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a b s t r a c t

In the past decade, particulate matter with aerodynamic diameter less than 2.5 mm (PM2.5) has reached
unprecedented levels in China and posed a significant threat to public health. Exploring the long-term
trajectory of the PM2.5 attributable health burden and corresponding disparities across populations in
China yields insights for policymakers regarding the effectiveness of efforts to reduce air pollution
exposure. Therefore, we examine how the magnitude and equity of the PM2.5-related public health
burden has changed nationally, and between provinces, as economic growth and pollution levels varied
during 2005e2017. We derive long-term PM2.5 exposures in China from satellite-based observations and
chemical transport models, and estimate attributable premature mortality using the Global Exposure
Mortality Model (GEMM). We characterize national and interprovincial inequality in health outcomes
using environmental Lorenz curves and Gini coefficients over the study period. PM2.5 exposure is linked
to 1.8 (95% CI: 1.6, 2.0) million premature deaths over China in 2017, increasing by 31% from 2005.
Approximately 70% of PM2.5 attributable deaths were caused by stroke and IHD (ischemic heart disease),
though COPD (chronic obstructive pulmonary disease) and LRI (lower respiratory infection) dispropor-
tionately affected poorer provinces. While most economic gains and PM2.5-related deaths were
concentrated in a few provinces, both gains and deaths became more equitably distributed across
provinces over time. As a nation, however, trends toward equality were more recent and less clear cut
across causes of death. The rise in premature mortality is due primarily to population growth and
baseline risks of stroke and IHD. This rising health burden could be alleviated through policies to prevent
pollution, exposure, and disease. More targeted programs may be warranted for poorer provinces with a
disproportionate share of PM2.5-related premature deaths due to COPD and LRI.

© 2021 Elsevier Ltd. All rights reserved.
Main findings

The total health burden continues to rise despite lower PM2.5

exposures during 2005e2017, but it has become more equitably
distributed across provinces in China.
e by Dr. Payam Dadvand.
Environmental Engineering,
anada.
ari@uwaterloo.ca (R.K. Saari).
1. Introduction

The adverse impacts of PM2.5 (i.e., particulate matter with
aerodynamic diameter less than 2.5 mm) on human health are well
established. Exposure to ambient PM2.5 was associated with an
estimated 4.2 million (95% CI: 3.7, 4.8) global premature deaths in
2015 (Cohen et al., 2017). Over 30% of these deaths occurred in
China in 2012 (WHO 2016), where ambient PM2.5 ranked fourth
nationally among 67 risk factors for disability-adjusted life-years
(DALYs) (Yang et al., 2013). The most common non-communicable
diseases in China are all associated with PM2.5 exposure,
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including chronic obstructive pulmonary disease (COPD), ischemic
heart disease (IHD), lung cancer (LC), and stroke (Zhou et al., 2016).

The dramatic rise in PM2.5-related mortality in China has coin-
cided with significant economic growth (Liu et al., 2017). In
response, the Chinese government has established and updated air
quality standards, issued pollution control policies, expanded
monitoring networks, and launched targeted initiatives to mitigate
air pollution. The policy response began in earnest in 2013 with the
Air Pollution Prevention and Control Action Plan (APPCAP) (Huang
et al., 2018). Although many studies have examined the effect of
such actions on PM2.5 concentrations (Ma et al., 2019; Xue et al.,
2019a; Yu et al., 2019; Zhang et al., 2020), fewer have quantified
the resulting changes in the public health impacts over these
important recent decades (Li et al., 2021; Zhao et al., 2018). Many
others present national mortality estimates for one or more years,
but do not provide a long time-series (see Table S7). Some sub-
national studies have presented decadal time series of PM2.5-
related mortality (Lu et al., 2019; Zheng et al., 2015b; Zhu et al.,
2019). Few studies present the national mortality burden in China
over time (Li et al., 2021; Liu et al., 2017; Xie et al., 2016a). A decadal
time series of exposure and its health impacts can inform air quality
policies by quantifying changes in the resulting public health
burden (Fann et al., 2018). Further, it can be used to evaluate the
resulting trends in national and interprovincial equity (Muller et al.,
2018).

Changes in the growing Chinese economy and resulting air
pollution can impose unequal impacts across the population. Be-
tween 2006 and 2017, measures of economic inequality in China
peaked shortly after the Great Recession, followed by a shift to-
wards greater equality (Li and Sicular 2014). Air pollution is known
to have significant economic impacts in China, for example,
resulting in a 5.9% loss in GDP from 1997 to 2005 (Matus et al.,
2012). The health and economic burden associated with PM2.5
can disproportionately affect vulnerable populations (Bell and
Ebisu 2012; Huang et al., 2019; Zhao et al., 2019). The WHO
(World Health Organization) (2018) reported that 91% of global
premature deaths attributable to air pollution occurred in low- and
middle-income countries. Patterns of environmental inequality,
typically quantified by metrics such as the Atkinson Index and Gini
Index, vary substantially by location (Clark et al., 2014; Fann et al.,
2018; Muller et al., 2018; Rosofsky et al., 2018). Policies to reduce air
pollution can offer substantial economic benefits; however, some
provinces can gain while others lose, which can increase the gap in
prosperity between provinces (Xie et al., 2016b). While many
studies have examined PM2.5erelated health impacts in China, to
our knowledge, few have explored how these impacts are distrib-
uted across regions and income groups (Hajat et al., 2015). Tracking
the distribution of PM2.5-related health impacts among sub-
populations can help to formulate and monitor targeted policies to
alleviate inequality.

China’s network of air quality monitors has grown since 2013.
Methods with more complete spatial coverage are still needed,
however, for studying historical air quality and regions with fewer
monitors (such as western China). Previous studies of PM2.5 con-
centrations and related premature mortality in China have
addressed gaps in ground-level air quality measurements using
techniques including artificial intelligence (Li et al., 2019; Xue et al.,
2019a), satellite data (Lu et al., 2019; Zheng et al., 2015), chemical
transport models (CTMs) (Xie et al., 2016b; 2019), or a combination
thereof (Geng et al., 2015; van Donkelaar et al., 2016; Xie et al.,
2016a).

Once concentrations are known, concentration-response func-
tions (CRFs) are needed to estimate PM2.5-related mortality. CRFs
should represent the full potential concentration-response in the
underlying population. Ideally, CRFs should be based on local, high-
2

quality observations within the relevant range of concentrations
(West et al., 2016). Without CRFs appropriate for high-
concentration regions, like China, PM2.5-related risks may be
underestimated (Maji et al., 2018b; Pope C. Arden et al., 2018). CRFs
currently applied in China are mostly derived from lower-
concentration regions, like western Europe and North America.
One example is the Integrated Exposure-Response (IER) function
employed in the Global Burden of Disease (GBD) study (Maji et al.,
2018a; Zhao et al., 2018). Yin et al. (2017) reported higher hazard
ratio estimates from a national Chinese cohort study than the IER
estimates. The Global Exposure Mortality Model (GEMM) intro-
duced by Burnett et al. (2018) also yields higher estimates than the
IER. It is based on cohort studies (including one conducted in China)
that represent outdoor PM2.5 exposure in 97% of the global popu-
lation. The GEMM can be used to estimate PM2.5-related premature
mortality across multiple causes of death, including COPD, IHD, LC,
lower respiratory infection (LRI), and stroke.

Here, we quantify long-term PM2.5 exposures, cause-specific
premature mortality and environmental inequality over China.
We leverage satellite-based and CTM-driven estimates of exposure,
and the GEMM CRF, to estimate PM2.5-related premature mortality
at a spatial resolution of 3 km. We quantify the corresponding
health disparities at the provincial and national levels using a
modified Gini coefficient based on mortality. This paper seeks to
answer the following questions: (1) How do PM2.5 levels and
related health burdens vary spatially and temporally over China
between 2005 and 2017? (2) How equitably is the PM2.5-related
health burden distributed across populations in different regions
and with different socioeconomic characteristics (i.e. GDP per
capita)? (3) How does this pattern of environmental inequality
change over the study period?

2. Data and methods

2.1. Ground-level PM2.5 observations

Air pollutant measurements in Chinawere released to the public
in 2013, providing data to support PM2.5 modelling and validation.
Here, we use the ground-level PM2.5 concentrations (2013e2017)
from the China National Environmental Monitoring Center
(CNEMC) (http://www.cnemc.cn/). The number of stations avail-
able increased over the study period from 519 in 2013 to 1414 in
2017 (detailed in Supplementary Information Section 1.1). The
collected hourly measurements were averaged to obtain PM2.5
concentrations. Ground-level measurements before 2013 were
collected from previous publications (listed in the Supplementary
Material Section S1 Table S1). As data before 2013 were limited,
these measurements were only used for validation.

2.2. Ground-level PM2.5 estimation

Two strategies were used to estimate ground-level PM2.5 con-
centrations over China from 2005 to 2017 using satellite and
meteorological data: a previously developed fused dataset (referred
to as “fused data” herein) (van Donkelaar et al., 2015, 2019), and a
new semi-geographical weighted regression (semi-GWR) model
developed herein. The fused data, with a spatial resolution of 0.01�,
is used for its superior performance in the years 2005e2012. These
surface-level PM2.5 concentrations, combining multi-sensor satel-
lite and ground-based AOD, the GEOS-Chem CTM (as a source of
AOD and the AOD/PM2.5 relationship), and surface monitor obser-
vations, are provided by the “Atmospheric Composition Analysis
Group” at Dalhousie University (van Donkelaar et al., 2016). Their
superior performance in 2005e2012 is attributed to the multiple
concentration sources used, whichmake up for the limited ground-
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based monitoring data of PM2.5 in this period. These fused data
have been used in previous environmental and health impact
studies (Peng et al., 2016; Sherbinin et al., 2014; Xue et al., 2019b). A
detailed description is provided in Supplementary Information
Section 2.1.

To obtain PM2.5 concentrations between 2013 and 2017, we used
published air pollutant measurements from the Chinese govern-
ment to build and train a semi-GWR model. This type of model
accounts for the spatial autocorrelation of variables. The semi-GWR
had a better performance than the fused data for the years
2013e2017, especially 2017 (details in Figs. S4eS5). The model
structure is provided in Eq. (1):

PM2:5 GWRði;j;yÞ ¼ b0ði;j;yÞ þ bbext;dryði;j;yÞbext;dryði;j;yÞ þbTði;j;yÞTði;j;yÞ

þ bWSði;j;yÞWSði;j;yÞ þ bVði;j;yÞVði;j;yÞ
þ bDEMði;j;yÞDEMði;j;yÞ þ εði;j;yÞ

(1)

where PM2:5 GWRði;j;yÞ is the annual ground-level PM2.5 concentra-
tion at location (i, j) in year y. bext;dry is extinction coefficient under
dry conditions. T, WS, V, and DEM are temperature, wind speed,
visibility, and elevation, respectively; these variables were chosen
for their influence on surface PM2.5, with further details, references,
and theory discussed in Supplemental Information Section 1.2. b0 is
the intercept for each year.b denotes the slope of the variable with
the corresponding subscript. εði;j;yÞ is the error term at location (i,j)
in year y. The variance inflation factor was calculated to ensure low
collinearity of the variables. Geographic weights were estimated

with Gaussian distance decay functions (wij ¼ expð � d2ij =q
2Þ,

where d is the Euclidean distance between location i and j; q is the
bandwidth size) (Su et al., 2012). All parameters were resampled to
3 km using the cubic convolution resampling algorithm and unified
with respect to coordinate systems, data formats, and image sizes.
Since the optical-mass relationship has proven to be related to
aerosol hygroscopic growth and the height of planetary boundary
layer (HPBL) (Kaufman et al., 2003; Koelemeijer et al., 2006), the
ground-level extinction coefficient under dry conditions bext;dry was
calculated using satellite-observed AOD ðtÞ at 550 nm:

bext;dry ¼ t
.�

HPBL � fðRHÞ� (2)

where fðRHÞ is hygroscopic growth coefficient, which was calcu-
lated, as in Liu et al. (2019), by geographically weighting three
different estimates developed in China (Chen et al., 2014; Liu et al.,
2008; Zhang et al., 2015b).

Two concentration estimates (i.e., from the semi-GWR model
and the fused concentration data) were validated against ground-
level measurements (with details in the Supplementary
Information Section 3.1). The semi-GWR model performed better
than the fused concentrations from 2013 to 2017, with an average
R2 ¼ 0.81 (Fig. S4); however, the model could not be trained before
2013 due to the limited available samples. The fused data offered
stable predictive and explanatory power throughout the full study
period. They further provided reliable concentration estimates
before the monitoring network expanded in 2013, with R2 equal to
0.65 over the years 2005e2012 (Fig. S5). To unify the spatial dis-
tribution and coverage of these two concentration sources, the
fused data from 2013 to 2017 were corrected by the GWR-based
results using linear regressions to generate the final estimates.
The regression coefficients were fitted at the provincial level.
3

2.3. Health data

Baseline incidence rates were used for the five leading causes of
death (COD) associated with PM2.5, namely COPD, IHD, LC, LRI, and
stroke. They were obtained at the provincial scale from Zhou et al.
(2016). The annual variation of mortality rates during the study
period in China was generated from the GBD dataset found at
http://ghdx.healthdata.org/. The province-level baselines for each
year were calculated based on the assumption that the annual
variation for each province followed the national trend. Trends of
baseline incidence rates by COD are provided in Fig. S1.
2.4. Mortality assessment

Cause-specific premature mortality (DM) attributable to PM2.5
exposure over China was estimated using Eq. (3).

DM ¼ y0 � pop� ðRR� 1Þ=RR (3)

where y0 represents the baseline incidence rate for each COD. pop
represents the age-specific population exposed to ambient PM2.5.
RR represents the corresponding Relative Risk at a given concen-
tration, which was calculated using the GEMM. The GEMM, a set of
CRFs established by Burnett et al. (2018), was used here to quantify
PM2.5 attributable health impacts. The CRFs in the GEMM have
several strengths, including a flexible design and comprehensive,
high quality input. They vary across the total inhaled dose. They
were developed using cohort studies from 16 countries (including a
Chinese cohort study), thereby including most of the global pop-
ulation and a wide range of ambient PM2.5 concentrations. Relative
Risk in the GEMM has the functional form:

RR¼ expððqlogð1þDC =aÞÞ = ð1þ expð� ðDC�mÞ = vÞÞÞ (4)

where DC represents the difference between ambient PM2.5 con-
centrations and the baseline concentration; a; q;m; v define the
shape of the CRF (q and its SE were estimated using the Cox pro-
portional hazards model) (Burnett et al., 2018). GEMM includes
forms for pooled cohorts and specific cohorts. The COD-specific RR
calculations in this study were based on the age-specific model
parameters for the Chinese cohort study, as in Burnett et al. (2018)
(provided in Supplemental Material Table S3). A baseline concen-
tration of 2.4 mg/m3 was used based on the lowest observed
exposure in any cohort. One thousand Monte Carlo simulations
were conducted to estimate the 95th confidence interval (CI) in
excess premature mortality.
2.5. Socioeconomic data

Gridded population and GDP data in the base years (2005, 2010
and 2015) were obtained from the Resource and Environmental
Science Data Center of the Chinese Academy of Sciences (RESDC)
(http://www.resdc.cn/) at a spatial resolution of 1 km (Xu 2017).
The gridded population and GDP data for the remaining years were
calculated by assuming that the proportion of the provincial pop-
ulation and GDP contained in each grid remained constant over the
intervening years (i.e., between 2005 and 2009, 2010e2014, and
2015e2017). The province-level annual population, demographic
data, and GDP from 2005 to 2017 were from the Chinese National
Bureau of Statistics (http://www.stats.gov.cn/tjsj/ndsj/) (see Fig. S1
for (a) population and (b) age distribution). Both gridded popula-
tion and GDP data were resampled to 3 km to match the spatial
resolution of the ground-level PM2.5 concentrations. Trends in
population and age structure are shown in Figs. S1eS2.
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2.6. Inequality analysis

We estimated measures of both economic and environmental
inequality. We used the traditional Lorenz curve to characterize the
distribution of GDP per capita, which, due to data availability, we
used instead of income (Gastwirth and Glauberman 1976). We built
on this concept to characterize the distribution of PM2.5 attribut-
able premature mortality. To do this, population and excess pre-
mature mortality in each pixel were first ranked by GDP per capita.
The cumulative share of mortality was then plotted against the
cumulative share of population, ranked by GDP per capita (see
Fig. S3). We also built Lorenz curves at the provincial scale to
evaluate the distribution of mortality between provinces (ranked
by provincial GDP per capita) as a measure of interprovincial
inequality. Based on the Lorenz curve, the Gini coefficient was
calculated by dividing the area of A by 0.5 (which equals to A þ B in
Fig. S3a). The smaller the Gini coefficient, the smaller the area be-
tween the Lorenz curve and the ideal equality line. Thus, a smaller
Gini reflects greater equality. The Gini coefficient was calculated as
follows:

Gini¼1�
Xn

i¼1

ðxi � xi�1Þðyi � yi�1Þ (5)

where n represents the number of pixels/provinces; xi represents
the cumulative percentage of the population in pixel/province i; yi
represents the cumulative percentage of the PM2.5-attributable
premature deaths (Stroke, COPD, IHD, LC, LRIs). Similar metrics
were evaluated for each of the five causes of death (5-COD).
3. Results

3.1. PM2.5 exposure assessment

Fig. 1(a) shows the spatial distribution of 13-year mean PM2.5
surface concentration estimates and station-based measurements
over China. The highest PM2.5 concentrations were found in the
Taklamakan Desert, where natural particle sources, such as dust
and sand, dominate (Huang et al., 2008). The highest exposures,
however, were found in major urban areas with high population
density (shown in Fig. 1(b)) and high anthropogenic emissions. The
Beijing-Tianjin-Hebei (BTH) region, the Sichuan Basin, and central
China (including Shanxi, Henan and part of Shandong, Jiangsu,
Anhui, and Shaanxi provinces) are examples of dense urban areas
with high anthropogenic emissions and high PM2.5 concentrations
(Zhang et al., 2013; 2015a; Zheng et al., 2015a). The provinces with
the highest exposures were Henan and Hebei, with population-
weighted mean PM2.5 concentrations over the 13-year period
exceeding 72 mg/m3. Maps of geographical annual mean and
population-weighted mean PM2.5 concentrations for each year are
provided in Figs. S6eS7.

Fig. 2(b) shows the time-series of national PM2.5 concentrations.
It includes national estimated exposure (population-weighted
mean concentration; green line), national estimated concentration
(geographical mean; yellow line), measured concentration (mean
across stations; dashed magenta line) and the equivalent estimated
concentration (mean across pixels containing stations; cyan line).
Estimated national PM2.5 exposure trended downward overall from
2005 to 2017, with a 13-year national mean of 49 mg/m3. The
steepest decrease occurred after 2013, when China issued the Air
Pollution Prevention and Control Action Plan (APPCAP), and
population-weighted PM2.5 concentrations fell by 21% over the next
four years. China also began expanding the monitoring network in
2013. It became more representative of population exposure, as
4

shown by the convergence between the national exposure esti-
mates (green line) and the average of concentrations across station-
containing pixels (cyan line).

Estimated ground-level concentrations were validated against
the annual-mean station-based measurements for each available
station, as shown in Fig. 2(a) and Table S5. The overall R2 was 0.81
and the root mean square error (RMSE) was 8.3 mg/m3. Fig. 1(a)
shows the spatial pattern of estimated concentrations was also
consistent with that of ground measurements. These findings, and
further validation details provided in Supplemental Results Section
3.1, indicate that the estimated PM2.5 concentrations were suffi-
ciently reliable for our analysis.
3.2. Mortality attributable to PM2.5

Premature mortality attributable to chronic PM2.5 exposure was
estimated using equation (3). It was applied to the Chinese popu-
lation for the years 2005e2017. Excess premature deaths were
calculated across five causes of deaths (5-COD), (i.e. COPD, IHD, LC,
LRI, and stroke), and shown in Fig. 3. COPD mortality related to
PM2.5 exposure decreased from 280 (95% CI: 240, 320) thousand in
2005 to 250 (95% CI: 220, 290) thousand in 2017; IHD mortality
increased from390 (95% CI: 370, 400) thousand in 2005 to 680 (95%
CI: 660, 690) thousand in 2017, with a peak of 700 (95% CI: 680, 710)
thousand in 2015; LC mortality increased from 94 (95% CI: 85, 100)
thousand in 2005 to 160 (95% CI: 140, 180) thousand in 2017; LRI
mortality decreased from 120 (95% CI: 100, 130) thousand in 2005
to 98 (95% CI: 85, 110) thousand in 2017.

The contribution of each COD to the total cause-specific mor-
tality is shown in Fig. 4. Summed across all five causes of death, the
total (or “5-COD”) mortality rose from 1.4 (95% CI: 1.2,1.5) million in
2005 to 1.9 (95% CI: 1.7, 2.1) million in 2015, before dropping to 1.8
(95% CI: 1.6, 2.0) million in 2017. Stroke and IHD were the two
leading causes of deaths attributable to PM2.5 exposure over China.
Over the 13-year period, the annual mean premature deaths
associated with stoke and IHD were 580 (95% CI: 510, 660) and 560
(95% CI: 550, 570) thousand deaths, respectively. Together, they
comprised 70% of 5-COD mortality, contributing 36% and 34%,
respectively. The average number of premature deaths caused by
COPD, LC and LRI was 260 (95% CI: 230, 300), 130 (95% CI: 120, 150)
and 110 (95% CI: 93, 120) thousand, respectively, which comprised
16%, 8.0% and 6.5% of the total cause-specific mortality during the
study period.

Table 1 shows the 13-year (2005e2017) mean annual PM2.5
attributable premature mortality by cause of death and by region.
Henan, Shandong, Hebei, and Sichuan had the highest mean values
(160, 140, 120, and 110 thousand deaths per year, respectively)
comprising 33% of the national total. Mortality by IHD and stroke
were highest in Henan province, with values of 60 (95% CI: 59, 61)
and 67 (95% CI: 59, 74) thousand deaths per year, respectively.
PM2.5-related mortality caused by COPD and LRIs peaked at 32 (95%
CI: 28, 37) and 8.8 (95% CI: 7.8, 9.8) thousand deaths per year in
Sichuan province. Shandong province had the highest mean LC
mortality.

The spatial distribution of PM2.5-attributable premature mor-
tality by cause of death is shown in Fig. 5 and Figs. S9eS13. The
mortality hotspots for most CODs shifted from the Sichuan Basin to
the Beijing-Tianjin-Hebei region between 2005 and 2017. This
might be related to shifting and rising levels of air pollution (Xue
et al., 2019a) and population (Li et al., 2021) (Table S6). Mortality
incidence rates (in deaths per 100,000 people per year) are pro-
vided for the entire study period, for each province and COD, in
Figs. S14eS15.



Fig. 1. Spatial distributions of (a) 13-year mean PM2.5 concentration estimates and station-based measurements (b) population in 2017 in China.
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Fig. 2. (a) Validation results and (b) temporal trends of satellite-based PM2.5 estimates in China.

Fig. 3. Temporal trends of disease-specific PM2.5 attributable mortality from 2005 to 2017 (median and 95th CI) compared to estimates from previous publications.
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Fig. 4. PM2.5 attributable total premature mortality in China by year.
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3.3. Inequality analysis

We present multiple metrics of inequality including and
expanding on the traditional Gini coefficient. First, we distinguish
between traditional economic and health indices. We denote the
traditional economic Gini by “GDP per capita”. We use GDP per
capita as a proxy for income due to data availability. We also
calculate a Gini coefficient based on the distribution of deaths by
GDP per capita; we denote this coefficient by its respective cause of
death on Figs. 6 and 7. Second, we evaluate equity at the national
scale, as well as between provinces. We term these metrics as fol-
lows: “national Gini” is based on the distribution of GDP per capita
across all pixels in the nation; “interprovincial Gini” orders the
Table 1
PM2.5 attributable annual premature mortality by COD and province (average of 2005e2

Province COPD (103) IHD (103) LC (103)

Anhui 14 (12, 16) 27 (26, 28) 7.5 (6.8, 8.3
Beijing 2 (1.8, 2.3) 12 (12, 12) 2.6 (2.3, 2.8
Chongqing 11 (9.6, 13) 9.6 (9.3, 9.8) 4 (3.6, 4.4)
Fujian 4.2 (3.5, 4.8) 6.3 (6.1, 6.5) 1.9 (1.6, 2.1
Gansu 11 (9.2, 12) 9.8 (9.5, 10) 1.2 (1, 1.3)
Guangdong 13 (11, 15) 30 (29, 31) 6.6 (5.8, 7.3
Guangxi 12 (9.9, 13) 19 (18, 19) 4.2 (3.8, 4.7
Guizhou 12 (10, 14) 9.5 (9.2, 9.7) 2.6 (2.3, 2.8
Hainan 0.69 (0.58, 0.8) 1.2 (1.2, 1.3) 0.25 (0.22,
Hebei 8.6 (7.4, 9.8) 46 (45, 47) 8.9 (8.1, 9.8
Heilongjiang 3 (2.6, 3.5) 20 (19, 21) 3.6 (3.2, 4)
Henan 21 (18, 24) 60 (59, 61) 11 (9.8, 12
Hong Kong 0.02 (0.01, 0.02) 0.05 (0.05, 0.05) 0.01 (0.01,
Hubei 14 (12, 16) 26 (25, 26) 6.9 (6.2, 7.6
Hunan 14 (12, 16) 29 (28, 30) 6.1 (5.5, 6.7
Inner Mongolia 3.2 (2.8, 3.7) 12 (12, 13) 1.8 (1.6, 2)
Jiangsu 14 (12, 16) 23 (23, 24) 8.1 (7.3, 8.9
Jiangxi 9.2 (7.9, 11) 17 (17, 18) 4.5 (4, 5)
Jilin 1.9 (1.6, 2.2) 15 (15, 16) 2.4 (2.1, 2.6
Liaoning 3.6 (3, 4.1) 22 (21, 22) 5.3 (4.7, 5.8
Ningxia 1.1 (0.96, 1.3) 3.3 (3.2, 3.3) 0.43 (0.38,
Qinghai 1.8 (1.5, 2) 2.6 (2.5, 2.7) 0.29 (0.26,
Shaanxi 5.4 (4.6, 6.1) 19 (18, 19) 2.7 (2.4, 3)
Shandong 18 (16, 20) 55 (53, 56) 14 (12, 15)
Shanghai 2.5 (2.2, 2.9) 3.8 (3.8, 3.9) 1.8 (1.6, 2)
Shanxi 4.9 (4.2, 5.6) 16 (16, 16) 3.4 (3.1, 3.8
Sichuan 32 (28, 37) 23 (23, 24) 10 (9.2, 11
Tianjin 1.6 (1.4, 1.8) 10 (10, 11) 2.3 (2.1, 2.5
Tibet 0.1 (0.1, 0.1) 0.24 (0.23, 0.25) 0.01 (0.01,
Xinjiang 7.3 (6.3, 8.3) 17 (17, 18) 2 (1.8, 2.2)
Yunnan 7.9 (6.6, 9.1) 9.3 (9, 9.5) 1.8 (1.5, 2)
Zhejiang 8.1 (6.9, 9.3) 7.5 (7.3, 7.6) 4.5 (4, 4.9)

Note: Numbers in brackets represent 95% CI (2.5th and 97.5th percentile, respectively).
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population in provinces by provincial mean GDP per capita. These
national metrics allow us to compare changes in economic and
health-related equity over the study period. The interprovincial
metrics test whether poorer provinces suffer a disproportionate
share of the public health burden from PM2.5 pollution.

The national GDP-based Gini (i.e., cyan line) in Fig. 6(a) trends
towards greater equality, dropping from approximately 0.42 to 0.31
over the study period. Compared to GDP per capita, PM2.5 attrib-
utable mortality was more equally distributed. Gini coefficients
calculated based on mortality were low, with values less than 0.1.
Fig. 6(b) shows that the interprovincial GDP-based Gini similarly
declined from 0.27 to 0.20 between 2005 and 2017. Thus, fairness in
the distribution of GDP per capita increased both nationally, and
among Chinese provinces. A similar decreasing pattern was also
observed in the Gini coefficients calculated for COPD, LRI, and
stroke. The interprovincial Gini coefficients based on IHD and LC
had minuscule mean values of 0.01 and 0.02, respectively.

Fig. 7 shows the Lorenz curves of interprovincial inequality for
the years 2005, 2010, 2015, and 2017 (national curves are in the
Supplemental Information). As with the mortality-based Gini index
(in Fig. 6(b)), the Lorenz curve shows that COPD and LRI dispro-
portionately affected provinces with low GDP per capita. LC mor-
tality was distributed evenly. Low income provinces had
proportionately fewer IHD- and stroke-related deaths than middle-
to high-income regions.

National total premature mortality was distributed fairly equi-
tably. This is shown by the small 5-COD Gini index in Fig. 6(a), and
in the national Lorenz curves (provided in Fig. S16). While the Gini
indices of individual CODs were higher, their distributions across
GDP per capita balanced each other, resulting in a more equal
picture across total premature mortality. Nonetheless, the poor
suffered disproportionately. In 2017, the bottom 40th percentile of
017).

LRIs (103) Stroke (103) 5-COD (103)

) 4.7 (4.1, 5.2) 35 (31, 40) 89 (80, 96)
) 1.8 (1.6, 1.9) 9 (7.9, 10) 27 (25, 29)

2.3 (2, 2.5) 12 (11, 14) 39 (35, 43)
) 2.5 (2.1, 2.8) 6.9 (5.8, 7.9) 22 (19, 24)

2.8 (2.5, 3.2) 9.9 (8.5, 11) 34 (31, 38)
) 7.6 (6.7, 8.6) 25 (21, 28) 82 (74, 90)
) 7.3 (6.4, 8.1) 18 (15, 20) 60 (54, 66)
) 6.8 (5.9, 7.6) 17 (15, 19) 48 (42, 53)
0.27) 0.26 (0.22, 0.29) 1.1 (0.9, 1.2) 3.5 (3.1, 3.9)
) 4.9 (4.3, 5.4) 52 (45, 57) 120 (110, 130)

1.8 (1.6, 2) 13 (11, 15) 41 (38, 45)
) 6.1 (5.4, 6.7) 67 (59, 74) 160 (150, 180)
0.01) 0.02 (0.01, 0.02) 0.03 (0.03, 0.04) 0.13 (0.12, 0.14)
) 3.5 (3.1, 3.9) 33 (29, 37) 84 (76, 91)
) 6.2 (5.5, 6.9) 27 (23, 30) 82 (74, 89)

1.3 (1.1, 1.4) 9.7 (8.3, 11) 28 (26, 31)
) 4 (3.6, 4.5) 33 (29, 37) 83 (75, 90)

3.1 (2.7, 3.5) 16 (14, 18) 50 (45, 55)
) 1.9 (1.7, 2.1) 11 (9.3, 12) 33 (30, 35)
) 3.1 (2.7, 3.5) 19 (16, 21) 53 (48, 57)
0.48) 0.64 (0.56, 0.71) 2.2 (1.9, 2.5) 7.7 (7, 8.4)
0.32) 0.57 (0.5, 0.64) 2.3 (1.9, 2.6) 7.5 (6.7, 8.2)

2.5 (2.2, 2.8) 18 (16, 20) 47 (43, 51)
5.2 (4.6, 5.8) 52 (45, 57) 140 (130, 150)
0.46 (0.41, 0.52) 5.1 (4.4, 5.7) 14 (12, 15)

) 3.1 (2.7, 3.4) 17 (15, 19) 44 (40, 48)
) 8.8 (7.8, 9.8) 35 (30, 39) 110 (98, 120)
) 1.9 (1.7, 2.1) 7.2 (6.3, 8) 23 (22, 25)
0.01) 0.13 (0.11, 0.15) 0.23 (0.19, 0.27) 0.69 (0.61, 0.77)

2.7 (2.4, 3) 12 (11, 14) 41 (38, 45)
4.1 (3.5, 4.7) 7.1 (6, 8.3) 30 (27, 34)
4.2 (3.7, 4.7) 12 (11, 14) 37 (32, 40)



Fig. 5. Spatial patterns of 13-year mean annual PM2.5 attributable mortality by cause of death.

Fig. 6. Temporal trends of (a) national Gini and (b) interprovincial Gini coefficients for GDP per capita and premature mortality caused by different PM2.5 related health outcomes.
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Fig. 7. Interprovincial Lorenz curves for PM2.5 attributable premature mortality and economic inequality during 2005e2017.
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the Chinese population (sorted by GDP per capita) experienced 43%
of PM2.5-attributable premature deaths. This translated to an
additional 110 (95% CI: 99,120) thousand deaths per year in this
group compared to its wealthier counterpart (top 40th percentile
sorted by GDP per capita).
4. Discussion

Numerous studies have examined China’s air pollution. Fewer
have estimated national long-term premature mortality. None, to
our knowledge, have quantified the resulting health disparities.
Here, we find, as in the GBD-2017 study (Fig. 3), that premature
mortality associated with PM2.5 continued to rise even after the
enactment of significant pollution control policies (i.e., the APPCAP)
in 2013. This rise in premature deaths occurred despite concen-
trations that fell nationally, though concentrations in some prov-
inces rebounded in 2017 (Fig. S8).

Our concentrations compare well with previous studies using
long-term national PM2.5 for mortality estimation. Compared to
other studies with national time-series, our estimates are generally
biased low, though are within the 10 mg/m3 RMSE of each study
(Xiong et al., 2020; Xue et al., 2019a). All three studies show con-
centrations increasing at the start of the period, then dipping
around 2010e2012, rising again, then falling after 2013. Spatially,
our 13-year mean concentrations were highest in the Taklamakan
Desert in the west, and in urban agglomerations such as those
found in the North China Plain and the Sichuan Basin. This pattern
is consistent with long-term means found in previous studies.
9

These studies examine an earlier period (Ma et al., 2016; van
Donkelaar et al., 2015), a similar period (Xue et al., 2019a), and a
longer period (Wei et al., 2021), respectively.

These concentrations resulted in total cause-specific mortality
that peaked in 2015, with 1.9 (95% CI: 1.7, 2.1) million annual pre-
mature deaths, an increase of 500,000 (or 36%) since 2005. Similar
trends were reported in GBD publications. For example, Naghavi
et al. (2017) reported that 5-COD mortality rose by 30% from
2005 to 2015 before decreasing to 0.83 million in 2017. While es-
timates vary widely, total deaths reported here are generally above
the means of previous studies (Table S7). Differences between the
results of this study and others can be explained by varying PM2.5
exposure sources (such as estimation methods, spatial resolution
and coverage), CRFs, and other data sources (such as baseline
incidence rates and demographics). In particular, by using the
GEMM, we expected higher mortality estimates than IER-based
studies, since the GEMM RR are larger than those of IER, espe-
cially for LRIs, IHD, and stroke (Burnett et al., 2018). Pope C. Arden
et al. (2018) pointed out that the IER may underestimate health
impacts attributable to PM2.5 in highly polluted areas. Here, we
used the GEMM CRF based on the Chinese cohort study (Yin et al.,
2017) which includes higher pollutant concentrations and yields
higher excess risks than the IER (Burnett et al., 2018).

Aside from differences in magnitude, our trends in premature
mortality by COD generally match those of the GBD within errors.
Over the study period, deaths were generally flat (stroke, COPD),
increasing until 2015 then falling (LC, IHD), or decreasing (LRI).
Total 5-COD deaths increased over the study period. Xie et al.
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(2016a) also shows a similar pattern between its common years
(2005 and 2010). Two other national studies, Li et al. (2018) and Li
et al. (2021), instead have decreasing trends over 2013e2015 and
2014e2016, respectively. Like these two studies, we also show a
decrease in PM2.5 concentrations over this period. However,
increasing population and baseline rates of most CODs (see
Figs. S1eS2) led to an increase in our estimated premature deaths.
Li et al. (2021) also show baseline mortality decreasing, which,
combined with the decreased exposure, yielded a decrease in
deaths. Li et al. (2018) has a higher exposure than other studies in
2013, which could lead to a larger decrease in exposure and overall
drop in deaths. Their drop in deaths is small, especially when using
IER as opposed to SCHIF. The specific study period also matters. Li
et al. (2021) examine 2008e2016, which begins at a relatively
high level of PM2.5. Thus, their finding a decrease in mortality over
this shorter period is not inconsistent with our results. Despite the
discrepancies and uncertainties in death estimates across studies,
there seems to be clear agreement that deaths have either
increased, or, at a minimum, not decreased nearly as steeply as
concentrations.

Such PM2.5-related premature deaths can disproportionately
harm populations of lower socioeconomic status (Hajat et al., 2015).
Here, we examined the disparity of mortality incidences across GDP
per capita based on differences in ambient concentrations. We
place this in the context of economic inequality. At the national
scale, China appeared to be trending toward greater economic
equality, starting primarily with a steep drop in 2010. This pattern
appears to agree with previous studies (Han et al., 2016). It also
agrees with national statistics (National Bureau of Statistics),
though they show a small recent uptick in the Gini coefficient.
Compared to economic inequality, total premature mortality
associated with PM2.5 was distributed relatively equally across GDP
per capita; however, the trend towards equality was not consistent
for all causes of death.

We found that COPD and LRI showed the greatest disparity in
the distributions of deaths with GDP per capita. This is in line with
previous studies showing that COPD-related death has the stron-
gest relationship with socioeconomic status (Pleasants et al., 2016).
We found that premature deaths caused by LC and IHD were
distributed relatively proportionately across the population, which
we attribute to widespread active smoking (Hiscock et al., 2012;
Polak et al., 2019; Yusuf et al., 2004). Temporally, interprovincial
Ginis for different causes of PM2.5-related premature deaths had
downward trends. This indicates that PM2.5-related mortality risks
became more equally distributed between Chinese provinces from
2005 to 2017. Muller et al. (2018) showed a similar pattern among
US regions using an adjusted Gini index that accounted for PM2.5-
related premature mortality. This increasing equality between
provinces might be related to the alleviation of air pollution, the
economic development of developing provinces, population
migration and mobility, and advances in health and education (Liu
et al., 2018; Wang et al., 2017).

These findings have several implications for policymakers
interested in air pollution and health equity. While policies have
reduced ambient pollutant concentrations, the health burden
continues to rise. This increasing burden may result from rising
baseline risks as well as the growing and aging population. Over
this study period, concentrations decreased by 15%, population rose
by 8%, and the over-65 age group grew by 26%. Total baseline risks
grew by 19%, with IHD in particular rising the most at 53% (see
Fig. S1). We leave a quantitative evaluation of these factors to future
work. Li et al. (2021) quantified these factors’ effect on PM2.5-
related prematuremortality in China over 2008e2016. They ranked
changes in concentrations first, followed by population and base-
line mortality. While this highlights the need to continue to control
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exposures, reducing baseline risks also has value. In particular,
baseline risks of stroke and IHD are high and growing, which may
be related to increased risk factors (such as obesity, hypertension
and hypercholesterolemia) (see Fig. S1) (Liu et al., 2011; Ma et al.,
2020). Conversely, COPD and LRI have baseline risks which are
relatively flat or decreasing. However, these causes of death may
disproportionately affect poorer provinces, which could warrant a
more targeted intervention to address these health disparities. Any
targeted policy to address inequality requires further specific study
to account for the effect of a specific intervention using the
appropriate metric (Harper et al., 2013).

This study is subject to several limitations. The accuracy of the
mortality estimates is limited by uncertainties and spatial resolu-
tion of the GEMM and its inputs. Data on baseline mortality could
be more precise and comprehensive. Due to data availability, they
were obtained and projected at the provincial level based on na-
tional trends. This may introduce uncertainty andmask some of the
inequality seen in the finer resolution data sources (including PM2.5
exposure and GDP per capita). A long-term record of high resolu-
tion baseline mortality rates would offer greater accuracy in the
magnitude and distribution of excess mortality (Maji et al., 2018b).
Uncertainty in PM2.5 exposure also affects the health impact
assessment. For instance, using concentration sources from two
methods may introduce not only bias (resulting from input vari-
ables, model structure, and assumptions), but also discontinuities
(with differences less than 6.0 mg/m3 on average (see Table S8)).
However, this strategy was used because it improved the accuracy
of PM2.5 estimates, especially between 2015 and 2017. We also
applied the GEMM Chinese CRF outside of the observed range of
concentrations of the Chinese Male Cohort study on which it is
based. This may introduce extrapolation errors. Specifically, we
observed 13-year mean concentrations exceeding the maximum
observed concentration of 83.7 mg/m3. Similarly, our counterfactual
concentration of 2.4 mg/m3 is significantly lower than theminimum
observed for the Chinese Male Cohort study (15.4 mg/m3). However,
evidence from other cohorts, including those in GEMM, suggest
that health risks exist at low concentrations. This analysis estimates
premature mortality due to outdoor PM2.5 exposure, which ex-
cludes other PM2.5 related exposures, responses, and health im-
pacts. These include, for example, indoor exposure, childhood
exposure, differences in individual health effects, other potential
causes of death, and morbidity (Lee et al., 2019; Lelieveld et al.,
2018; Qi et al., 2017; Steinle et al., 2015). We do not account for
PM2.5 characteristics (such as chemical composition, size distribu-
tion, and sources); nor do we explicitly address the confounding
effects of gaseous pollutants co-varying with PM2.5 on human
health (such as ozone and nitrogen dioxide), which may also bias
the mortality estimates in this study (Konishi et al., 2014; Ostro
et al., 2015; Pope C. Arden et al., 2018). Our use of GDP per capita
based on gridded population is a crude metric for income. Using
comprehensive household micro data, including transfers, reveals
significant intragroup variability (Rausch et al., 2011). This affects
measures of economic inequality, as well as the distributional eq-
uity of environmental policies (Rausch et al., 2011). Our work also
does not account for the mobility of labour and capital. With sig-
nificant labour migration between provinces (Luo et al., 2016),
there could be some mismatch between the assigned location of
exposure, outcome, and income for those who work or die out-of-
province. Finally, we likely underestimate the disparity in PM2.5-
related impacts across GDP per capita. Previous studies suggest that
differences in exposure represent a small fraction of the disparity in
economic impacts across income groups due to air pollution
(Muller et al., 2018; Saari et al., 2017). The characteristics of the
exposure, e.g., particulate composition, may be relevant to disparity
(Bell and Ebisu 2012). Income, location, and insurance status may
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affect baseline health status, health care access, outcomes, and
economic impacts (Jones et al., 2011; Schoen et al., 2013; Van Ourti
et al., 2009; Viscusi and Aldy 2003; Wilper et al., 2009).

5. Conclusion

In recent decades, China saw significant economic development
and health risks from air pollution. Here, we examine how equally
these impacts were distributed across the nation and between
provinces. We present PM2.5 exposure, attributable health burdens,
and corresponding health disparities over China from 2005 to 2017,
with a spatial resolution of 3 km. We find that, though PM2.5
exposure declined overall during this period (as seen by comparing
population-weighted concentrations at the start (2005) and end
(2017) of this period), the number of premature deaths attributable
to PM2.5 exposure grew. The 5-CODmortality rose from 1.4 (95% CI:
1.2, 1.5) million in 2005 to 1.8 (95% CI: 1.6, 2.0) million in 2017.
Stroke and IHD were the two leading causes of death, contributing
to approximately 36% and 34% of total cause-specific mortality
during 2005e2017, respectively. These two causes dominated due
to their prevalence in the population. Their burden could be alle-
viated not only through environmental policy to further reduce air
pollution, but also through broader programs for prevention and
treatment of such public health risks. More targeted programs may
be warranted for poorer provinces (based on low GDP per capita),
as they endured a disproportionate share of PM2.5-related prema-
ture deaths due to COPD and LRI. Between provinces, the total 5-
COD excess premature mortality appeared equally distributed
(with Gini coefficients less than 0.1). Nationally, total premature
mortality associated with PM2.5 was distributed relatively equally
by GDP per capita. National measures of equality were steady or
became more equitable over time. These findings are based on
differences in ambient concentrations, which do not reflect all
differences in exposure, baseline health risks, vulnerability, or ac-
cess to care, all of which could contribute to inequality. Distribu-
tional implications should be evaluated in full prior to
implementing new interventions to address this public health
burden and its resulting health disparities.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The first author acknowledges the China Scholarship Council for
their support via a doctoral scholarship (No. 201706400072).
Rebecca K. Saari acknowledges funding by the Natural Sciences and
Engineering Research Council of Canada RPGIN-2016-04132.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.envpol.2021.116882.

Author statement

Ming Liu: Conceptualization; Methodology; Software; Investi-
gation; Writing e original draft. Rebecca K. Saari.: Supervision;
Conceptualization; Writing - Reviewing and Editing. Gaoxiang
Zhou: Software; Investigation. Jonathan Li: Supervision; Writing e

review & editing. Ling Han: Writing e review & editing. Xiangnan
Liu: Writing e review & editing.
11
References

Arden, Pope C., Cohen Aaron, J., Burnett Richard, T., 2018. Cardiovascular disease
and fine particulate matter. Circ. Res. 122, 1645e1647. https://doi.org/10.1161/
CIRCRESAHA.118.312956.

Bell, M.L., Ebisu, K., 2012. Environmental inequality in exposures to airborne par-
ticulate matter components in the United States. Environ. Health Perspect. 120,
1699e1704. https://doi.org/10.1289/ehp.1205201.

Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C.A., et al., 2018.
Global estimates of mortality associated with long-term exposure to outdoor
fine particulate matter. Proc. Natl. Acad. Sci. Unit. States Am. 115, 9592e9597.
https://doi.org/10.1073/pnas.1803222115.

Chen, J., Zhao, C.S., Ma, N., Yan, P., 2014. Aerosol hygroscopicity parameter derived
from the light scattering enhancement factor measurements in the North China
Plain. Atmos. Chem. Phys. 14, 8105e8118. https://doi.org/10.5194/acp-14-8105-
2014.

Clark, L.P., Millet, D.B., Marshall, J.D., 2014. National patterns in environmental
injustice and inequality: outdoor NO2 air pollution in the United States. In:
Zhang, Y. (Ed.), PloS One 9, e94431. https://doi.org/10.1371/
journal.pone.0094431.

Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., et al., 2017.
Estimates and 25-year trends of the global burden of disease attributable to
ambient air pollution: an analysis of data from the Global Burden of Diseases
Study 2015. Lancet 389, 1907e1918. https://doi.org/10.1016/S0140-6736(17)
30505-6.

Fann, N., Coffman, E., Timin, B., Kelly, J.T., 2018. The estimated change in the level
and distribution of PM2.5-attributable health impacts in the United States:
2005e2014. Environ. Res. 167, 506e514. https://doi.org/10.1016/
j.envres.2018.08.018.

Gastwirth, J.L., Glauberman, M., 1976. The interpolation of the Lorenz curve and Gini
index from grouped data. Econometrica 44, 479e483. https://doi.org/10.2307/
1913977.

Geng, G., Zhang, Q., Martin, R.V., van Donkelaar, A., Huo, H., Che, H., et al., 2015.
Estimating long-term PM2.5 concentrations in China using satellite-based
aerosol optical depth and a chemical transport model. Rem. Sens. Environ.
166, 262e270. https://doi.org/10.1016/j.rse.2015.05.016.

Hajat, A., Hsia, C., O’Neill, M.S., 2015. Socioeconomic disparities and air pollution
exposure: a global review. Current Environmental Health Reports 2, 440e450.
https://doi.org/10.1007/s40572-015-0069-5.

Han, J., Zhao, Q., Zhang, M., 2016. China’s income inequality in the global context.
Perspectives in Science 7, 24e29. https://doi.org/10.1016/j.pisc.2015.11.006.

Harper, S., Ruder, E., Roman, H.A., Geggel, A., Nweke, O., Payne-Sturges, D., et al.,
2013. Using inequality measures to incorporate environmental justice into
regulatory analyses. Int. J. Environ. Res. Publ. Health 10, 4039e4059. https://
doi.org/10.3390/ijerph10094039.

Hiscock, R., Bauld, L., Amos, A., Fidler, J.A., Munaf�o, M., 2012. Socioeconomic status
and smoking: a review. Ann. N. Y. Acad. Sci. 1248, 107e123. https://doi.org/
10.1111/j.1749-6632.2011.06202.x.

Huang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhao, Q., et al., 2008. Long-range
transport and vertical structure of Asian dust from CALIPSO and surface mea-
surements during PACDEX. J. Geophys. Res.: Atmosphere 113. https://doi.org/
10.1029/2008JD010620.

Huang, G., Zhou, W., Qian, Y., Fisher, B., 2019. Breathing the same air? Socioeco-
nomic disparities in PM2.5 exposure and the potential benefits from air filtra-
tion. Sci. Total Environ. 657, 619e626. https://doi.org/10.1016/
j.scitotenv.2018.11.428.

Jones, A.M., Rice, N., Robone, S., Dias, P.R., 2011. Inequality and polarisation in health
systems’ responsiveness: a cross-country analysis. J. Health Econ. 30, 616e625.
https://doi.org/10.1016/j.jhealeco.2011.05.003.

Kaufman, Y.J., Haywood, J.M., Hobbs, P.V., Hart, W., Kleidman, R., Schmid, B., 2003.
Remote sensing of vertical distributions of smoke aerosol off the coast of Africa.
Geophys. Res. Lett. 30 https://doi.org/10.1029/2003GL017068.

Koelemeijer, R.B.A., Homan, C.D., Matthijsen, J., 2006. Comparison of spatial and
temporal variations of aerosol optical thickness and particulate matter over
Europe. Atmos. Environ. 40, 5304e5315. https://doi.org/10.1016/
j.atmosenv.2006.04.044.

Konishi, S., Ng, C.F.S., Stickley, A., Nishihata, S., Shinsugi, C., Ueda, K., et al., 2014.
Particulate matter modifies the association between airborne pollen and daily
medical consultations for pollinosis in Tokyo. Sci. Total Environ. 499, 125e132.
https://doi.org/10.1016/j.scitotenv.2014.08.045.

Lee, M., Schwartz, J., Wang, Y., Dominici, F., Zanobetti, A., 2019. Long-term effect of
fine particulate matter on hospitalization with dementia. Environ. Pollut. 254,
112926. https://doi.org/10.1016/j.envpol.2019.07.094.

Lelieveld, J., Haines, A., Pozzer, A., 2018. Age-dependent health risk from ambient air
pollution: a modelling and data analysis of childhood mortality in middle-
income and low-income countries. The Lancet Planetary Health 2,
e292ee300. https://doi.org/10.1016/S2542-5196(18)30147-5.

Li, S., Sicular, T., 2014. The distribution of household income in China: inequality,
poverty and policies*. China Q. 217, 1e41. https://doi.org/10.1017/
S0305741014000290.

Li, J., Liu, H., Lv, Z., Zhao, R., Deng, F., Wang, C., et al., 2018. Estimation of PM2.5
mortality burden in China with new exposure estimation and local
concentration-response function. Environ. Pollut. 243, 1710e1718. https://
doi.org/10.1016/j.envpol.2018.09.089.

https://doi.org/10.1016/j.envpol.2021.116882
https://doi.org/10.1161/CIRCRESAHA.118.312956
https://doi.org/10.1161/CIRCRESAHA.118.312956
https://doi.org/10.1289/ehp.1205201
https://doi.org/10.1073/pnas.1803222115
https://doi.org/10.5194/acp-14-8105-2014
https://doi.org/10.5194/acp-14-8105-2014
https://doi.org/10.1371/journal.pone.0094431
https://doi.org/10.1371/journal.pone.0094431
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1016/j.envres.2018.08.018
https://doi.org/10.1016/j.envres.2018.08.018
https://doi.org/10.2307/1913977
https://doi.org/10.2307/1913977
https://doi.org/10.1016/j.rse.2015.05.016
https://doi.org/10.1007/s40572-015-0069-5
https://doi.org/10.1016/j.pisc.2015.11.006
https://doi.org/10.3390/ijerph10094039
https://doi.org/10.3390/ijerph10094039
https://doi.org/10.1111/j.1749-6632.2011.06202.x
https://doi.org/10.1111/j.1749-6632.2011.06202.x
https://doi.org/10.1029/2008JD010620
https://doi.org/10.1029/2008JD010620
https://doi.org/10.1016/j.scitotenv.2018.11.428
https://doi.org/10.1016/j.scitotenv.2018.11.428
https://doi.org/10.1016/j.jhealeco.2011.05.003
https://doi.org/10.1029/2003GL017068
https://doi.org/10.1016/j.atmosenv.2006.04.044
https://doi.org/10.1016/j.atmosenv.2006.04.044
https://doi.org/10.1016/j.scitotenv.2014.08.045
https://doi.org/10.1016/j.envpol.2019.07.094
https://doi.org/10.1016/S2542-5196(18)30147-5
https://doi.org/10.1017/S0305741014000290
https://doi.org/10.1017/S0305741014000290
https://doi.org/10.1016/j.envpol.2018.09.089
https://doi.org/10.1016/j.envpol.2018.09.089


M. Liu, R.K. Saari, G. Zhou et al. Environmental Pollution 279 (2021) 116882
Li, J., Han, X., Jin, M., Zhang, X., Wang, S., 2019. Globally analysing spatiotemporal
trends of anthropogenic PM2.5 concentration and population’s PM2.5 exposure
from 1998 to 2016. Environ. Int. 128, 46e62. https://doi.org/10.1016/
j.envint.2019.04.026.

Li, Y., Liao, Q., Zhao, X., Tao, Y., Bai, Y., Peng, L., 2021. Premature mortality attrib-
utable to PM2.5 pollution in China during 2008e2016: underlying causes and
responses to emission reductions. Chemosphere 263, 127925. https://doi.org/
10.1016/j.chemosphere.2020.127925.

Liu, X., Cheng, Y., Zhang, Y., Jung, J., Sugimoto, N., Chang, S.-Y., et al., 2008. Influences
of relative humidity and particle chemical composition on aerosol scattering
properties during the 2006 PRD campaign. Atmos. Environ. 42, 1525e1536.
https://doi.org/10.1016/j.atmosenv.2007.10.077.

Liu, L., Wang, D., Wong, K.S.L., Wang, Y., 2011. Stroke and stroke care in China: huge
burden, significant workload, and a national priority. Stroke 42, 3651e3654.
https://doi.org/10.1161/STROKEAHA.111.635755.

Liu, M., Huang, Y., Ma, Z., Jin, Z., Liu, X., Wang, H., et al., 2017. Spatial and temporal
trends in the mortality burden of air pollution in China: 2004e2012. Environ.
Int. 98, 75e81. https://doi.org/10.1016/j.envint.2016.10.003.

Liu, T., Cai, Y.Y., Feng, B.X., Cao, G.X., Lin, H.L., Xiao, J.P., et al., 2018. Long-term
mortality benefits of air quality improvement during the twelfth five-year-plan
period in 31 provincial capital cities of China. Atmos. Environ. 173, 53e61.
https://doi.org/10.1016/j.atmosenv.2017.10.054.

Liu, M., Zhou, G., Saari, R.K., Li, S., Liu, X., Li, J., 2019. Quantifying PM2.5 mass con-
centration and particle radius using satellite data and an optical-mass conver-
sion algorithm. ISPRS J. Photogrammetry Remote Sens. 158, 90e98. https://
doi.org/10.1016/j.isprsjprs.2019.10.010.

Lu, X., Lin, C., Li, W., Chen, Y., Huang, Y., Fung, J.C.H., et al., 2019. Analysis of the
adverse health effects of PM2.5 from 2001 to 2017 in China and the role of ur-
banization in aggravating the health burden. Sci. Total Environ. 652, 683e695.
https://doi.org/10.1016/j.scitotenv.2018.10.140.

Luo, X., Caron, J., Karplus, V.J., Zhang, D., Zhang, X., 2016. Interprovincial migration
and the stringency of energy policy in China. Energy Econ. 58, 164e173. https://
doi.org/10.1016/j.eneco.2016.05.017.

Ma, Z., Hu, X., Sayer, A.M., Levy, R., Zhang, Q., Xue, Y., et al., 2016. Satellite-based
spatiotemporal trends in PM2.5 concentrations: China, 2004-2013. Environ.
Health Perspect. 124, 184e192. https://doi.org/10.1289/ehp.1409481.

Ma, Z., Liu, R., Liu, Y., Bi, J., 2019. Effects of air pollution control policies on PM2.5
pollution improvement in China from 2005 to 2017: a satellite-based
perspective. Atmos. Chem. Phys. 19, 6861e6877. https://doi.org/10.5194/acp-
19-6861-2019.

Ma, L.-Y., Chen, W.-W., Gao, R.-L., Liu, L.-S., Zhu, M.-L., Wang, Y.-J., et al., 2020. China
cardiovascular diseases report 2018: an updated summary. Journal of Geriatric
Cardiology 17, 1e8. https://doi.org/10.11909/j.issn.1671-5411.2020.01.001.

Maji, K.J., Dikshit, A.K., Arora, M., Deshpande, A., 2018a. Estimating premature
mortality attributable to PM2.5 exposure and benefit of air pollution control
policies in China for 2020. Sci. Total Environ. 612, 683e693. https://doi.org/
10.1016/j.scitotenv.2017.08.254.

Maji, K.J., Ye, W.-F., Arora, M., Shiva Nagendra, S.M., 2018b. PM2.5-related health and
economic loss assessment for 338 Chinese cities. Environ. Int. 121, 392e403.
https://doi.org/10.1016/j.envint.2018.09.024.

Matus, K., Nam, K.-M., Selin, N.E., Lamsal, L.N., Reilly, J.M., Paltsev, S., 2012. Health
damages from air pollution in China. Global Environ. Change 22, 55e66. https://
doi.org/10.1016/j.gloenvcha.2011.08.006.

Muller, N.Z., Matthews, P.H., Wiltshire-Gordon, V., 2018. The distribution of income
is worse than you think: including pollution impacts into measures of income
inequality. J. Balaguer, ed PLoS ONE 13, e0192461. https://doi.org/10.1371/
journal.pone.0192461.

Naghavi, M., Abajobir, A.A., Abbafati, C., Abbas, K.M., Abd-Allah, F., Abera, S.F., et al.,
2017. Global, regional, and national age-sex specific mortality for 264 causes of
death, 1980e2016: a systematic analysis for the Global Burden of Disease Study
2016. Lancet 390, 1151e1210. https://doi.org/10.1016/s0140-6736(17)32152-9.

Ostro, B., Hu, J., Goldberg, D., Reynolds, P., Hertz, A., Bernstein, L., et al., 2015. As-
sociations of mortality with long-term exposures to fine and ultrafine particles,
species and sources: results from the California Teachers Study Cohort. Environ.
Health Perspect. 123, 549e556. https://doi.org/10.1289/ehp.1408565.

Peng, J., Chen, S., Lü, H., Liu, Y., Wu, J., 2016. Spatiotemporal patterns of remotely
sensed PM2.5 concentration in China from 1999 to 2011. Rem. Sens. Environ. 174,
109e121. https://doi.org/10.1016/j.rse.2015.12.008.

Pleasants, R.A., Riley, I.L., Mannino, D.M., 2016. Defining and targeting health dis-
parities in chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm.
Dis. 11, 2475e2496. https://doi.org/10.2147/COPD.S79077.

Polak, M., Genowska, A., Szafraniec, K., Fryc, J., Jamiołkowski, J., Pająk, A., 2019. Area-
based socio-economic inequalities in mortality from lung cancer and respira-
tory diseases. Int. J. Environ. Res. Publ. Health 16, 1791. https://doi.org/10.3390/
ijerph16101791.

Qi, M., Zhu, X., Du, W., Chen, Y., Chen, Y., Huang, T., et al., 2017. Exposure and health
impact evaluation based on simultaneous measurement of indoor and ambient
PM2.5 in Haidian, Beijing. Environ. Pollut. 220, 704e712. https://doi.org/10.1016/
j.envpol.2016.10.035.

Rausch, S., Metcalf, G.E., Reilly, J.M., 2011. Distributional impacts of carbon pricing: a
general equilibrium approach with micro-data for households. Energy Econ. 33,
S20eS33. https://doi.org/10.1016/j.eneco.2011.07.023.

Rosofsky, A., Levy, J.I., Zanobetti, A., Janulewicz, P., Fabian, M.P., 2018. Temporal
trends in air pollution exposure inequality in Massachusetts. Environ. Res. 161,
76e86. https://doi.org/10.1016/j.envres.2017.10.028.
12
Saari, R.K., Thompson, T.M., Selin, N.E., 2017. Human health and economic impacts
of ozone reductions by income group. Environ. Sci. Technol. 51, 1953e1961.
https://doi.org/10.1021/acs.est.6b04708.

Schoen, C., Radley, D.C., Riley, P., Lippa, J.A., Berenson, J., Dermody, C., Shih, A., 2013.
Health care in the two americas: findings from the scorecard on state health
system performance for low-income populations. http://www.
commonwealthfund.org/publications/fund-reports/2013/sep/low-income-
scorecard. (Accessed 21 April 2015).

Sherbinin, A de, Levy, M.A., Zell, E., Weber, S., Jaiteh, M., 2014. Using satellite data to
develop environmental indicators. Environ. Res. Lett. 9, 084013 https://doi.org/
10.1088/1748-9326/9/8/084013.

Steinle, S., Reis, S., Sabel, C.E., Semple, S., Twigg, M.M., Braban, C.F., et al., 2015.
Personal exposure monitoring of PM2.5 in indoor and outdoor microenviron-
ments. Sci. Total Environ. 508, 383e394. https://doi.org/10.1016/
j.scitotenv.2014.12.003.

Su, S., Xiao, R., Zhang, Y., 2012. Multi-scale analysis of spatially varying relationships
between agricultural landscape patterns and urbanization using geographically
weighted regression. Appl. Geogr. 32, 360e375. https://doi.org/10.1016/
j.apgeog.2011.06.005.

van Donkelaar, A., Martin, R.V., Brauer, M., Boys, B.L., 2015. Use of satellite obser-
vations for long-term exposure assessment of global concentrations of fine
particulate matter. Environ. Health Perspect. 123, 135e143. https://doi.org/
10.1289/ehp.1408646.

van Donkelaar, A., Martin, R.V., Brauer, M., Hsu, N.C., Kahn, R.A., Levy, R.C., et al.,
2016. Global estimates of fine particulate matter using a combined geophysical-
statistical method with information from satellites, models, and monitors.
Environ. Sci. Technol. 50, 3762e3772. https://doi.org/10.1021/acs.est.5b05833.

van Donkelaar, A., Martin, R.V., Li, C., Burnett, R.T., 2019. Regional estimates of
chemical composition of fine particulate matter using a combined geoscience-
statistical method with information from satellites, models, and monitors.
Environ. Sci. Technol. 53, 2595e2611. https://doi.org/10.1021/acs.est.8b06392.

Van Ourti, T., van Doorslaer, E., Koolman, X., 2009. The effect of income growth and
inequality on health inequality: theory and empirical evidence from the Eu-
ropean Panel. J. Health Econ. 28, 525e539. https://doi.org/10.1016/
j.jhealeco.2008.12.005.

Viscusi, W.K., Aldy, J.E., 2003. The value of a statistical life: a critical review of
market estimates throughout the world. J. Risk Uncertain. 27, 5e76. https://
doi.org/10.1023/A:1025598106257.

Wang, H., Zhang, Y., Zhao, H., Lu, X., Zhang, Y., Zhu, W., et al., 2017. Trade-driven
relocation of air pollution and health impacts in China. Nat. Commun. 8, 738.
https://doi.org/10.1038/s41467-017-00918-5.

Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., et al., 2021. Reconstructing 1-
km-resolution high-quality PM2.5 data records from 2000 to 2018 in China:
spatiotemporal variations and policy implications. Rem. Sens. Environ. 252,
112136. https://doi.org/10.1016/j.rse.2020.112136.

West, J.J., Cohen, A., Dentener, F., Brunekreef, B., Zhu, T., Armstrong, B., et al., 2016.
What we breathe impacts our health: improving understanding of the link
between air pollution and health. Environ. Sci. Technol. 50, 4895e4904. https://
doi.org/10.1021/acs.est.5b03827.

WHO, 2016. Ambient Air Pollution: A Global Assessment of Exposure and Burden of
Disease.

WHO (World Health Organization), 2018. Ambient (outdoor) air pollution. https://
www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-
and-health. (Accessed 9 January 2020).

Wilper, A.P., Woolhandler, S., Lasser, K.E., McCormick, D., Bor, D.H.,
Himmelstein, D.U., 2009. Health insurance and mortality in US adults. Am. J.
Publ. Health 99, 2289e2295. https://doi.org/10.2105/AJPH.2008.157685.

Xie, R., Sabel, C.E., Lu, X., Zhu, W., Kan, H., Nielsen, C.P., et al., 2016a. Long-term trend
and spatial pattern of PM2.5 induced premature mortality in China. Environ. Int.
97, 180e186. https://doi.org/10.1016/j.envint.2016.09.003.

Xie, Y., Dai, H., Dong, H., Hanaoka, T., Masui, T., 2016b. Economic impacts from PM2.5
pollution-related health effects in China: a provincial-level analysis. Environ.
Sci. Technol. 50, 4836e4843. https://doi.org/10.1021/acs.est.5b05576.

Xie, Y., Dai, H., Zhang, Y., Wu, Y., Hanaoka, T., Masui, T., 2019. Comparison of health
and economic impacts of PM2.5 and ozone pollution in China. Environ. Int. 130,
104881. https://doi.org/10.1016/j.envint.2019.05.075.

Xiong, H., Lan, L., Liang, L., Liu, Y., Xu, X., 2020. Spatiotemporal differences and
dynamic evolution of PM2.5 pollution in China. Sustainability 12, 5349. https://
doi.org/10.3390/su12135349.

Xu, X., 2017. 1 KM Grid Population Dataset of China. https://doi.org/10.12078/
2017121101.

Xue, T., Zheng, Y., Tong, D., Zheng, B., Li, X., Zhu, T., et al., 2019a. Spatiotemporal
continuous estimates of PM2.5 concentrations in China, 2000e2016: a machine
learning method with inputs from satellites, chemical transport model, and
ground observations. Environ. Int. 123, 345e357. https://doi.org/10.1016/
j.envint.2018.11.075.

Xue, T., Zhu, T., Zheng, Y., Liu, J., Li, X., Zhang, Q., 2019b. Change in the number of
PM2.5-attributed deaths in China from 2000 to 2010: comparison between es-
timations from census-based epidemiology and pre-established exposure-
response functions. Environ. Int. 129, 430e437. https://doi.org/10.1016/
j.envint.2019.05.067.

Yang, G., Wang, Y., Zeng, Y., Gao, G.F., Liang, X., Zhou, M., et al., 2013. Rapid health
transition in China, 1990e2010: findings from the global burden of disease
study 2010. Lancet 381, 1987e2015. https://doi.org/10.1016/S0140-6736(13)
61097-1.

https://doi.org/10.1016/j.envint.2019.04.026
https://doi.org/10.1016/j.envint.2019.04.026
https://doi.org/10.1016/j.chemosphere.2020.127925
https://doi.org/10.1016/j.chemosphere.2020.127925
https://doi.org/10.1016/j.atmosenv.2007.10.077
https://doi.org/10.1161/STROKEAHA.111.635755
https://doi.org/10.1016/j.envint.2016.10.003
https://doi.org/10.1016/j.atmosenv.2017.10.054
https://doi.org/10.1016/j.isprsjprs.2019.10.010
https://doi.org/10.1016/j.isprsjprs.2019.10.010
https://doi.org/10.1016/j.scitotenv.2018.10.140
https://doi.org/10.1016/j.eneco.2016.05.017
https://doi.org/10.1016/j.eneco.2016.05.017
https://doi.org/10.1289/ehp.1409481
https://doi.org/10.5194/acp-19-6861-2019
https://doi.org/10.5194/acp-19-6861-2019
https://doi.org/10.11909/j.issn.1671-5411.2020.01.001
https://doi.org/10.1016/j.scitotenv.2017.08.254
https://doi.org/10.1016/j.scitotenv.2017.08.254
https://doi.org/10.1016/j.envint.2018.09.024
https://doi.org/10.1016/j.gloenvcha.2011.08.006
https://doi.org/10.1016/j.gloenvcha.2011.08.006
https://doi.org/10.1371/journal.pone.0192461
https://doi.org/10.1371/journal.pone.0192461
https://doi.org/10.1016/s0140-6736(17)32152-9
https://doi.org/10.1289/ehp.1408565
https://doi.org/10.1016/j.rse.2015.12.008
https://doi.org/10.2147/COPD.S79077
https://doi.org/10.3390/ijerph16101791
https://doi.org/10.3390/ijerph16101791
https://doi.org/10.1016/j.envpol.2016.10.035
https://doi.org/10.1016/j.envpol.2016.10.035
https://doi.org/10.1016/j.eneco.2011.07.023
https://doi.org/10.1016/j.envres.2017.10.028
https://doi.org/10.1021/acs.est.6b04708
http://www.commonwealthfund.org/publications/fund-reports/2013/sep/low-income-scorecard
http://www.commonwealthfund.org/publications/fund-reports/2013/sep/low-income-scorecard
http://www.commonwealthfund.org/publications/fund-reports/2013/sep/low-income-scorecard
https://doi.org/10.1088/1748-9326/9/8/084013
https://doi.org/10.1088/1748-9326/9/8/084013
https://doi.org/10.1016/j.scitotenv.2014.12.003
https://doi.org/10.1016/j.scitotenv.2014.12.003
https://doi.org/10.1016/j.apgeog.2011.06.005
https://doi.org/10.1016/j.apgeog.2011.06.005
https://doi.org/10.1289/ehp.1408646
https://doi.org/10.1289/ehp.1408646
https://doi.org/10.1021/acs.est.5b05833
https://doi.org/10.1021/acs.est.8b06392
https://doi.org/10.1016/j.jhealeco.2008.12.005
https://doi.org/10.1016/j.jhealeco.2008.12.005
https://doi.org/10.1023/A:1025598106257
https://doi.org/10.1023/A:1025598106257
https://doi.org/10.1038/s41467-017-00918-5
https://doi.org/10.1016/j.rse.2020.112136
https://doi.org/10.1021/acs.est.5b03827
https://doi.org/10.1021/acs.est.5b03827
http://refhub.elsevier.com/S0269-7491(21)00464-4/sref63
http://refhub.elsevier.com/S0269-7491(21)00464-4/sref63
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://doi.org/10.2105/AJPH.2008.157685
https://doi.org/10.1016/j.envint.2016.09.003
https://doi.org/10.1021/acs.est.5b05576
https://doi.org/10.1016/j.envint.2019.05.075
https://doi.org/10.3390/su12135349
https://doi.org/10.3390/su12135349
https://doi.org/10.12078/2017121101
https://doi.org/10.12078/2017121101
https://doi.org/10.1016/j.envint.2018.11.075
https://doi.org/10.1016/j.envint.2018.11.075
https://doi.org/10.1016/j.envint.2019.05.067
https://doi.org/10.1016/j.envint.2019.05.067
https://doi.org/10.1016/S0140-6736(13)61097-1
https://doi.org/10.1016/S0140-6736(13)61097-1


M. Liu, R.K. Saari, G. Zhou et al. Environmental Pollution 279 (2021) 116882
Yin, P., Brauer, M., Cohen, A., Burnett, R., Liu, J., Liu, Y., et al., 2017. Long-term fine
particulate matter exposure and nonaccidental and cause-specific mortality in a
large national cohort of Chinese men. Environ. Health Perspect. 125, 117002.
https://doi.org/10.1289/EHP1673.

Yu, M., Zhu, Y., Lin, C.-J., Wang, S., Xing, J., Jang, C., et al., 2019. Effects of air pollution
control measures on air quality improvement in Guangzhou, China. J. Environ.
Manag. 244, 127e137. https://doi.org/10.1016/j.jenvman.2019.05.046.
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