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A B S T R A C T   

Semantic segmentation in 3D point-clouds plays an essential role in various applications, such as autonomous 
driving, robot control, and mapping. In general, a segmentation model trained on one source domain suffers a 
severe decline in performance when applied to a different target domain due to the cross-domain discrepancy. 
Various Unsupervised Domain Adaptation (UDA) approaches have been proposed to tackle this issue. However, 
most are only for uni-modal data and do not explore how to learn from the multi-modality data containing 2D 
images and 3D point clouds. We propose an Adversarial Unsupervised Domain Adaptation (AUDA) based 3D 
semantic segmentation framework for achieving this goal. The proposed AUDA can leverage the complementary 
information between 2D images and 3D point clouds by cross-modal learning and adversarial learning. On the 
other hand, there is a highly imbalanced data distribution in real scenarios. We further develop a simple and 
effective threshold-moving technique during the final inference stage to mitigate this issue. Finally, we conduct 
experiments on three unsupervised domain adaptation scenarios, ie., Country-to-Country (USA →Singapore), 
Day-to-Night, and Dataset-to-Dataset (A2D2 →SemanticKITTI). The experimental results demonstrate the 
effectiveness of proposed method that can significantly improve segmentation performance for rare classes. Code 
and trained models are available at https://github.com/weiliu-ai/auda.   

1. Introduction 

The main goal of 3D Semantic segmentation is to estimate the se-
mantic class (e.g., bike, car, building, road) for each point in the 3D point 
cloud (Serna and Marcotegui, 2014; Liu et al., 2016; Grilli et al., 2017; 
Dai et al., 2018; Luo et al., 2020). It plays an important role in many 
applications, such as autonomous driving, robot control, and mapping. 
Recently, advances in the 3D semantic segmentation significantly 
improved the results with convolutional neural networks (CNN) (Wu 
et al., 2018; Wu et al., 2019; Wang et al., 2019). However, these methods 
still suffer limitations from the following two aspects. Firstly, training a 
3D semantic segmentation network usually requires massive amounts of 
labeled 3D point cloud data, which is time-consuming and labor- 
intensive to collect. Secondly, models trained on one dataset usually 
encounter a significant performance degradation on a new domain due 

to the appearance distribution gap or shift between different datasets, 
such as different illumination conditions and different locations. 

To reduce the domain gap, various Unsupervised Domain Adaptation 
(UDA) approaches (Qin et al., 2019; Wu et al., 2019; Jaritz et al., 2020; 
Luo et al., 2020) have been proposed. There are also a few UDA studies 
(Qin et al., 2019; Wu et al., 2019; Luo et al., 2020) have been proposed 
for the 3D segmentation based on a single modality. However, in prac-
tice, 3D datasets are often multi-modal, typically consisting of 3D point 
clouds and 2D images. On the other side, related researches (Guo et al., 
2019; Vu et al., 2019; Feng et al., 2020) have shown that exploiting the 
complementary information between the 2D and the 3D modalities is 
beneficial for the segmentation task. 

Captured by different devices, the 2D and 3D modalities have very 
different properties and can resist different domain shifts. Therefore, it is 
a challenge to leverage their relationships to improve the performance 
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of both modalities during the UDA. Jaritz et al. (2020) propose a cross- 
modal UDA framework named xMUDA, which achieves state-of-the-art 
performance for UDA-based 3D segmentation. The xMUDA adopts a KL- 
divergence to transfer the information of the two-modality among the 
matched 2D pixels and 3D points, and enforce the estimation of the 2D 
and 3D to be consistent. However, the matched 2D pixels are extremely 
sparse and cannot fully utilize the global structure information of the 
whole image in the source domain. In this study, we hypothesize that it 
could be beneficial for the UDA to use the whole 2D images instead of 
sampling sparse 2D points in the source domain. The primary motivation 
is that making the image features from the two domains with a similar 
distribution could narrow the domain gap and thus improve 3D se-
mantic segmentation. To do so, we propose a domain adaptation 
framework for 3D semantic segmentation, combining adversarial 
learning and multi-modal learning. 

On the other hand, real-world datasets have highly imbalanced data 
distributions. In general, road and background often constitute the 
dominant classes. Therefore, the trained segmentation model will likely 
be biased to these dominant classes, which will lead to a low recall rate 
for the rare classes (e.g., pedestrian and bike). To address this issue, we 
further incorporate a cost-sensitive loss function to balance the influence 
of different classes and propose an adaptive threshold-moving post- 
processing step for improving the recall rate for rare classes. 

To summarize, the main contributions of this study are as follows:  

(1) To make full use of the 2D features for 3D semantic segmentation, 
we proposes a UDA based segmentation framework integrating 
adversarial learning with multi-modal learning, which improves 
the predicted results of the 2D sub-network by a significant 
margin.  

(2) To mitigate the harmful effects of imbalanced class distribution, 
we devise a simple but effective threshold-moving technique, 
which significantly improves the segmentation performance for 
rare classes while keeping the overall segmentation performance 
at a high level.  

(3) We performed experiments on three unsupervised domain 
adaptation scenarios for 3D semantic segmentation. Experi-
mental results demonstrate that our method obtains competitive 
performance to existing methods. 

2. Related work 

In this section, we discuss the related works regarding: unsupervised 
domain adaptation, adversarial domain adaptation, and multi-modality 
learning. 

2.1. Unsupervised domain adaptation 

The aim of domain adaptation (DA) is to mitigate the distribution 
discrepancy between the source domain and target domain (Wilson and 
Cook, 2020; Toldo et al., 2020). To bridge the domain gap, various UDA 
techniques (Liu and Li, 2014; Tzeng et al., 2017; Yan et al., 2019; Zhao 
et al., 2019; Zhao et al., 2019; Zhu et al., 2019; Iqbal and Ali, 2020; 
Zhang et al., 2020) have been proposed. These methods mainly 
approach UDA by minimizing the discrepancy between the labeled 
source and unlabeled target data at three different levels (Toldo et al., 
2020), including input-level (Li et al., 2019; Hoffman et al., 2018), 
feature-level (Zhu et al., 2018; Volpi et al., 2018; Lee et al., 2019), and 
output-level (Luo et al., 2019; Vu et al., 2019; Pan et al., 2020). 

To accomplish the input-level DA, many works address the statistical 
matching at the input level to achieve cross-domain uniformity of visual 
appearance of the input image samples (Toldo et al., 2020). These works 
mainly utilize style transfer techniques to close the source’s marginal 
distributions and target images from original image-level sets. The 
typical approach is to design a function that maps source samples into a 
domain invariant space. 

The feature-level DA approaches seek a distribution alignment of 
feature embeddings. All these works share the same core idea of forcing 
the feature extractor to extract domain-invariant features by adjusting 
the distribution of latent representations from source and target 
domains. 

To avoid the high complexity, the output-level adaptation performs 
the cross-domain distribution alignment across the segmentation output 
space. A domain discriminator is provided with prediction maps from 
source and target inputs, and is optimized to recognize the input 
domain. Conversely, the segmentation network has to fool it by aligning 
the distribution of predicted dense labels across domains. 

Although many UDA works have been proposed for segmentation, 
most these studies deal with the 2D image segmentation (Zou et al., 
2018; Chen et al., 2019; Vu et al., 2019; Vu et al., 2019; Pan et al., 2020; 
Iqbal and Ali, 2020). Only a few have been proposed for the 3D seg-
mentation (Qin et al., 2019; Wu et al., 2019; Luo et al., 2020). Compared 
with the 2D image modality, the 3D point clouds are usually unstruc-
tured and unordered, making its corresponding UDA more challenging. 

2.2. Adversarial domain adaptation 

In the field of 2D image segmentation (Liu et al., 2018; Mi and Chen, 
2020), various UDA approaches have been proposed to minimize cross- 
domain discrepancy by employing adversarial training (Vu et al., 2019; 
Tzeng et al., 2017; Tsai et al., 2018; Vu et al., 2019; Pan et al., 2020; 
Michieli et al., 2020). These adversarial schemes mainly consist of two 
networks, a generator paired with a discriminator. The generator is 
designed to learn to produce data with the same statistical distribution 
of training samples. The goal of the discriminator is to discern the input 
domain of the input data. To make statistics of generated data match 
that of the training set, the generator is optimized to fool the discrimi-
nator by producing samples that resemble the original ones. Adversarial 
learning-based UDA methods have demonstrated the efficiency in 
aligning feature distributions of the two domains at the image feature 
level (Hoffman et al., 2018; Murez et al., 2018) or the output level (Tsai 
et al., 2018; Tsai et al., 2019).Hoffman et al. (2016) has been the first to 
address domain adaptation in semantic segmentation. In particular, they 
devise a global domain adversarial alignment based on a domain 
discriminator taking as input the feature representations from the seg-
mentation network’s intermediate activations. Following a similar 
approach to (Hoffman et al., 2016), a line of works (Chen et al., 2018; 
Zhang et al., 2018; Li et al., 2019) seeks for alignment of latent network 
embeddings. There are some researches (Hoffman et al., 2018; Chen 
et al., 2019) combines a generative approach with the adversarial 
feature alignment. To accomplish category-wise adaptation, some works 
(Chen et al., 2017; Du et al., 2019) exploit multiple feature 
discriminators. 

To avoid the complexity of high-dimensional feature space, there are 
many works (Tsai et al., 2018; Chang et al., 2019; Luo et al., 2019) 
accomplish adversarial adaptation on the low-dimensional output space 
spanned by the segmentation network. These schemes typically consist 
of a segmentation network and a domain discriminator. In particular, 
the segmentation network has to fool the domain discriminator by 
aligning the distribution of predicted labels across domains. Conversely, 
the domain discriminator takes as input predicted segmentation maps 
from source and target. 

2.3. Multi-Modality Learning 

In practical application, 3D datasets usually consist of data from 
different modalities, typically 3D point clouds (Liu et al., 2019) and 2D 
images. Therefore, it is essential to explore the relationship between 
different modalities. Previous studies (Guo et al., 2019; Vu et al., 2019; 
Jaritz et al., 2020; Feng et al., 2020) have shown the benefits of 
exploiting the complementarity between 2D and 3D modalities for 3D 
semantic segmentation. 
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There are two common types of multi-modal 2D-and-3D data. One is 
RGB-D data (Valada et al., 2019; Vu et al., 2019), consisting of a RGB 
image and a depth image where are pixel-to-pixel corresponded. Vu 
et al. (2019) built a unified depth-aware UDA framework, DADA, 
improving the semantic segmentation by leveraging the depth predic-
tion as an auxiliary task. Valada et al. (2019) proposed a UDA archi-
tecture, which involves two modality-specific encoders and a unified 
decoder. The unified decoder fuses the intermediate representations 
from the two encoders as input and is trained in a self-supervised 
adaptation fusion manner. 

The other type is a 3D point cloud with a 2D image. Compared to 
RGB-D data, it is harder to fuse the 3D point cloud with a 2D image since 
the 3D point cloud data is unstructured and unordered. In the task of 
object detection, the common strategy is projecting both 2D and 3D 
features into a ‘LiDAR front view’ (Meyer et al., 2019) or ‘bird-eye view’ 
(Liang et al., 2018; Liang et al., 2019). For the semantic segmentation 
task, a solution for multi-modality learning is to interpolate 2D features 
from single-view or multi-view images into the 3D point cloud, thus 
enabling joint 2D-3D processing (Su et al., 2018; Chiang et al., 2019; 
Jaritz et al., 2019; Jaritz et al., 2020). Similar toJaritz et al. (2020), we 
only use single view images and their corresponding point clouds for the 
multi-modality learning in this study. 

3. Problem definition 

Suppose we have a labeled source dataset S = {xj
s, yj

s}
Ns

j=1 and an 

unlabeled target dataset T = {xj
t}

Nt

j=1, where Ns and Nt are the number of 
the observed source point clouds and target point clouds, respectively. 
The domain S and domain T share the same predefined semantic classes 
{1,…,C}, where C is the number of classes. For the source dataset S, each 
sample xs consists of an unlabeled 2D front image x2D

s and a labeled 3D 
point cloud x3D

s with point-wise 3D semantic segmentation labels ys. The 
image data labels are obtained by the projection of the corresponding 3D 
labeled point clouds on the image plane. Hence, only a small portion of 
image pixels have labels. For each sample xt in T, there is no available 
annotation in the training stage. 

Given S and T, the main goal for the 3D semantic segmentation task is 
to learn an unsupervised adaption model that can correctly predict the 
labels of every 3D point for the target domain. Notice that, only the 3D 
points visible in the corresponding image are used for training and 
evaluation. 

4. The proposed framework 

Fig. 1 illustrates the architecture of our proposed adversarial 
training-based segmentation framework for bridging the domain gap. 
The proposed framework mainly involves two modules. One module is a 
two-stream segmentation network, which predicts the segmentation 
maps for the point cloud and image pair from either the source or target 
domain. The other module acts as a domain discriminator that takes the 
feature maps from the 2D segmentation sub-network and tries to predict 
the input domain. By leveraging the adversarial training strategy, we 
enforce the image features from the two domains have a similar distri-
bution by fooling the discriminator. 

4.1. Supervised learning on the labeled source domain 

On the labeled source domain, we train our model with a supervised 
segmentation loss, i.e., cross-entropy loss function. In detail, for each 
sample xs ∈ S, it consists of a 2D front image x2D

s , a 3D point cloud x3D
s , 

and point-wise semantic segmentation labels ys. Let N be the number of 
points in x3D

s , the supervised segmentation loss for the 2D front image 
x2D

s can be formulated as: 

L
2D
seg(xs, ys) = −

1
N

∑N

n=1

∑C

c=1
y(n,c)s logP(n,c)

2D , (1)  

where y(n,c)s and P(n,c)
2D is the ground-truth label and prediction of the point 

n for the class c, respectively. 
Similarly, the supervised segmentation loss for the point cloud x3D

s is 
as follows: 

L
3D
seg(xs, ys) = −

1
N

∑N

n=1

∑C

c=1
y(n,c)s logP(n,c)

3D . (2)  

Therefore, the overall objective for the 2D and the 3D sub-networks on 
the labeled source domain is: 

min
θ2D ,θ3D

1
Ns

∑

xs∈S
L

2D
seg(xs, ys)+L

3D
seg(xs, ys), (3)  

where θ2D and θ3D are the parameters of the 2D sub-network and the 3D 
sub-network, respectively. 

Fig. 1. Illustration of the proposed 3D semantic 
segmentation framework. The proposed frame-
work consists of two main modules. One module is 
a two-stream network which predicts the semantic 
labels for the input point cloud and the corre-
sponding front image, which could be from the 
source or target domain. The other module acts as 
a domain discriminator that takes the feature maps 
from the 2D segmentation sub-network and tries to 
predict the domain of the input. (Best view in 
color). (For interpretation of the references to 
colour in this figure legend, the reader is referred 
to the web version of this article.)   
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4.2. Adversarial learning scheme 

To reduce the domain gap between the source domain and the target 
domain, we adopt adversarial learning to align the feature distribution 
between these two domains. The main intuition of adversarial learning 
is that if we can learn a feature space that minimizes the distance be-
tween the source and target distributions, then we could apply the 
model trained on the labeled source domain directly to the target 
domain. In this study, the proposed adversarial learning is implemented 
in an adversarial training procedure with the assistance of a discrimi-
nator. The discriminator network takes the 2D representations from the 
two domains as inputs and classifies them either from the source or the 
target domain. By contrast, the 2D feature networks will then optimize 
into a feature distribution space in which the discriminator can not 
distinguish the input domains. 

As shown in the top-right of Fig. 1, given a front image x from the 
source or target domain, the 2D segmentation sub-network extract the 
feature map F2D of the image x. After that, the discriminator predicts 
whether the feature map F2D is from the source or the target domain. 
During the training, the 2D segmentation sub-network will try to fool the 
discriminator by making feature maps from the two domains with a 
similar distribution. 

To this end, we construct a 4-layer fully-convolutional discriminator 
network D with parameters θDis. It takes the image feature F2D as input 
and is trained to distinguish the source images from the target ones. We 
label the source domain and the target domain as ‘1’ and ‘0’, respec-
tively. Let L D represent the cross-entropy domain classification loss of 
the discriminator. The training objective of the discriminator is: 

min
θDis

1
Ns

∑

x2D
s

L D(F2D
s , 1)+

1
Nt

∑

x2D
t

L D(F2D
t , 0). (4)  

As mentioned above, the 2D segmentation sub-network is trained to fool 
the discriminator. Thus, the adversarial objective to update the 2D 
segmentation sub-network is: 

min
θ2D

1
Nt

∑

x2D
t

L D(F2D
t , 1) (5)  

4.3. Multi-modal learning 

In general, the 2D image depicts the object’s appearance while the 
3D image indicates the object structure from the depth that makes these 
two modalities provide complementary information for each other. To 
learn a shared space that both 2D and 3D features are projected to, we 
use the KL divergence (Kullback and Leibler, 1951; Jaritz et al., 2020) to 
increase the similarity of output distribution from the 2D and 3D mo-
dalities. Given a sample x from the source domain or the target domain, 
the cross-modal loss for the 2D segmentation sub-network is defined as 
follows: 

L
2D
xM(x) = −

1
N

∑N

n=1

∑C

c=1
P(n,c)

2D log
P(n,c)

2D

P(n,c)
3D

, (6)  

where P(n,c)
2D and P(n,c)

3D are the predicted probabilities of the 2D sub- 
network and the 3D sub-network for the point n about the class c, 
respectively. 

Likewise, the KL divergence based cross-modal loss for the 3D seg-
mentation sub-network is: 

L
3D
xM(x) = −

1
N

∑N

n=1

∑C

c=1
P(n,c)

3D log
P(n,c)

3D

P(n,c)
2D

. (7)  

4.4. Complete objectives for the proposed learning scheme 

The complete objective for the 2D segmentation sub-network is the 

combination of the supervised segmentation loss L 2D
seg on the source 

domain, the adversarial objective on the target domain, and the cross- 
modal loss L 2D

xM on both of the two domains. We formulate the com-
plete objective for the 2D segmentation sub-network as: 

min
θ2D

1
Ns

∑

xs∈S

{
L

2D
seg(xs, ys) + λsL

2D
xM(xs)

}
+

1
Nt

∑

xt∈T

{
λadvL D(F2D

t , 1)

+ λtL
2D
xM(xt)

}
, (8)  

where hyperparameters λs, λt, and λadv are the weights of the corre-
sponding loss functions. 

The complete objective for the 3D segmentation sub-network is the 
combination of the supervised segmentation loss L 3D

seg on the source 

domain, and the cross-modal loss on both of the two domains L 3D
xM. 

Thus, the objective loss function of 3D segmentation sub-network can be 
formulated as: 

min
θ3D

1
Ns

∑

xs∈S

{
L

3D
seg(xs, ys) + λsL

3D
xM(xs)

}
+

1
Nt

∑

xt∈T
λtL

3D
xM(xt). (9)  

The values of the three hyper-parameters are selected on the validation 
set. For each epoch during training on source and target, we alterna-
tively optimize the segmentation network and the discriminator. Spe-
cifically, the segmenation network is optimized by the objective loss 
function (8) and (9). The discriminator is optimized by the objective loss 
function (4). 

4.5. Techniques to deal with class imbalance 

In practice, many real-world datasets have an imbalanced class dis-
tribution, ie., pedestrian, bike and truck often constitute a minority of the 
data set in contrast with road and background (Luo et al., 2018). The 
imbalanced class distribution could bias the segmentation model to the 
dominant classes. In this study, we use two techniques to deal with this 
class-imbalance issue, including incorporating class ratio priors for 
training and a simple threshold-moving technique. 

To tackle the class imbalance issue, we first incorporate class ratio 
priors computed from the source labels into the segmentation frame-
work during the training phase. Similar to Vu et al. (2019) and Jaritz 
et al. (2020), we assign different weights for different classes. 
Concretely, let ni be the number of points labeled as class i in the source 
domain, the log-smoothed class weight wc for class c can be computed as: 

wc =
log(

α
∑C

k=1
nk

nc
)

min
1⩽j⩽C

log(
α
∑C

k=1
nk

nj
)

, (10)  

where α is a hyper-parameter controlling the smoothness of the weights 
and is set to 5. Notice that, wc = 1 for the category with the most points 
in the source domain, wc > 1 for the others. By injecting the weights into 
the loss function, we then have cost-sensitive loss functions of the Eqs. 
(1) and (2) are: 

L
2D
seg(xs, ys) = −

1
N

∑N

n=1

∑C

c=1
wcy(n,c)s logP(n,c)

2D , (11)  

and 

L
3D
seg(xs, ys) = −

1
N

∑N

n=1

∑C

c=1
wcy(n,c)s logP(n,c)

3D , (12)  

respectively. 
Apart from incorporating the cost-sensitive functions in the training 

phase, we also devise a simple but effective threshold-moving technique 
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to increase the recall-rate of the minor categories during the testing 
phase. The overall computation process of this threshold-moving tech-
nique is presented in Fig. 2. As shown in the block at the bottom left of 
the Fig. 2, our goal is to scale the class weights W = {wi}

C
i=1 to the range 

[1,β]. Specifically, we obtain a line l, according the two points (1, 1) and 
(max{wi|wi ∈ W },β). For wi ∈ W , we get the scaled value w′

i from the 
line l taking wi as the abscissa. Let m =max{wi|wi ∈ W }, then the scaled 
weight w′

i can be computed as: 

w′

i =
(β − 1) ∗ wi + m − β

m − 1
(13)  

Given the predicted probabilities p = (p1, p2, ⋅⋅⋅, pC) with respect to 
sample x, we calibrate the predict p using the scaled log-smoothed class 
weights. The calibrated probabilities can be represented as: 

p′

=
1

∑C

i
w′

ipi

(w′

1p1,w′

2p2, ⋅⋅⋅,w′

CpC). (14)  

In this paper, we set the value of hyperparameter β to 1.5 for all of the 
three scenarios in the experiment section. 

5. Experiments 

In this section, we report the datasets, the evaluation metrics, the 
implementation details, the comparison with other methods, and the 
ablation study of our proposed method. 

5.1. Datasets and evaluation metrics 

We evaluate the performance of the proposed method and the 
baselines in three real-to-real adaption scenarios, including country-to- 
country, day-to-night, and dataset-to-dataset, following the setup of 
Jaritz et al. (2020). Three recently published autonomous driving 
datasets, i.e., nuScenes dataset(v1.0) (Caesar et al., 2020), A2D2 (Geyer 
et al., 2020), and SemanticKITTI (Behley et al., 2019) are adopted to 
build the scenarios. 

For each dataset, the LiDAR and the RGB-camera are synchronized 
and calibrated. Consequently, we can directly obtain the projection 
between a 3D point and its corresponding 2D image pixel. In this study, 
we only use the front camera image and the corresponding projected 
LiDAR points for training and testing.  

(1) nuScenes. The original dataset(v1.0) consists of 1,000 driving 
scenes collected from the USA and Singapore using LiDAR and 
RGB camera. Two domain adaptation scenarios are designed in 
this dataset, including Country → Country and Day → Night. 

Since there are no semantic labels available of the official testing 
set, therefore, we treat the official validation set as the testing set 
and divide the official training set into train/val, as the same as 
(Jaritz et al., 2020). A total of 750 driving scenes out of 1000 are 
used in this paper. The point-wise 3D semantic labels are ob-
tained from 3D boxes like in (Wu et al., 2018), and the objects are 
merged into 5 categories, i.e., vehicle, pedestrian, bike, traffic 
boundary and background.  

(2) A2D2. The point cloud comes from 3 LiDARs with 16 layers. The 
point clouds in this dataset are rather sparse. It provides semantic 
segmentation labels for 2D images. 3D labels were obtained by 
projection of the point cloud into the labeled 2D image.  

(3) SemanticKITTI. The dataset contains point clouds from 10 
different scenes captured by one high-resolution LiDAR with 64 
layers. The 3D point clouds are labeled into 28 different classes. 
In this study, the point clouds from Scene {0,1, 2,3, 4, 5,6, 9,10}
are used as the training set, Scene 7 as the validation set, and the 
Scene 8 as the testing set. 

The details of the three cross-domain scenarios are presented as 
follows:  

• Country-to-Country (USA → Singapore). The domain shift can be 
large for LiDAR or camera: for some classes the 3D shape might 
change more than the visual appearance or vice versa. The train set 
for the source has 15,695 frames. The train set, validation set and the 
test set of the target domain have 9,665 frames, 2,770 frames, and 
2,929 frames respectively.  

• Day-to-Night. LiDAR is an active sensor sending out laser beams 
which are mostly invariant to lighting conditions. In contrast, cam-
eras suffer from lack of light sources, leading to drastic changes in 
object appearance. Compared to LiDAR, camera has a large domain 
gap. The train set for the source has 24,745 frames. The train set, 
validation set and the test set of the target domain have 2,779 
frames, 606 frames, and 602 frames respectively.  

• Dataset-to-Dataset (A2D2 → SemanticKITTI). Point clouds in 
SemanticKITTI are denser than point clouds in A2D2. The scenario 
contains 10 shared classes, including car, truck, bike, pedestrian, road, 
parking, sidewalk, building, nature, and other-objects. The train set for 
the source domain has 27,695 frames. The train set, validation set, 
and the test set of the target domain have 18,029 frames, 1,101 
frames, and 4,071 frames, respectively. 

Two commonly used semantic segmentation evaluation metrics, 
including mean Intersection-over-Union (mIoU) and Average Recall 
(AR), are used to evaluate the proposed method’s performance. 

Fig. 2. Illustration of the proposed threshold-moving technique. For the source domain with an imbalanced distribution, we first compute log-smoothed classes 
weights, and scale it to the range [1, β]. Then we calibrate the predicted probabilities on the target domain using the scaled class weights. (Best view in color and 
zooming in for more details). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5.2. Implementation details 

In this study, we implement our model by using the PyTorch toolbox, 
and adopt the SparseConvNet (Graham et al., 2018) for the 3D network 
and a modified version of U-Net (Ronneberger et al., 2015) with 
ResNet34 (He et al., 2016) for the 2D network. For the 3D network, the 
official PyTorch implementation and a U-Net with six times down-
sampling are utilized. The 3D voxel size is set to 5 cm. For the 2D 
network, we use the ImageNet pre-trained weights to initialize the 
encoder. Each layer consists of a transposed convolutional layer, a skip 
connection layer, and another convolution layer to mix the features from 
the previous two layers. The discriminator network after the 2D 
network has four convolutional layers with the leaky-ReLU activation. 
The kernel size, stride, and padding size of these convolutional layers are 
all set to 4, 2, and 1, respectively. The hyper-parameters λs, λadv and β are 
set to 1, 0.001, and 1.5, respectively. The weight λt is set as 0.1 for the 
USA → Singapore and Day → Night scenarios, and 0.01 for the A2D2 → 
SemanticKITTI scenario. 

During the training phase, we optimize the parameters of the model 
using the Adam optimizer (Kingma and Ba, 2014). The initial learning 
rate is 10− 4 for the discriminator and 10− 3 for the 2D network and 3D 
network. The batch size is set as 8 for the USA → Singapore and Day → 
Night scenarios, and 6 for the A2D2 → SemanticKITTI scenario, 
respectively. We train the model for 150,000 iterations on each scenario, 
and the whole optimization process takes around 48 h on a single 12 GB 
TITAN X Pascal GPU. 

5.3. The comparison with other different methods 

In this section, we compare our proposed method with other methods 
on the three adaption scenarios. The comparing methods can be cate-
gorized into (1)“Source only”, the model is only trained on the source 
domain, and directly test on the target domain; (2) uni-modal UDA 
methods, i.e., Deep logCORAL (DL) (Morerio et al., 2017), entropy 
minimization (MinEnt) (Vu et al., 2019), pseudo-labeling (PL) (Li et al., 
2019); (3) cross-modal UDA method, i.e., xMUDA (Jaritz et al., 2020). 
The comparison results are reported in Table 1. For the scenario of A2D2 

→ SemanticKITTI scenario of xMUDA (Jaritz et al., 2020), we use the 
newest result on their GitHub project page1. 

As shown in Table 1, using only the 2D sub-network for 3D seg-
mentation during the testing phase, our method AUDA achieves the best 
results in all three scenarios in terms of mIoU, in particular in Day → 
Night and A2D2 → SemanticKITTI. Specifically, the proposed method 
AUDA achieves 59.8%, 49.0% and 43.0% mIoU. It shows that our al-
gorithm could well exploit the 2D modality. When combining the 3D 
segmentation results of the 2D and 3D sub-networks, the proposed 
method achieves comparable or better results to the baselines. Espe-
cially compared with the-state-of-art method xMUDA, AUDA achieves 
improvements of 0.4%, 4.2%, and 2.8% mIoU on USA → Singapore, Day 
→ Night, and A2D2 → SemanticKITTI. The thresh-moving technique is 
devised to increase recall rates of rare classes. With the proposed thresh- 
moving technique, our method AUDATM has comparable performance 
with AUDA, in terms of mIoU. 

5.3.1. Effectiveness of adversarial learning 
One main difference between the proposed method and xMUDA is 

that the proposed method uses adversarial training to bridge the domain 
gap. We further evaluate the effectiveness of the proposed adversarial 
learning module, compared with self-training (Vu et al., 2019; Pan et al., 
2020; Jaritz et al., 2020), which involves generating pseudo-labels for 
target samples during the training stage. The compared methods are (1) 
xMUDA (Jaritz et al., 2020); (2)xMUDAPL(Jaritz et al., 2020), i.e., 
combining xMUDA with self-training; (3) AUDA; (4)AUDAPL, i.e., 
combining AUDA with self-training. 

From Table 2, we can have the following observations. (1) The self- 
training technique can increase accuracy of 2D and 3D segmentation for 
both xMUDA and our AUDA. For example, on the USA→SG, the 2D and 
3D accuracy of our AUDA will increase from 59.8% to 61.9% and 52.0% 
to 54.8%, respectively. (2) We also notice that combining the results of 
2D and 3D may decrease the mIoU, as shown in Avg of Day→Night by 
our AUDA (54.2% vs. 52.6%). The main reason is that the quality of 
pseudo-labels has a great influence on self-training. The overall confi-
dence scores for the rare classes are relatively low compared with the 
dominant classes. In the self-training step, a high threshold is used to 

Table 1 
Comparisons of different models in three different UDA scenarios (%) in terms of mIoU. For brevity, we use SG for Singapore and SK for SemanticKITTI. Avg takes the 
mean of the predicted probabilities of the 2D and 3D sub-networks after softmax.  

Method USA → SG  Day → Night  A2D2 → SK   

2D 3D Avg 2D 3D Avg 2D 3D Avg 

Source only 53.4 46.5 61.3 42.2 41.2 47.8 36.0 36.6 41.8 

DL (Morerio et al., 2017) 52.6 47.1 59.1 41.4 42.8 51.8 35.8 39.3 40.3 
MinEnt (Vu et al., 2019) 53.4 47.0 59.7 44.9 43.5 51.3 38.8 38.0 42.7 
PL (Li et al., 2019) 55.5 51.8 61.5 43.7 45.1 48.6 37.4 44.8 47.7 
xMUDA (Jaritz et al., 2020) 59.3 52.0 62.7 46.2 44.2 50.0 38.3 46.0 44.0 

AUDA (ours) 59.8 52.0 63.1 49.0 47.6 54.2 43.0 43.6 46.8 
AUDATM (ours) 59.7 51.7 63.0 48.7 46.2 55.7 43.3 43.3 47.3  

Table 2 
Comparisons of different models in three different UDA scenarios (%) in terms of mIoU. For brevity, we use SG for Singapore and SK for SemanticKITTI. Avg takes the 
mean of the predicted 2D and 3D probabilities after softmax.  

Method USA → SG  Day → Night  A2D2 → SK   

2D 3D Avg 2D 3D Avg 2D 3D Avg 

xMUDA (Jaritz et al., 2020) 59.3 52.0 62.7 46.2 44.2 50.0 38.3 46.0 44.0 
xMUDAPL (Jaritz et al., 2020) 61.1 54.1 63.2 47.1 46.7 50.8 41.2 49.8 47.5 
AUDA (ours) 59.8 52.0 63.1 49.0 47.6 54.2 43.0 43.6 46.8 
AUDAPL (ours) 61.9 54.8 65.6 50.3 49.7 52.6 46.8 48.1 50.6  

1 https://github.com/valeoai/xMUDA 
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select samples and then may ignore the information of rare classes. Thus, 
it will cause a performance decrease. 

To further illustrate the impact of self-training on rare categories, we 
visualize the normalized confusion matrices of the proposed method in 
the Day → Night scenario. As shown in Fig. 3, the proposed model 
doesn’t perform well for the rare classes, car and bike, in term of AR. 
After the use of self-training, the performance of the proposed model 
regarding rare pedestrian and bicycles is further reduced, with only the 
AR of background increased. In the Day → Night scene, background is the 
largest class. 

5.3.2. Analysis of hyper-parameter λadv 
Similar to the one in (Pan et al., 2020), we also conduct a hyper- 

parameter sensitivity analysis on the λadv of the final segmentation 
result in our experiment of the Day → Night scenario. As presented in 
Table 3, the best performance of the model is achieved at λadv = 0.001. 
Notice that our method degenerates to xMUDA, with λadv = 0.001. 
When the value of λadv is in the range of {0.0001, 0.001, 0.01, 0.1, 1}, the 

proposed perform better than xMUDA. These results indicate that the 
effectiveness of the proposed adversarial scheme and is robust to the 
value of the hyper-parameter λadv. 

5.3.3. Effect of the proposed threshold-moving technique 
We also design experiments to evaluate the effectiveness of the 

proposed threshold-moving technique for imbalanced segmentation. As 
shown in Table 4, the source domain has a highly imbalanced class 
distribution for the source domain in the scenario of Day → Night. Rare 
classes including pedestrian and bike only constitute a minority of the 
data set, in contrast with vehicle and background. The log-smoothed class 
weights W computed using the Eq. 10 have a wide range of values, in the 
range 1 to 5.5. Further, using Eq. 13 for a linear transformation, the log- 
smoothed weights are mapped to the ranges 1 to 1.5. Table 4 indicates 
that the proposed threshold-moving technique allows rarer categories to 
have higher weights, and keep the range of the weights not too large. 

As presented in Table 5, using the proposed threshold-moving 
technique with the scaled weights W, the proposed method attains AR 
rates of 71.5%, 69.2%, and 63.7% over USA → Singapore, Day → Night, 
and A2D2 → SemanticKITTI, respectively. Without the proposed 
threshold-moving technique, the proposed method attains AR of 67.9%, 
59.9%, and 61.9% over USA → Singapore, Day → Night, and A2D2 → 
SemanticKITTI, respectively. The threshold-moving technique increase 
AR by 3.4%, 9.3%, and 1.8%, respectively. Decreasing false negatives 
may increase false positives. Therefore, it is difficult to greatly improve 
AR and mIoU at the same time. In terms of mIoU, these two methods are 

Fig. 3. Normalized confusion matrices of the proposed method in the Day → Night scenario with five categories. The first row of the sub-figures corresponds to the 
results of the proposed method AUDA, and the second row corresponds to the results of AUDAPL. The rows of confusion matrices correspond to truth classes, and 
columns correspond to predicted classes. The diagonal elements represent the recall values. (Best view in color and zooming in for more details.). 

Table 3 
The ablation study on hyperparameter λadv for the weight of the adversarial loss 
function.  

Day → Night  

λadv  0 0.0001 0.001 0.01 0.1 1 
mIoU 50.0 53.0 54.2 52.7 50.4 51.5  

Table 4 
Statistics for the Day → Night scenario. The second row shows the number of 
points for each category on the source domain. The third row shows the log- 
smoothed class weights computed using the Eq. 10. The forth row shows the 
scaled weights computed using Eq. 13, based on the log-smoothed weights.   

vehicle pedestrian bike traffic boundary background 

# of points 4582123 275688 42299 608214 77672950 
W 2.7 4.4 5.5 3.9 1.0 
W′ 1.2 1.4 1.5 1.3 1.0  

Table 5 
Effects of the proposed threshold-moving technique in 3 different UDA scenarios 
(%). For brevity, we use SG for Singapore, SK for SemanticKITTI, AR for average 
recall, and TM for threshold-moving.  

Method USA → SG  Day → Night  A2D2 → SK   

AR mIoU AR mIoU AR mIoU 

w/o TM 67.9 63.1 59.9 54.2 61.9 46.8 
w/ W 79.0 56.2 77.0 45.2 65.9 46.2 
w/ W′ 71.5 63.0 69.2 55.7 63.7 47.3  
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comparable on the three scenarios. Using the log-smoothed weights W, 
the proposed method can greatly improve AR, with the risk of a sharp 
decline in mIoU. The results in Table 5 indicate that the proposed 
threshold-moving technique with the scaled weights significantly boost 
the performance in terms of AR while keeping mIoU within a small range 
of changes on all of the three scenarios. 

Moreover, we visualize normalized confusion matrices of the pro-

posed method as presented in Fig. 4. For the scenario of Day → Night, as 
shown in Fig. 4c and d, the proposed method achieves recall of 87.1%, 
34.4%, 8.3%, 70.3% and 99.4% for vehicle, pedestrian, bike, traffic 
boundary and background, respectively. With the proposed threshold- 
moving technique, we obtain 90.5%, 65.6%, 18.1%, 72.3% and 99.2% 
for vehicle, pedestrian, bike, traffic boundary and background, respectively. 
For the rare classes pedestrian and bike, the proposed threshold-moving 

Fig. 4. Normalized confusion matrices of the proposed method in the USA → Singapore and Day → Night scenario with five categories. The rows of confusion 
matrices correspond to truth classes, and columns correspond to predicted classes. The diagonal elements represent the recall values. The diagonal elements represent 
the recall values. (Best view in color and zooming in for more details.). 

Fig. 5. Normalized confusion matrices of the proposed method in the A2D2 → SemanticKITTI scenario with ten categories. The rows of confusion matrices 
correspond to truth classes, and columns correspond to predicted classes. (Best view in color and zooming in for more details.). 
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technique increases the recall by 31.2% and 9.8%, respectively. It is 
worth noting that the recall of the rare classes has been significantly 
improved, while the recall of the dominant class background has not 
declined significantly. Similar results can be seen from Figs. 4a, b and 5. 

Fig. 6 shows some qualitative results for the A2D2 → SemanticKITTI 
scenario. We observe that overall, the proposed method with threshold- 

moving (AUDATM) performs best. Especially for the rare classes such as 
bike and pedestrian, the proposed method AUDATM attains the best re-
sults. We can also draw consistent conclusions from Figs. 7 and 8. 

Therefore, the proposed thresh-moving technique can improve the 
segmentation performance for rare classes while keeping the dominant 
classes’ segmentation performance at a high level. 

Fig. 6. The example results of evaluation for the A2D2→ SemanticKITTI set-up. Dash bounding boxes are added to show the main differences in the outputs of the 
three methods. (Best view in color and zooming in for more details.). 

Fig. 7. The example results of evaluation for the Day→ Night set-up. (Best view in color and zooming in for more details.).  
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6. Conclusion 

In this paper, we propose an Adversarial Unsupervised Domain 
Adaptation (AUDA) for 3D semantic segmentation framework to miti-
gate the harmful effects of domain shift without requiring any training 
annotations on the target domain. By combining adversarial learning 
and multi-modal learning, the proposed framework fully exploit the 
complementary information between the 2D and 3D modalities. We 
incorporate class ratio priors over the source labels into the segmenta-
tion framework to address the class imbalance and improve segmenta-
tion performance for rare classes, such as pedestrian and bike. We also 
devise a threshold-moving technique to refrain the model biasing to 
dominant classes and improve the framework’s average recall. The 
experimental results on three domain adaptation scenarios demonstrate 
the effectiveness of proposed methods that can significantly improve 
segmentation performance for rare classes. 
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