speed transport rail and 
road network. Table 1 outline socio-demographic statistics of Hefei City. 
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It is of most importance to devise regulations that emphasize on 
sustainable development of the region bearing in mind the ecological 
and socio-economic indicators. Xu et al. (1999) states that rapid ur-
banization in the surrounding regions has contributed to increased 
pollution of Chao Lake Basin affecting the biodiversity of the ecosystem. 
It is to be noted that water quality level has reached pollution levels 
worse than Grade V (The lowest level of water pollution evaluation in-
dicators in Environmental Quality Standards for Surface Water) 
(MEEPPC, 2002). The intent of this study is to identify regions with high 
concentrations of pollutants due to rapid urbanization in the vicinity and 
analyze spatiotemporal changes across the region. 

Fig. 1 illustrates the Landsat OLI RGB image which is the study area. 
It covers the whole watershed of the Chao Lake, the Hefei City located in 
the north and the Chaohu City located in the east, including the polder in 
the southwest and the forest in the north and southeast. The main body 
of the Chao Lake including two islands, Mushan Island and Gushan Is-
land, is the core resource of the whole National Tourism and Leisure 
Region of the basin. The lake is surrounded by the Hefei City in the 
northwest, the Chaohu City in the east and the Feixi, Shucheng and 
Lujiang Counties in the west, which are composed of abundant agri-
culture and landscape resource. 

Furthermore, a sub-region image is used for algorithmic comparison 
studies covering the east side region of the Chao Lake and the Chaohu 
City. This contains all the land use/cover change types, namely, water, 
forest, cultivated land, construction land, bare land and aquatic vegetation 
cover algae bloom, a total of six classification types. 

2.2. Data sets collection 

In this study, seven cloudless Landsat optical images from 1995 to 
2018 for land use pattern evolution analysis and two Landsat images in 
2020 for flood detection of the Chao Lake Basin were selected, which 
were separately acquired from Landsat Thematic Mapper ™, Enhanced 

Thematic Mapper Plus (ETM + ) and Operational Land Imager (OLI) 
(See Table 2). The Landsat instrument captures data at 30 m spatial 
resolution. It has 11 bands distributed across the electromagnetic 
spectrum compared to 3 or 4 NAIP imagery has. It offers improved 
spectral and spatial characteristics that serve as valuable base for a wide 
range of applications. The study takes into consideration planting season 
and algae bloom period for classification over a period of April to 
October months each year for land use cover change analysis. Each 
Landsat image has a spatial resolution of 30 m and is 3000 × 2400 pixels 
in size. In total, study area admeasures around 6480 km2. For the pur-
pose of detailed classification studies, the sub-region image with 496 ×
472 pixels in size and covers an area of 210 km2 approximately was 
used. 

3. Method 

3.1. Preprocessing 

The radiometric calibration and atmosphere correction have been 
processed on all RS images with ENVI 5.3 software (https://www.ha 
rrisgeospatial.com/) to remove the influence of atmosphere radio mu-
tation and to achieve real surface reflectance. For the TM and ETM +
images, geometry correction has been also carried out. Ten ground 
control points were selected on each image and the RMSE (root mean 
square error) of each point is computed and is less than one pixel. 

The feature space consists of one optimal bandwidth combination, 
normalized difference vegetation index (NDVI), Modified Normalized 
Difference Water Index (MNDWI), and the wetness dimension of the 

Table 1 
Economic and demographic statistics of Hefei City.  

Statistical categories 1995 2001 2018 

Population (million) 4.11 4.421 8.087 
Grain Yield (megatons) 1.47 1.333 3.0135 
Rate of increasing output value of leading industries 

(%) 
/ 12.3 15.6 

GDP (billion Yuan) 16.75 36.34 782.291  

Fig. 1. Study area of the Chao Lake Basin in this paper and the sub-area for accuracy comparison experiment (Oct.2015 Landsat 8/OLI RGB image).  

Table 2 
Data source and description of Landsat images.  

Applications Satellite Sensor Acquision Date 
(YYYY/MM/DD) 

Land cover pattern analysis Landsat-5 TM 1995/09/02 
Landsat-7 ETM+ 2001/07/24 
Landsat-5 TM 2006/07/30 
Landsat-5 TM 2009/06/04 
Landsat-5 TM 2011/04/23 
Landsat-8 OLI 2015/10/11 
Landsat-8 OLI 2018/10/03 

Flood detection Landsat-8 OLI 2020/06/02 
Landsat-8 OLI 2020/07/20  
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Kanth–Thomas (K-T) transformation. The optimum index factor (OIF) 
(Dwivedi and Rao, 1992), which weighs the variance of each individual 
band, was utilized to select the optimal bandwidth combination. Ac-
cording to the results of the OIF, bands 3, 4 and 5 (red, near-infrared, 
and short-wave infrared) for TM/ETM + data and bands 3, 5, and 6 
(green, near-infrared, and short-wave infrared bands) for OLI data were 
chosen as a feature vector. 

3.2. Land cover classification 

3.2.1. Extreme learning Machine 
The most critical role in the classification system development pro-

cess is to construct a network model for particular experimental prob-
lems. Many researchers use the technique of acquiring prior information 
from existing data samples to construct a neural network model. These 
approaches, such as neuron network algorithms, have gone through a 
mechanism ranging from basic to complex, from specific to compre-
hensive and from single method to multi-combined. However, there are 
some issues that need to be tackled in the artificial neural network. For 
example, it is simple to collapse into the local minimum for non-linear 
optimization problems, training efficiency is not high enough, several 
parameters need to be set manually, and the activation function needs to 
be separated. To solve the problems above, a machine learning approach 
of single-hidden layer of feed-forward networks (SLFNs) called the 
Extreme Learning Machine (ELM) was proposed (Huang et al., 2004), 
which assigns the input weights and number of hidden layers randomly. 

Working for SLFNs other than normal SLFNs, the hidden layer in ELM 
need not be tuned, if only the activation functiong(x)is infinitely 
differentiable. Thus, the input weight can be randomly initialized, and it 
has little effect on the outputs (Huang et al., 2006). 

For N arbitrary distinct training samples(xi, yi), where xi =

[xi1 , xi2 ,…, xin ]
T
∈ Rnand yi = [yi1 , yi2 ,…, yim ]

T
∈ Rm. Mathematically, a 

standard SLFN with L hidden layer neurons can be modelled as 

∑L

i=1
βigi
(
xj
)
=
∑L

i=1
βig
(
wi⋅xj + bi

)
= oj, j = 1, 2,⋯,N, (1)  

where wi = [wi1 ,wi2 ,…,win ]
Tis the weight vector connecting the ith 

hidden neuron and all the input neurons, βi = [βi1 , βi2 ,⋯, βim ]
Tis the 

weight vector connecting the ith neuron in the output layer and all the 
hidden neurons and bi is the bias for the ith hidden neuron. As it is 
proved, a standard SLFN with L hidden neurons, which are activated by 
the activation functiong(x),can approximate the N training samples with 
zero error. Mathematically, it implies that ΣL

j=1||oj − yj|| = 0, i.e., there 
exist a set of (βi,wi,bi )such that 

∑L

i=1
βig
(
wi⋅xj + bi

)
= yj, j = 1, 2,⋯,N.

H(w,b, x) =

⎡

⎢
⎣

g(w1⋅x1 + b1) ⋯ g(wL⋅x1 + bL)

⋮ ⋱ ⋮

g(w1⋅xN + b1) ⋯ g(wL⋅xN + bL)

⎤

⎥
⎦

N×L

, βi =

⎡

⎢
⎢
⎢
⎢
⎣

βi1

βi2

⋮

βim

⎤

⎥
⎥
⎥
⎥
⎦

wi = [wi1 ,wi2 ,…,win ]
T

yi =
[
yi1 , yi2 ,…, yim

]T
∈ Rm

xi = [xi1 , xi2 ,…, xin ]
T
∈ Rn

β =

⎡

⎢
⎢
⎢
⎢
⎣

βT
1

⋮

βT
L

⎤

⎥
⎥
⎥
⎥
⎦

L×m

and Y =

⎡

⎢
⎢
⎢
⎢
⎣

yT
1

⋮

yT
N

⎤

⎥
⎥
⎥
⎥
⎦

N×m

.

(2)  

The above N equations can be written compactly as 

H
N⋅L

β
L⋅m

= Y
N⋅m

, (3)  

H is called the hidden layer output matrix of the neural network, the ith 

column of H is the ith hidden node output with respect to inputs x1,x2,…,

xN. 
Traditionally, throughout the training procedure, it is aimed at 

finding a specific set of (β̂ i, ŵi, b̂i)which minimizes the cost function 

E =
∑N

j=1

(
∑L

i=1
βig
(
wi⋅xj + bi

)
− yj

)2

(4) 

The stochastic gradient descent training algorithm is generally 
applied to search the minimum of the cost function by iteratively 
updating all the parameters(β̂ i, ŵi, b̂i). It is particularly time-consuming 
and sometimes it will get trapped in local minima, when an improper 
learning rate is selected. 

Whereas to the stochastic gradient descent training algorithm, the 
proposed ELM (Huang et al., 2006) has much faster training speed. In 
ELM, the input weight and the bias for the hidden layer do not need to be 
estimated, the input weight and the bias can be randomly assigned. Once 
these parameters are initialized and fixed, the hidden layer (feature 
mapping) matrix H remains unchanged. Training an ELM is to simply 
find a least-squares solutionβ̂of the linear system (3) Hβ = Y, which 
should minimize the residuals, it means 

‖Hβ̂− Y‖ =min
β
‖Hβ − Y‖ (5)  

By using Moore-Penrose generalized inverse (Rao and Mitra, 1972), the 
least-squares solutionβ̂can be estimated as 

β̂ = H†Y. (6)  

Generally, when we have more distinct training samples than hidden 
neurons (N > L), it is an over-determined case and if the normal 
matrixHTHis nonsingular. The H† is generated by 

H† =
(
HTH

)− 1HT  

i.e., 

β̂ = H†Y =
(
HTH

)− 1HTY. (7) 

If the normal matrixHTHis singular or near-singular, it is necessary to 
apply the regularization method for the estimation of Eq. (3) 

β̂ = H†Y =

(

HTH +
I
C

)− 1

HTY. (8)  

3.2.2. Extreme learning Machine with kernel function 
In some actual application cases, to solve the linear inseparable 

problems in initial space, the activation function can be replaced by 
kernel function. In this section the kernel model is introduced, which 
uses N arbitrary distinct training samplesxi, where xi =

[xi1 , xi2 ,…, xin ]
T
∈ Rnfor basis function design. The kern model is also 

linear in term of parameters (Sugiyama, 2015) 

∑L

i=1
βiK
(
x, xj

)
= yj, j = 1, 2,⋯,N (9)  

As a kernel function, the Gaussian kernel would be the most popular 
choice considering both the accuracy and efficiency: 

K(x, c) = exp
(

−
||x − c||

2h2

)

, (10)  

h and c are called the Gaussian bandwidth and the Gaussian centre 
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respectively. 
Thus, the estimation for the kernel model Eq. (8) can also be obtained 

in the same way, by replacing the hidden layer output matrix H of the 
neural network with kernel matrix K in Eq. (6): 

K =

⎡

⎣
K(x1, x1) ⋯ K(x1, xN)

⋮ ⋱ ⋮
K(xN , x1) ⋯ K(xN , xN)

⎤

⎦

N×N

(11)  

β̂ =
(
KTK

)− 1KTY. (12)  

If the normal matrixKTKis singular or near-singular, it is necessary to 
apply the regularization method for the estimation of Eq. (11) 

β̂ =

(

KTK +
I
C

)− 1

KTY. (13)  

In K-ELM function, instead of the hidden layer output function H, it is 
the kernel function which need to be given to solve the output results. 
And the H can remain unknown to the users. Therefore, we only need to 
define the type of kernel function instead of the activation function and 
node number of the hidden layer. The node number of the input layer 
and output layer are equal to the dimension of the feature space and the 
number of classes respectively. 

3.2.3. Classification system and feature space combination 
Based on the land use and land cover distribution in the Chao Lake 

Basin, the classification system is divided into five different land cover 
types, including water, algae bloom, forestland, cultivated land, construc-
tion land and bare land and one aquatic vegetation, algae bloom. Thus, the 
total number of classification type items is six (See Table 3). By 
analyzing the spectral features of each land cover type in the remote 
sensing images, the dataset of training and testing samples suitable for 
the Lake Basin were used for classification analysis. 

In order to evaluate the precision of K-ELM method in RS imagery 
classification, the classification result of a partial Landsat image was 
compared with the results calculated by maximum likelihood classifi-
cation (MLC) method, support vector machine (SVM) and standard ELM 
method. To compare the precision of different algorithm, the accuracy 
evaluation was performed in terms of overall accuracy (OA), kappa 
coefficient, producer’s accuracy (PA) and user’s accuracy (UA). 

For the precision comparison experiment, a total of 1130 pixels were 
selected as a dataset for the whole six land use types. The land cover 
types on high-resolution imagery from Google Earth of similar period 
were taken as reference for the sample selection. The training sample 
pixels were randomly selected from the dataset in proportion by pixels of 
each LUCC types, and rest pixels in the dataset were regarded as testing 
data sample. 

Subsequent spatiotemporal analysis was conducted using images 

from 1995 to 2018, a sample from 2015 by unit of pixel with a total 
number of 1600 for six classes was selected as a sample dataset. Sepa-
rated index between each two classes was greater than 1.9 in ENVI 5.3. 
In the process of formal classification experiments, the training sample 
was stratified sampled from the whole sample dataset weighted by the 
proportion of each class in dataset, and the rest sample in dataset was 
automatically settled as test sample. The sample allocation process was 
randomly conducted in MATLAB. 

3.3. Land use and land cover change monitoring 

According to the statistical results, a quantitative change for each 
land cover type was calculated by the area variation between every two 
images from neighbor period. The index called LUCC dynamic degree D 
was developed to measure the rate of changes, which can lead to a better 
description of the quantitative change of each period (Lin et al., 2018). 
And the expression is given by: 

D =
U2 − U1

U1
×

1
T2 − T1

× 100% (14)  

where U1 and U2 are the area of a given class in the year of T1 and T2 
respectively. The dynamic degree can intuitively reflect the increase and 
decrease for each land cover type in the study period. And the dynamic 
spatial–temporal changes are analyzed according to the result of each 
year’s LUCC dynamic degree. The whole workflow of this study is shown 
in Fig. 2. 

4. Results and discussion 

4.1. Algorithm comparison and precision evaluation 

To examine the accuracy of the K-ELM method, a comparison 
experiment with other three methods: Maximum Likelihood Classifica-
tion (MLC), SVM, and original ELM was generated with the image from 

Table 3 
Land use and land cover classification system with Landsat data in this paper 
(Anderson, 1976).  

Land use/cover 
Types 

Description 

Construction land Urban or built-up land, including residential, commercial and 
services, industrial, transportation, roads, mixed urban, and 
other urban land area 

Cultivated land Agricultural area, including cropland and pasture, dike paddy 
folder, groves, vegetable lands and fallow lands 

Forest land Deciduous forest, mixed forest lands, evergreen forest and 
other forest 

Bare land Exposed soils, landfill sites, and areas of active excavation 
Water body Rivers, canals, permanent open water, lakes, ponds, and 

reservoirs 
Aquatic vegetation Description 
Algae bloom Algae bloom on the water body surface, including lakes, 

reservoirs and rivers  Fig. 2. Workflow of method comparison and spatial–temporal change analysis.  
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2015. The classification results based on 2015 Landsat image for four 
different classification methods are shown in Fig. 3. Each land cover 
type is represented by an individual color. Table 4 outlines the accuracy 
and index comparison of each classification method. 

According to the classification results, images illustrated in Fig. 3, 
standard ELM illustrated in Fig. 3(c) did not perform so well on dis-
tinguishing water and algae bloom. There are also quite a few cultivated 
land pixels misclassified to forest land by ELM. We can find that K-ELM 
method could detect algae bloom more accurately, while in the results of 
MLC some of the algae pixels were misclassified to cultivated land. And a 
fraction of paddy pixels was misclassified to bare land in the classifi-
cation result of MLC, see Fig. 3(a). 

Of all the methods, K-ELM method outperforms the other four 
methods with an overall accuracy of 95.19%. SVM follows with an 
overall accuracy of 93.29%, while standard ELM has the lowest accuracy 
of 86.67%. From the accuracy comparison result we can draw a 
conclusion that the SVM method performs better than standard ELM and 
MLC, but cannot reach the accuracy produced by K-ELM method. 
Obviously, between standard ELM and K-ELM, standard ELM fails to 
distinguish forest land and cultivated land as accurately as K-ELM. 
Furthermore, K-ELM also performs better on classifying algae bloom and 
water than standard ELM both from the classification results figures and 
evaluation index. By using K-ELM could increases the classification ac-
curacy significantly, especially on distinguishing algae bloom from 
water and classifying forest land and cultivated land. 

Overall, K-ELM is the most beneficial of these classification algo-
rithms when applied to Chao Lake Basin landcover classification. Hence, 
in this study, it was used to perform the long-term monitoring of land use 
spatial pattern change. 

4.2. Spatiotemporal analysis 

4.2.1. Land use pattern monitoring from 1995 to 2018 
This section sets out with a view to perform through spatiotemporal 

analysis of land use spatial pattern changes in the Chao Lake Basin. 
Using K-ELM method, a total of seven images were analyzed for land 
cover variation for the duration of 1995 to 2018. Fig. 4 illustrates the 
temporal classification results. 

The cultivated land has grown from 1995 to 2006 with the highest 
area of 4441.6 km2 which covers more than 60% of the total area in 
2006. After that, a gradual fall started until 2018, with an occupation 
rate of 45%. During the growing season, the forest land area was great 
affected, hitting a minimum area of 484.7 km2 in 2009. From 2009 
onwards, the forest region started to steadily regenerate and grow on the 
basis of the original site of the forest. As far as land size is concerned, the 
forest area has recovered to the extent of more than 1300 km2 as the area 
in 1995, accounting for nearly 20% of the total area by 2018. 

The area remained secure for the development of land and bare land 
from 1995 to 2006. From 1995 to 2001, bare land was primarily situated 
in the boundary region between the cultivated land and the forest land., 
reflecting the phase of encroachment of cultivated land on forested land 
caused by human activities. In 2006, bare land emerged on the pe-
riphery of the metropolitan city and the development of land started to 
increase and the urban area began to develop steadily. Construction land 
area has typically seen a growing trend over the last 20 years and has 
peaked in 2015 with an area of 1022.8 km2. There was also a small 
decline in trends from 2009 to 2011 and from 2015 to 2018 related to 
the introduction of the urban land reclamation program. Much of the 
bare land has been restored to cultivated land or built for building land 
in decades to come. Fig. 4(e) also indicates that the bare land is scarcely 
dispersed in urban and rural areas in the majority of cases and within 
large parcels of agricultural land. Evidently, the findings suggest that the 
spatial distribution of bare land was primarily affected by economic 
development and changes in the status of building and cultivated lang. 

The findings of the classification show in Fig. 4(b) of 2001 and Fig. 4 
(c) of 2006 show that there has been a limited change in the water area 
from September 1995 (858.2 km2) to a maximum of 981.4 km2 in 
October 2018. This increase is attributed to the construction of a new 

Fig. 3. Classification results of four different methods: (a) MLC (b) SVM (c) ELM (d) K-ELM.  
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reservoir developed in the northwest of Hefei City between the years 
2001 and 2006. The construction of Dafangying Reservoir began in 
December 2001, and the closing of the river was finished in October 
2002. Having met he intermediate approval at the end of 2003 and 
closed the impoundment gate. In 2004, Dafangying Reservoir and 
Dongpu Reservoir, both in the northwest of Hefei District were con-
nected together. Both of the large-scale reservoirs rely on flood control 
and a mix of urban water supply, which contributes a considerable 
amount to the hydrological ecological balance of urbanized areas in the 
Chao Lake Basin. 

4.2.2. Spatial-temporal change statistic and analysis 
This section details the statistical analysis to derive the degree of 

variance of each land use type. Table 5 and 6 present statistical insights 
for land cover type for the period of 1995 to 2018 in the Chao Lake 
Basin. Fig. 5 illustrates a bar graph that shows comparisons between 
various land cover types. The complex degree of change (Table 6) of 
spatiotemporal land use encompasses trends estimated from area sta-
tistics and their effect is visible over time. 

First of all, from the area and change statistics (Tables 5 and 6) and 
graph (Figs. 5 and 6), the area of agricultural land increased from 1995 
to 2006, with a volatile rate of 2.07% from 1995 to 2001 and 3.84% 

Table 4 
Accuracy and index comparison of each classification method.  

Methods Index (%) Land use/cover types Precision Index Time (s) 

Water Forest Cultivated land Bare land Construction Algae OA(%) Kappa 

MLC PA 96.00 92.36 90.57 96.55 94.40 73.81 91.33 0.8955 3.44  
UA 99.65 99.77 78.14 85.02 95.01 98.41    

ELM PA 96.19 90.98 83.91 56.25 95.56 61.54 86.67 0.8423 2.24  
UA 95.28 98.23 74.49 81.82 87.76 66.67    

SVM PA 99.02 99.11 85.86 60.00 95.65 84.62 93.29 0.9146 6.15  
UA 96.19 98.23 86.73 81.82 89.80 91.66    

K-ELM PA 99.78 100 86.64 95.4 94.4 96.13 95.19 0.9422 9.37  
UA 97.19 93.45 95.25 93.26 93.79 99.69     

Fig. 4. Classification results of K-ELM from 1995 to 2018 in the Chao Lake Basin.  
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from 2001 to 2006 separately. It started to decline after 2006. Mean-
while, the pattern of forest variation in the region is in contrast to that of 
agricultural land. The forest area had a diminishing pattern from 1995 to 
2006 and remained largely unchanged from 2006 to 2009. The trend is 
growing from 2009 to 2018, with a volatile pace of 21.54% from 2009 to 
2011, 1.76% from 2011 to 2015 and 28.81% from 2015 to 2018, 
respectively. The variation outcomes of agricultural land and forest land 
in each increasing and declining cycle are shown in Figs. 7 and 8. 
Changes also occurred in the entire basin, especially throughout the 
wilderness zone or the moderately wild land cover in the north and 
south. 

As far as construction land area is concerned, there is a general 
variance in the pattern of rising over the entire study duration from 1995 
to 2018. As shown in classification results (Fig. 4), the construction land 
is the major component of rural land scape, township and urban area. 
Firstly, the rural landscape mainly bases on the extensive cultivated land 
with fragments of artificial construction and forests. In rural landscape, 
there are also scattered residential zones performed as pixels of 

construction land in land use and land cover types. Secondly, the 
township region includes mid-sized counties and towns, which are 
presented as small-scale construction land area scattered along traffic 
rail and roads on classification result figures. Finally, urban regions 
manifest as large polygons of construction land type and fractions of 
natural environment elements such as cultivated land, forest or water 
body in the background. The urban area mainly consists of downtown 
the Hefei City in northwest and the Chaohu city in east to the Chao Lake. 

LUCC statistics (Tables 5 and 6) indicate that construction land area 
has risen by 67.04% since the 1990 s, reflecting a major shift in the rate 
of rural settlements and dramatic urban growth pattern over the last 20 
years. As shown in Fig. 6(a), the steady increase occurred predominantly 
in the Hefei City and Chaohu City regions situated in the northwest and 
east to the Chao Lake separately. Fig. 6(a) and (b) indicate that the 
growth of construction land and the reduction of cultivated land are 
simultaneous in the Hefei City and Chaohu City areas, which means that, 
since the expansion of the city, the adjacent agricultural land has been 
encroached. The gradual increase in construction land is also evident 
from the transport networks linking major cities and towns such Wuhu- 
Hefei Expressway in 2000 and the high-speed rail line passing via Hefei 
City-Chaohu City-Lujiang County. The drastic scale of expansion is 
consistent with the rapid development and urbanization of China (Li 
et al., 2018; Zhang et al., 2018), especially for the Yangtze River Delta 
Region. 

In particular, as an evidence of the shifts in the land use trends, the 
bare land area reveals a disparity in observable variations. From 1995 to 
2006, there was a steady decrease of 2.76% and 15.09% of bare land 
respectively at the same period with the intermittent shifts in cultivated 
land, forest land and construction land along the Chao Lake Basin. 

Based on the above analyses it can be inferred that the land use and 
land cover trends in the Chao Lake Basin have undergone drastic vari-
ation for over 20 years. Land use trend variation was driven by policy 
and interacted with each other. It should be noted, for example, that the 
findings show that the rise in construction land had a substantial effect 
on agricultural land to a level of − 10.17%. This forest cover is located 
mostly in and near the urban region and waterfront areas around the 
lake, such as the southwest of Hefei District, the north, and the east coast 
of Chao Lake in Chaohu City. This can be attributed to governing policy 

Table 5 
Area statistics for land cover types from 1995 to 2018 in the Chao Lake Basin.  

Year Area (km2) 

Forest Cultivated 
land 

Construction 
land 

Bare 
land 

Algae Water 
(Algae 
included) 

1995/ 
09 

1322.8 3315.5 558.3 425.2 45.4 858.2 

2001/ 
07 

1108.8 3726.9 408.5 354.9 150 880.9 

2006/ 
07 

487.1 4441.6 522.4 87.1 32 941.7 

2009/ 
06 

484.7 4086.4 748.9 226.9 41.2 933.1 

2011/ 
04 

693.5 3733 692.4 411.8 88.1 949.3 

2015/ 
10 

742.3 3525.4 1022.8 286.3 27.8 903.3 

2018/ 
10 

1383.8 2978.4 932.6 203.8 155.4 981.4  

Table 6 
Dynamic degree of different land cover from 1995 to 2018.  

Periods Dynamic degree (%) 

Forest Cultivated land Construction Bare land Algae Water 

1995–2001 − 2.70 2.07 − 4.47 − 2.76 38.40 0.44 
2001–2006 − 11.21 3.84 5.58 − 15.09 − 15.73 1.38 
2006–2009 − 0.16 − 2.67 14.45 53.50 9.58 − 0.30 
2009–2011 21.5 − 4.32 − 3.77 40.74 56.92 0.87 
2011–2015 1.76 − 1.39 11.93 − 7.62 − 17.11 − 1.21 
2015–2018 28.81 − 5.17 − 2.94 − 9.61 153.00 2.88 
1995–2018 4.61 − 10.17 67.04 − 52.07 / /  

Fig. 5. Land use/cover area statistics. (a) Bar graph for each land cover area (b) Multi-temporal LUCC line chart.  
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directive to earmark this region for ecological tourism. In contrast to 
this, as a result of the Grain for Green Project Policy has led to a sig-
nificant decrease in cultivated land from 2006. This trend is due to a rise 
in the return of agriculture land to forest between 2006 and 2018. The 
aforementioned analysis outlines the significant impact due to human 
activity on the ecological space. It also reveals that data-driven decision 
making is of interest to biodiversity at large. One such example, is the 
validation of Grain for Green Project, where reversing urbanization 
practices by converting cultivable land into forest increase the forest 
land cover footprint area, thereby improving the phenological attributes 
of the ecosystem. 

In addition to this, land-cover shifts over the years have led to a rapid 
increase in algae contamination in the Chao Lake over the period of 
more than 20 years. The largest algae bloom was recorded in 2018, 
account for 15% of the overall body of water, admeasuring an area of 
155.4 km2. The results validate the correlation between human activ-
ities and its impact on the ecology. 

4.2.3. Algae bloom outbreaks on water surface 
From the above long-term sequence image classification results and 

data statistics (as Fig. 4 and Table 5), the continuous outbreak of Algae 
bloom in Chaohu Lake could be detected and analyzed. Over the years, 

the water body of the Chao Lake has been in a severe stage of eutro-
phication for decades, and algae bloom has occurred several times at set 
intervals (Qiu et al., 2015). From 1995 to 2018, the classification find-
ings conclusively identified the geographical distribution and specific 
area of each algae bloom outbreak. For the year 1995, the algae bloom 
was 5% of the total water area. For the subsequent year 1996 and 1997 it 
remained constant, and gradually increased by 6% as compared to 1995. 
In 2001 the algae bloom had an outbreak mainly on eastern lake surface 
and the southwest shoreline along the polder field (Fig. 4(b)). Following 
from 2006 to 2011, there were small-scale algae blooms along the 
northwest shore close to urban region and south shore close to rural 
area. For example, algae bloom is found on the south surface of lake 
surface with sparce and wide distribution and also on the surface of 
reservoirs and river water bodies in the lakeside of Hefei City in 2011, 
see Fig. 4(e). In 2015, algae bloom sporadically distributed on the lake 
surface. By the year of 2018, algae bloom accounted for 15.8% of the 
total water area admeasuring 155.4 km2, which is concerned with ur-
banization and intense human activities reflected by rapid construction 
land expansion and frequent cultivated land change in Fig. 6. This 
constant increase in the algae bloom is attributed to rapid urbanization 
and the pollution of water sources due to Nonpoint source pollution. 

4.2.4. Regional flood hazard detection 
In the summer of 2020, the area around the Chao Lake was hit by a 

once-in-a-century flood disaster. The flat terrain, complex river network 
and uneven spatio-temporal distribution of precipitation has the po-
tential to create floods across the Chao Lake Basin impacting the 
ecosystem at large. With the catchment area being a sub-tropical 
monsoon climate zone with high seasonal variability of precipitation. 
The likelihood occurrence of flood is inevitable, especially during 
summer or pre-harvest. These floods tend to have a significant impact on 
the crop yields. It is of interest for us to estimate the regional area where 
flooding occurred in July 2020 surrounding the Chao Lake. In this sec-
tion, Landsat OLI images were used to conduct flood detection by post- 
classification method based on k-ELM and compare between normal 
seasonal time frame on June, 02, 2020 and the flooded temporal frame 
on July, 20, 2020. 

The analytical insights drawn from the studies outline that there has 
been a significant increase in the water area by 458.6445 km2 compared 
to its original state. This 50.79% increase in the water area is identified 
by land submerged due to flooding. Through the flood spatial distribu-
tion in Fig. 9, the flooded area mainly lies in Lujiang County and Shu-
cheng Count to the southwest of Chao Lake Basin. 

Fig. 6. Construction land, cultivated land and Forest land cover change be-
tween 1995 and 2018. 

Fig. 7. Forest land cover change between 1995 and 2009, 2009 and 2018.  
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For further analyzing, Table 7 outlines flooded area statistic of each 
land cover type and the percentage of the cultivable land impacted. This 
would help us in predicting socio-economic loss incurred to these floods. 
In terms of affected area, it is to be noted that cultivable and construc-
tion land had significant impact to local residents. The affected area of 
cultivated land was 317.5 km2, accounting for 69.2% of total flood area 
and 10.5% of original cultivated land area. The affected area of con-
struction land was 107.5 km2, making up 23.4% of total flood area and 
7.2% of original area. According to percentage of original area, among 
the various land cover types, cultivated land and bare land suffered more 
from flood hazard compared with buildings and forests. 

As the images were taken during heavy rainfall, a fraction of error is 
attributed to the climatic conditions such as dense clouds in the south-
east during which the images were captured. But we strongly believe 
that still could be used a general frame of reference for comparative 
analysis. 

5. Conclusions 

In this paper, we used the K-ELM algorithm to derive six type of land 
cover patterns for the duration of 1995 to 2018 using long term Landsat 
images in the Chao Lake Basic and provided crucial insights into the 

Fig. 8. Cultivated land cover change between 1995 and 2006, 2006 and 2018.  

Fig. 9. Flood-affected area and local zoom from water body change detection between June 2 and July 20.  

Table 7 
Flood area statistics of each land cover type and the percentage of the whole 
flood area and its original area.  

Original land cover 
type 

Forest Cultivated 
land 

Construction 
land 

Bare 
land 

Flood affected area 
(km2) 

18.2655 317.502 107.4861 4.1058 

Original land cover 
area (km2) 

974.2 3012.1 1488.2 34 

Percentage of flood 
(%) 

3.98 69.23 23.44 0.90 

Percentage of original 
area (%) 

1.87 10.54 7.22 12.08  
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detection of upstream lake basin conservation areas estimated about 
6480 km2. The spatio-temporal change analysis was carried out with 
dynamic degree and change statistics based on the post classification 
change monitoring results, which could help us enforce regulatory 
measures to prevent algae bloom outbreaks and flood disaster. A thor-
ough review of the results allowed the following conclusions to be 
drawn:  

1) The extreme learning machine with kernel function was successfully 
applied to classify the land cover types in the Chao Lake Basin from 
1995 to 2018. The accuracy of K-ELM system was first tested and 
compared with three other conventional classification systems. The 
results show that K-ELM was able to attain the highest average pre-
cision at 95.19%, which demonstrates the accuracy and stability of 
the K-ELM method and the reliability of follow-up multi-temporal 
classification results.  

2) Using the land use data based on classification findings, we have 
successfully evaluated land use spatial pattern trends for Chao Lake 
Basin from 1995 to 2018. It is to be noted that the lake and river 
system and their surrounding basin land cover are interconnected 
together as a complete ecosystem in the watershed catchment area. 
The land use and land cover pattern have significant variation for the 
following categories: cultivated land, forest land and constructed land 
with dynamic degree of change of − 10.17%, 4.61, 67.04% respec-
tively. Along with economic and population growth, there is an 
increasing trend towards urbanization in the Chao Lake Basin. Some 
of the major ecological concerns identified during the study period 
were the ongoing algae bloom outbreaks with total water area pro-
portion of 15% by 2018.  

3) Furthermore, this study has clearly outlined flood affected areas 
through change detection results based on Landsat OLI images ac-
quired before and during the 2020 flood of Chao Lake Basin. The 
flood disaster in July 2020 has a significant impact on the ecology of 
the affected region with a submerged area of 458.6445 km2, and 
most of the affected areas were farmland and village buildings. The 
flood detection results would help to predict and evaluate the socio- 
economic impact and ecological degradation on the Chao Lake Basin 
caused by floods over the next years. 

One of the main shortcomings of this research is its inability to 
conduct comprehensive land cover analysis to classify vegetation type or 
industrial development regions due to limited spatial resolution to the 
Landsat results (30 m spatial resolution). In order to identify and track 
phenological changes, we suggest the use of high resolution QuickBird 
or GF Satellite data for localized region where a thorough analysis is to 
be carried out. Investigation of algae bloom causes should go in-depth 
combined with local pollution emission statistics and chemical anal-
ysis in the future at the level of watershed, for example, the quantitively 
correlation among metrological factor, non-point source pollution, and 
residential or industrial emission and algae outbreaks in the Chao Lake 
Basin. The authors also suggest that further researches should use multi- 
source data, such as weather stations, field surveys, satellite images, 
hydrological data, and in-situ geospatial environmental sensor data, to 
perform a comprehensive study to assess the impact of human activity 
on the ecosystem. 

CRediT authorship contribution statement 

Yi Lin: Project administration, Conceptualization, Supervision, 
Formal analysis. Tinghui Zhang: Methodology, Data curation, Writing - 
original draft, Software, Visualization. Qin Ye: Validation, Methodol-
ogy. Jianqing Cai: Methodology, Formal analysis. Chengzhao Wu: 
Resources, Conceptualization. Awase Khirni Syed: Writing - review & 
editing, Formal analysis. Jonathan Li: Validation, Writing - review & 
editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

The authors would like to thank editor and reviewers for their 
insightful comments improving this paper. This work was supported by 
the National Natural Science Foundation of China (Project No. 
41771449) and the DAAD Thematic Network (Project No. 57421148). 

References: 

Aghsaei, H., Mobarghaee Dinan, N., Moridi, A., Asadolahi, Z., Delavar, M., Fohrer, N., 
Wagner, P.D., 2020. Effects of dynamic land use/land cover change on water 
resources and sediment yield in the Anzali wetland catchment, Gilan. Iran. Sci. Total 
Environ. 712, 136449 https://doi.org/10.1016/j.scitotenv.2019.136449. 

Anderson, J.R., 1976. A land use and land cover classification system for use with remote 
sensor data. US Government Printing Office. 

Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C.A., Wardlow, B.D., Li, Z., 2018. A high- 
performance and in-season classification system of field-level crop types using time- 
series Landsat data and a machine learning approach. Remote Sens. Environ. 210, 
35–47. 

De Wit, M., Stankiewicz, J., 2006. Changes in surface water supply across Africa with 
predicted climate change. Science (80-.) 311, 1917–1921. https://doi.org/10.1126/ 
science.1119929. 
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blooms by satellite remote sensing. Estuar. Coast. Shelf Sci. 67, 303–312. https:// 
doi.org/10.1016/j.ecss.2005.11.024. 

Li, G., Sun, S., Fang, C., 2018. The varying driving forces of urban expansion in China: 
Insights from a spatial-temporal analysis. Landsc. Urban Plan. 174, 63–77. https:// 
doi.org/10.1016/j.landurbplan.2018.03.004. 

Lin, Y., Yu, J., Cai, J., Sneeuw, N., Li, F., 2018. Spatio-temporal analysis ofwetland 
changes using a kernel extreme learning machine approach. Remote Sens. 10, 1–15. 
https://doi.org/10.3390/rs10071129. 

Liu, Y., Huang, X., Yang, H., Zhong, T., 2014. Environmental effects of land-use/cover 
change caused by urbanization and policies in Southwest China Karst area - A case 
study of Guiyang. Habitat Int. 44, 339–348. https://doi.org/10.1016/j. 
habitatint.2014.07.009. 

Y. Lin et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.scitotenv.2019.136449
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0015
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0015
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0015
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0015
https://doi.org/10.1126/science.1119929
https://doi.org/10.1126/science.1119929
https://doi.org/10.1016/j.ecolind.2015.12.009
https://doi.org/10.1016/j.ecolind.2015.12.009
https://doi.org/10.1007/s41651-020-00048-5
https://doi.org/10.1016/j.rse.2013.03.010
https://doi.org/10.1016/j.rse.2013.03.010
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0035
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0035
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0035
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0040
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0040
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0040
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0040
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0045
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0045
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0050
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0050
https://doi.org/10.1016/j.rse.2014.10.003
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0060
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0060
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0065
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0065
https://doi.org/10.1007/s10661-016-5494-x
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0075
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0075
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0075
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0075
https://doi.org/10.1016/j.ecss.2005.11.024
https://doi.org/10.1016/j.ecss.2005.11.024
https://doi.org/10.1016/j.landurbplan.2018.03.004
https://doi.org/10.1016/j.landurbplan.2018.03.004
https://doi.org/10.3390/rs10071129
https://doi.org/10.1016/j.habitatint.2014.07.009
https://doi.org/10.1016/j.habitatint.2014.07.009


International Journal of Applied Earth Observations and Geoinformation 102 (2021) 102413

12

Luo, L., Wang, X., Liu, J., Guo, H., Zong, X., Ji, W., Cao, H., 2017. VHR GeoEye-1 imagery 
reveals an ancient water landscape at the Longcheng site, northern Chaohu Lake 
Basin (China). Int. J. Digit. Earth 10, 139–154. 

McIver, D.K., Friedl, M.A., 2002. Using prior probabilities in decision-tree classification 
of remotely sensed data. Remote Sens. Environ. 81, 253–261. https://doi.org/ 
10.1016/S0034-4257(02)00003-2. 

MEEPPC, 2002. Environmental Quality Standards for Surface Water. URL http://www. 
mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml. 

Nsubuga, F.W.N., Botai, J.O., Olwoch, J.M., Rautenbach, C.J.D., Kalumba, A.M., 
Tsela, P., Adeola, A.M., Sentongo, A.A., Mearns, K.F., 2017. Detecting changes in 
surface water area of Lake Kyoga sub-basin using remotely sensed imagery in a 
changing climate. Theor. Appl. Climatol. 127, 327–337. 

Palmer, S.C.J., Kutser, T., Hunter, P.D., 2015. Remote sensing of inland waters: 
Challenges, progress and future directions. Remote Sens. Environ. 157, 1–8. https:// 
doi.org/10.1016/j.rse.2014.09.021. 

Qiu, L., Dijk, M.P.V., Wang, H., 2015. Water pollution and environmental governance of 
the Tai and Chao Lake Basins in China in an international perspective. J. Water 
Resour. Prot. 07, 830–842. https://doi.org/10.4236/jwarp.2015.710067. 

Rao, C.R., Mitra, S.K., 1972. Generalized inverse of a matrix and its applications, in: 
Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and 
Probability. Theory of Statistics vol. 1. 

Rodriguezgaliano, V.F., Chicaolmo, M., Abarcahernandez, F., Atkinson, P.M., 
Jeganathan, C., 2012. Random Forest classification of Mediterranean land cover 
using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 
121, 93–107. 

Stow, D.A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmrich, F., Houston, S., 
Racine, C., Sturm, M., Tape, K., 2004. Remote sensing of vegetation and land-cover 
change in Arctic Tundra Ecosystems. Remote Sens. Environ. 89, 281–308. 

Sugiyama, M., 2015. Introduction to statistical machine learning. Morgan Kaufmann. 
Tong, X., Pan, H., Xie, H., Xu, X., Li, F., Chen, L., Luo, X., Liu, S., Chen, P., Jin, Y., 2016. 

Estimating water volume variations in Lake Victoria over the past 22 years using 
multi-mission altimetry and remotely sensed images. Remote Sens. Environ. 187, 
400–413. https://doi.org/10.1016/j.rse.2016.10.012. 

Wang, M., Shi, W., 2008. Satellite-observed algae blooms in China’s Lake Taihu. EOS 
Trans. 89 (22), 201–202. https://doi.org/10.1029/2008EO220001. 

Wasige, J.E., Groen, T.A., Smaling, E., Jetten, V., 2013. Monitoring basin-scale land 
cover changes in Kagera Basin of Lake Victoria using ancillary data and remote 
sensing. Int. J. Appl. Earth Obs. Geoinf. 21, 32–42. 

Were, K.O., Dick, T.B., Singh, B.R., 2013. Remotely sensing the spatial and temporal land 
cover changes in Eastern Mau forest reserve and Lake Nakuru drainage basin. Kenya. 
Appl. Geogr. 41, 75–86. https://doi.org/10.1016/j.apgeog.2013.03.017. 

Wolter, P.T., Johnston, C.A., Niemi, G.J., 2006. Land use land cover change in the US 
Great Lakes basin 1992 to 2001. J. Great Lakes Res. 32, 607–628. 

Wu, J., Luo, J., Tang, L., 2019. Coupling relationship between urban expansion and lake 
change-A case study of Wuhan. Water (Switzerland) 11. https://doi.org/10.3390/ 
w11061215. 

Zhang, Z., Liu, F., Zhao, X., Wang, X., Shi, L., Xu, J., Yu, S., Wen, Q., Zuo, L., Yi, L., Hu, S., 
Liu, B., 2018. Urban expansion in China Based on remote sensing technology: A 
review. Chinese Geogr. Sci. 28, 727–743. https://doi.org/10.1007/s11769-018- 
0988-9. 

Zhao, Y., Zhang, K., Fu, Y., Zhang, H., 2012. Examining land-use/land-cover change in 
the lake dianchi watershed of the Yunnan-Guizhou plateau of Southwest China with 
remote sensing and GIS techniques: 1974–2008. Int. J. Environ. Res. Public Health 9, 
3843–3865. https://doi.org/10.3390/ijerph9113843. 

Y. Lin et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0303-2434(21)00120-3/h0105
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0105
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0105
https://doi.org/10.1016/S0034-4257(02)00003-2
https://doi.org/10.1016/S0034-4257(02)00003-2
http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml
http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0120
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0120
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0120
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0120
https://doi.org/10.1016/j.rse.2014.09.021
https://doi.org/10.1016/j.rse.2014.09.021
https://doi.org/10.4236/jwarp.2015.710067
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0135
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0135
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0135
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0140
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0140
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0140
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0140
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0145
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0145
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0145
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0150
https://doi.org/10.1016/j.rse.2016.10.012
https://doi.org/10.1029/2008EO220001
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0165
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0165
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0165
https://doi.org/10.1016/j.apgeog.2013.03.017
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0175
http://refhub.elsevier.com/S0303-2434(21)00120-3/h0175
https://doi.org/10.3390/w11061215
https://doi.org/10.3390/w11061215
https://doi.org/10.1007/s11769-018-0988-9
https://doi.org/10.1007/s11769-018-0988-9
https://doi.org/10.3390/ijerph9113843

	Long-term remote sensing monitoring on LUCC around Chaohu Lake with new information of algal bloom and flood submerging
	1 Introduction
	2 Study area and datasets
	2.1 Study area
	2.2 Data sets collection

	3 Method
	3.1 Preprocessing
	3.2 Land cover classification
	3.2.1 Extreme learning Machine
	3.2.2 Extreme learning Machine with kernel function
	3.2.3 Classification system and feature space combination

	3.3 Land use and land cover change monitoring

	4 Results and discussion
	4.1 Algorithm comparison and precision evaluation
	4.2 Spatiotemporal analysis
	4.2.1 Land use pattern monitoring from 1995 to 2018
	4.2.2 Spatial-temporal change statistic and analysis
	4.2.3 Algae bloom outbreaks on water surface
	4.2.4 Regional flood hazard detection


	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References:


