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CS-CapsFPN: A Context-Augmentation and Self-Attention Capsule Feature
Pyramid Network for Road Network Extraction from Remote Sensing
Imagery

CS-CapsFPN: Un r�eseau pyramidal de fonctionnalit�es d’augmentation du
contexte et de capsules d’auto-attention pour l’extraction du r�eseau routier
�a partir de l’imagerie de t�el�ed�etection

Yongtao Yua , Jun Wanga, Haiyan Guanb , Shenghua Jina, Yongjun Zhanga, Changhui Yua, E. Tanga,
Shaozhang Xiaoa, and Jonathan Lic

aFaculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian, China; bSchool of Remote Sensing and
Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, China; cDepartment of Geography and
Environmental Management, University of Waterloo, Waterloo, Canada

ABSTRACT
The information-accurate road network database is greatly significant and provides essential
input to many transportation-related activities. Recently, remote sensing images have been
an important data source for assisting rapid road network updating tasks. However, due to
the diverse challenging scenarios of roads in remote sensing images, such as occlusions,
shadows, material diversities, and topology variations, it is still difficult to realize highly
accurate extraction of roads. This paper proposes a novel context-augmentation and
self-attention capsule feature pyramid network (CS-CapsFPN) to extract roads from remote
sensing images. By designing a capsule feature pyramid network architecture, the proposed
CS-CapsFPN can extract and fuze different-level and different-scale high-order capsule fea-
tures to provide a high-resolution and semantically strong feature representation for predict-
ing the road region maps. By integrating the context-augmentation and self-attention
modules, the proposed CS-CapsFPN can exploit multi-scale contextual properties at a high-
resolution perspective and emphasize channel-wise informative features to further enhance
the feature representation robustness. Quantitative evaluations on two test datasets show
that the proposed CS-CapsFPN achieves a competitive performance with a precision, recall,
intersection-over-union, and Fscore of 0.9470, 0.9407, 0.8957, and 0.9438, respectively.
Comparative studies also confirm the feasibility and superiority of the proposed CS-CapsFPN
in road extraction tasks.

RÉSUMÉ

Une base de donn�ees pr�ecise du r�eseau routier est une information tr�es importante qui
fournit des donn�ees essentielles �a de nombreuses activit�es li�ees au transport. Les images de
t�el�ed�etection sont maintenant une source de donn�ees essentielle pour faciliter l« mise �a
jour rapide du r�eseau routier. Cependant, en raison de la complexit�e et de la diversit�e de
l’apparence des routes dans les images de t�el�ed�etection, caus�ee par les occlusions, les
ombers, la diversit�e des mat�eriaux, et les variations de topologie, il est toujours difficile de
r�ealiser une extraction tr�es pr�ecise des routes. Cet article propose un nouveau r�eseau
pyramidal de fonctionnalit�es d’augmentation du contexte et de capsules d’auto-attention
(CS-CapsFPN) pour extraire les routes. En concevant une architecture de r�eseau pyramidal
de type capsules, le CS-CapsFPN propos�e peut extraire et fusionner des capsules de
diff�erents niveaux et �a diff�erentes �echelles afin de fournir une repr�esentation des entit�es en
haute r�esolution et s�emantiquement significative pour pr�edire les cartes routi�eres de la
r�egion. En int�egrant les modules d’augmentation du contexte et d’auto-attention, le CS-
CapsFPN peut exploiter les propri�et�es contextuelles �a plusieurs �echelles dans une perspec-
tive haute r�esolution et mettre l’accent sur les caract�eristiques informatives de chaque canal
afin d’am�eliorer la robustesse de leur repr�esentation. Les �evaluations quantitatives sur deux
ensembles de donn�ees d’essai montrent que le CS-CapsFPN obtient une performance
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concurrentielle avec une pr�ecision, rappel, intersection-over-union, et Fscore de 0.9470, 0.9407,
0.8957, et 0.9438, respectivement. Des �etudes comparatives confirment �egalement la
faisabilit�e et la sup�eriorit�e du CS-CapsFPN dans les tâches d’extraction routi�ere.

Introduction

As a public infrastructure for vehicles and pedestrians,
road plays an important and irreplaceable role in a var-
iety of transportation-related activities. It provides a
pathway for connecting different places, thereby effect-
ively facilitating people’s daily lives, and promoting the
development of the economy and the progress of the
society. The coverage rate, the network structure, the
design pattern, and the condition of roads significantly
affect the convenience, smoothness, and security of the
transportation-related activities. Precise and complete
road network information is favorable to conduct route
planning and direct driving behaviors. However, due to
road maintenance, road construction, and the influence
of natural factors, the road network is not always
changeless. The structure, the number, and the topology
of roads are dynamically changing, resulting in the
incompleteness and inaccuracy of the current road net-
work database. Therefore, timely and accurately updat-
ing the road network information is of great
significance and provides essential ingredients to a wide
range of applications, including road planning, traffic
capacity analysis, functional region partition, map navi-
gation, etc.

Traditional means for road network updating is
usually based on onsite manual investigations or
accomplished using mobile mapping systems mounted
with video cameras (or laser scanners) and global
navigation satellite system (GNSS) antennas. However,
such field surveys are time-consuming, labor-
intensive, and inoperable in some extreme cases, even
inaccurate caused by incomplete coverage of the
roads. In recent decades, with the advances of optical
remote sensing sensors in flexibility, quality, and reso-
lution, it is quite efficient and cost-effective to collect
high-quality remote sensing images covering large
areas by using satellite or aerial sensors.
Comparatively, satellite sensors have larger perspec-
tives. They can periodically and easily survey an
extensive area of interest, providing a time series of
images with sub-meter spatial resolutions. In contrast,
aerial sensors, such as airborne or unmanned aerial
vehicle (UAV) systems, have the advantages of high
portability and flying flexibility, and low-cost
platform. They can rapidly capture the images of the
surveyed areas with different levels of details. Thus,

due to the superior properties of the optical remote
sensing systems and their output remote sensing
images, they have been positively leveraged to assist
road network updating tasks. To date, a collection of
algorithms and techniques have been developed and
applied to road network extraction by using remote
sensing images. Consequently, a number of achieve-
ments and breakthroughs have been obtained with
increasing enhanced accuracies. However, with the
specific image capturing mode of bird views, roads in
remote sensing images often suffer from different lev-
els of incompleteness caused by the occlusions of
roadside high-rise buildings, trees, and traffic facilities.
In addition, the shadows cast on the roads, the on-
road vehicles and pedestrians, and the painted road
markings severely change the texture consistencies of
the roads. Moreover, the material diversities, shape
and width variations of the roads are also common
issues. Therefore, it is still challengeable to realize
accurate extraction of road networks from remote
sensing images. Exploiting highly efficient and fully
automated techniques to further improve road net-
work extraction accuracy and efficiency is of great sig-
nificance and also urgently demanded by a wide range
of applications.

In this paper, we design a novel context-augmenta-
tion and self-attention capsule feature pyramid net-
work architecture, named CS-CapsFPN, to extract
roads from remote sensing images. The proposed
CS-CapsFPN leverages vectorial capsules to encode
high-order entity features. The construction of the
CS-CapsFPN consists of a bottom-up pathway for
extracting different-level and different-scale capsule
features, and a top-down pathway, together with sev-
eral lateral connections, for integrating different-level
and different-scale capsule features to provide a high-
resolution, semantically strong feature representation
for accurate road extraction. Specifically, a context-
augmentation and self-attention module is embedded
into the network to recalibrate and enhance the fea-
tures by taking into account both multi-scale context
properties and channel-wise feature saliencies and
informativeness. The proposed CS-CapsFPN performs
effectively and efficiently in processing remote sensing
images containing roads of varying types, diverse geo-
metric topologies, and complicated environmental and
surface conditions. The contributions of this paper
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include the following: (1) a novel and deep capsule
feature pyramid network architecture is designed to
generate high-resolution, semantically strong capsule
feature representations to predict the road region
maps; (2) a context-augmentation and self-attention
module is developed to exploit multi-scale context
properties and emphasize channel-wise informative
and salient features to enhance the feature representa-
tion capability.

Related works

Generally, the road extraction task can be accom-
plished through two different pipelines: road region
extraction and road centerline extraction. Specifically,
road region extraction methods focus on the accurate
segmentation of the road regions and produce the
pixel-wise labeling of the road regions in the images.
In contrast, road centerline extraction methods mainly
aim to delineate the architecture of the road network
and generate only the skeletons of the roads in the
images. The existing methods for road extraction
from remote sensing images can be roughly catego-
rized into traditional methods and deep learning
based methods. In the following subsections, we will
provide detailed reviews on these road extrac-
tion methods.

Traditional road extraction methods

Traditional methods for road extraction from remote
sensing images usually leverage hand-crafted features
and prior knowledge (e.g., geometric, spectral, topo-
logical, and contextual features) to formulate road rec-
ognition or segmentation models. Liu et al. (2020)
proposed a semi-supervised high-level feature selec-
tion framework for road centerline extraction. This
framework contained a processing pipeline of multiple
feature selection based on adaptive sparse representa-
tion, semi-supervised road region extraction by com-
bining feature learning with Markov random field
(MRF), and road centerline extraction through Gabor
filters and non-maximum suppression. To address the
issues of occlusions and noise, Lv et al. (2017) inte-
grated an adaptive multi-feature sparsity model into a
semiautomatic road extraction approach. This
approach leveraged the multi-feature sparse model to
portray the road appearance. The extraction of roads
was accomplished using a sparse constraint regular-
ized mean-shift algorithm. Similarly, an adaptive
multi-feature method combining entropy and spectral
features with the digital surface model was designed

by Pan et al. (2019). To enhance both the smoothness
and accuracy of the extracted road centerlines, Cheng
et al. (2016) constructed a cascade framework consist-
ing of semi-supervised segmentation, multi-scale filter-
ing, and multi-direction non-maximum suppression.
Specifically, the semi-supervised segmentation process
effectively explored the intrinsic structures between
the labeled and unlabeled samples, thereby improving
the road extraction performance with limited labeled
samples. To accurately differentiate the roads from the
background, Alshehhi and Marpu (2017) presented a
hierarchical graph-based road segmentation method.
In this method, Gabor and morphological filtering
operations were pre-applied to enhance the saliencies
of the road pixels. Then, graph-based segmentation
and post-processing were successively carried out to,
respectively, extract road regions and remove irregu-
larities. By integrating fuzzy logic system and ant col-
ony optimization, Maboudi et al. (2018) proposed an
object-based road extraction strategy. Through object-
based image analysis, a set of spatial, spectral, and tex-
tural features were incorporated to model the roads.
Similarly, an object-based method combining context-
aware object feature integration and tensor voting was
also suggested by Maboudi et al. (2016). A multi-stage
approach integrating structural, spectral, textural, and
contextual properties of objects was applied to extract
the roads. To reduce computational complexity in
road extraction tasks, Sghaier and Lepage (2016) pro-
posed to use texture analysis and beamlet transform
based multi-scale reasoning. Initially, mathematical
morphology and Canny detector were, respectively,
applied to distinguish rectilinear structures and iden-
tify road edge candidates. By combining local and
global information via beamlet transform, multi-scale
reasoning was performed to reconstruct the roads. In
addition, normalized second derivative map (Bae et al.
2015), aperiodic directional structure measurement
(Zang et al. 2016), joint enhancing filtering (Zang
et al. 2017), information fusion (Miao et al. 2016),
particle and extended Kalman filtering (Movaghati
et al. 2010), and multi-source data integration (Li
et al. 2019b; Zhang et al. 2018b), were also exploited
for road extractions from remote sensing images.

Some researches convert the road extraction task
into classification issues. Road recognition models are
constructed using image features. Miao et al. (2015)
designed a support vector machine (SVM) classifier
for road extraction based on the enhanced features
obtained using the object-based Frangi’s filter and the
object-based shape filter. The extracted road regions
were further smoothed through an integration of
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tensor voting, active contour, and geometrical infor-
mation. Differently, Zhang et al. (2017) leveraged an
SVM classifier to filter out the images containing no
roads based on the histogram of oriented gradient
(HOG) features. The extraction of roads was carried
out by exploiting two saliency features of background
differences and local linear edges. Zhou et al. (2017)
learned a boosting classifier to identify road candi-
dates from the clustered line segments. The line seg-
ments were clustered using K-means based on the
stroke width transform feature map. Shi et al. (2014)
extracted road centerlines by integrating spectral-
spatial classification and shape features. First, an SVM
classifier constructed based on morphological profiles
was performed to segment road candidates. Then,
road shape features were used to obtain the refined
road map. In addition, Bakhtiari et al. (2017) pro-
posed a semi-automatic road extraction approach
based on an integration of edge detection, SVM classi-
fication, and mathematical morphology.

Although the traditional road extraction methods
are easy to implement, the quality and effectiveness of
the designed models depend greatly on the selected
features and the strictness of the prior knowledge.
They are usually sensitive to the type diversities, top-
ology variations, and environmental changes of
the roads.

Deep learning based road extraction methods

Recent development in deep learning techniques has
burst a great number of breakthroughs on perform-
ance and accuracy in detection, classification, and seg-
mentation tasks. Deep learning models have the
superiorities of automatically abstracting high-level,
representative features of entities in an end-to-end
manner. Consequently, great efforts have been made
to conduct road extraction from remote sensing
images by using deep learning techniques. Wei et al.
(2017) proposed a road structure refined convolu-
tional neural network (CNN) for extracting roads. To
obtain structured road extractions, deconvolutional
and feature fusion layers were designed in the archi-
tecture of the CNN model. Dai et al. (2019) combined
a multi-scale deep residual CNN (MDRCNN) with a
sector descriptor-based post-processing. In this archi-
tecture, multi-scale convolution functioned to generate
hierarchical features of different dimensions, whereas
the residual connections and global average pooling
were used to improve the efficiency of the network.
Similarly, a refined deep residual CNN model was
proposed by Gao et al. (2019) for road extraction. To

simultaneously deal with road detection and centerline
extraction, Cheng et al. (2017) constructed a cascaded
end-to-end CNN architecture (CasNet). The CasNet
consisted of two subnetworks for road detection and
centerline extraction tasks, respectively. Specifically,
the centerline extraction subnetwork shared the fea-
tures output by the road detection subnetwork.
Differently, Liu et al. (2019) designed a multi-task
CNN model, called RoadNet, to simultaneously seg-
ment road regions, and extract road centerlines and
road boundaries. By automatically abstracting multi-
scale and multi-level features, the RoadNet performed
promisingly in handling the roads of diverse scales
and in various scenarios. To alleviate occlusions and
preserve road continuity, Tao et al. (2019) proposed a
spatial information inference net (SII-Net) for road
extraction. This network could learn both the local
visual properties of the roads and the global spatial
structure information of the roads, such as continuity
and trend. Zhang et al. (2019b) leveraged a multiple
feature fully convolutional network (FCN) to extract
roads in mountainous areas. This network was divided
into three parts: encoding, bridge, and decoding.
Concretely, the encoding part functioned to extract
depth feature maps, and the decoding part recovered
the feature maps for road segmentation. These two
parts were connected by the bridge part. To solve the
imbalance between the roads and the background
areas in remote sensing images, Zhang et al. (2020)
presented an FCN-based ensemble approach for road
extraction. In this approach, a spatial consistency
based ensemble method was applied to determine the
weight of the loss function to handle the imbalance.
Gao et al. (2018) suggested a multiple feature pyramid
network (MFPN) to extract roads. In the MFPN, an
effective feature pyramid architecture and a tailored
pyramid pooling module were designed to take advan-
tage of the multi-level semantic features. Likewise, a
weighted balance loss function was also used to solve
the imbalance issue caused by the sparseness of roads.
In addition, an atrous spatial pyramid pooling inte-
grated encoder-decoder network was also leveraged by
He et al. (2019) for road extraction.

To improve the smoothness and boundary adher-
ence of the extracted roads, Shi et al. (2018) proposed
an end-to-end generative adversarial network (GAN)
for road extraction. Based on adversarial training, the
GAN could discriminate between the segmentation
maps from either the ground truth or the segmenta-
tion output and enforce long-range spatial label con-
tiguity to provide consistent road extractions. Zhang
et al. (2019a) designed an improved GAN

4 YU ET AL.



architecture, which only required a few samples for
training. In this model, a content-based loss term was
integrated into the original GAN’s loss function to
serve the road extraction task. To handle occlusions
and shades, Zhang et al. (2019c) constructed a multi-
supervised GAN (MsGAN), which was jointly trained
using the spectral and topology features of the roads.
The MsGAN was capable of identifying aberrant road
cases based on the relationship between the road
region and the centerline. Zhang et al. (2018a) com-
bined the strengths of residual learning and U-Net
architecture and developed a deep residual U-Net
(ResUnet) for road extraction. Specifically, residual
units were adopted as basic blocks to build the encod-
ing, bridge, and decoding parts of the ResUnet. Yang
et al. (2019) proposed a deep recurrent CNN U-Net
(RCNN-UNet) to simultaneously perform road detec-
tion and road centerline extraction. The RCNN-UNet
leveraged a U-Net architecture built based on RCNN
units and contained two predictors sharing the same
backbone for, respectively, segmenting road regions
and generating road skeletons. Differently, inspired by
the densely connected CNN and U-Net, Xin et al.
(2019) designed a DenseUNet architecture with few
parameters and robust characteristics. With dense
connection units and skip connections, the
DenseUNet effectively strengthened the feature repre-
sentation capability by fuzing different-scale features
at various network layers. To cope with complex
backgrounds and scale variations of the roads, Li et al.
(2019a) developed a hybrid convolutional network
(HCN) to improve road extraction accuracy. The
HCN consisted of three parallel branches, including
an FCN, a modified U-Net, and a VGG, to, respect-
ively, generate a coarse-grained, a medium-grained,
and a fine-grained road segmentation map. The
multi-grained segmentation maps were further fused
by a shallow convolutional subnetwork for final road
extraction. In addition, dense refinement residual net-
work (Eerapu et al. 2019), richer convolutional fea-
tures network (Hong et al. 2018), and deep transfer
learning (Senthilnath et al. 2020) were also explored
for extracting roads from remote sensing images.

Despite the progress and achievements of the deep
learning models made so far due to the automated
end-to-end high-level feature abstraction mechanism,
they still face the challenges of the requirement of
large-volume annotated data and plenty of time cost
for model training. The quality and the amount of the
annotated data also affect significantly on the robust-
ness and accuracy of the designed deep learn-
ing models.

Methodology

Capsule network

Traditional deep learning models are usually built
based on scalar neurons, which characterize the prob-
abilities of the existence of specific features. Thus, in
order to capture the variances of entities, more extra
neurons are often required to be embedded to encode
the different variants of the same entity, resulting in
the size expansion of the entire network. Recently,
capsule networks have exhibited advantageous proper-
ties in feature extraction and representation capabil-
ities. Particularly, capsule networks leverage vectorial
capsule encodings as basic units to characterize entity
features. A capsule can be viewed as a vector combin-
ation of scalar neurons, whose length encodes the cer-
tainty of the presence of an entity, and whose
instantiation parameters reflect the inherent properties
of the entity (Sabour et al. 2017). A ground-breaking
property of such capsule formulation is that the vec-
torial representation allows a capsule not only to
detect a feature but also to learn and identify its var-
iants without including more capsules, thereby provid-
ing a powerful, but lightweight, feature representation
model. Capsule networks have shown promising and
competitive performances in many detection (Yu et al.
2019, Yu et al. 2020a), classification (Paoletti et al.
2019), and segmentation tasks (Yu et al. 2020b). Thus,
in this paper, by taking advantage of the superior
properties of capsule networks, we construct a CS-
CapsFPN architecture aiming to exploit multi-scale
context properties and channel attention mechanisms
to provide high-resolution and semantically strong
feature representations to improve the road extrac-
tion accuracy.

Capsule convolutions are quite different from trad-
itional convolution operations. Concretely, for a cap-
sule j in a capsule convolutional layer, the total input
to the capsule is a dynamically determined weighted
sum over all the predictions from the capsules within
the convolution kernel in the previous layer as follows:

Cj ¼
X

i
ai, j � Ui, j (1)

where Cj is the total input to capsule j; ai,j is a
dynamically determined coupling coefficient indicating
the degree of contribution of the prediction from
capsule i in the previous layer; Ui,j is the prediction
from capsule i to capsule j, and it has the following
form:

Ui, j ¼ Wi, jUi (2)

where Ui is the output of capsule i and Wi,j is a
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transformation matrix acting as a feature mapping
function. Specifically, the coupling coefficients
between capsule i and all its connected capsules in the
layer above sum to 1 and are determined by the
improved dynamic routing process (Rajasegaran
et al. 2019).

Note that, we use the length of a capsule to encode
the saliency of a feature. That is, short capsules should
cast low probability estimations; whereas long capsules
should result in high probability estimations. Thus, we
adopt the nonlinear “squashing” function (Sabour
et al. 2017) as the activation function to normalize the
input of a capsule. The squashing function is formu-
lated as follows:

Uj ¼
kCjk2

1þ kCjk2
� Cj

kCjk (3)

where Cj and Uj are, respectively, the input and the
output of capsule j. The modulus of a vector is calcu-
lated by the operator k � k: Through normalization,
long capsules are shrunk to a length close to one to
cast high predictions; whereas short capsules are sup-
pressed to almost a zero length to provide few
contributions.

Context-augmentation and self-attention capsule
feature pyramid network

As shown in Figure 1, the proposed CS-CapsFPN,
which is designed as a fully convolutional feature

pyramid network architecture aiming at providing a
high-resolution and semantically strong feature map
by considering multi-level and multi-scale feature
semantics, takes a remote sensing image as the input
and outputs an equal-size road region map in an end-
to-end manner. The architecture of the CS-CapsFPN
involves a bottom-up pathway, a top-down pathway,
and several lateral connections. The bottom-up path-
way functions to extract different levels and different
scales of capsule features. The top-down pathway,
assisted by the lateral connections, serve to integrate
the different-level and different-scale capsule features
to recover high-resolution and semantically strong fea-
ture representations for generating a high-quality road
map. However, different from the network architec-
ture proposed by Yu et al. (2020a), an improved
multi-scale context-augmentation module and a novel
channel-wise self-attention module are integrated in
the feature pyramid network architecture to effectively
boost the quality of the output feature representations.

The bottom-up pathway is a feature extraction net-
work, which is composed of two traditional convolu-
tional layers for low-level feature extraction, and a
group of capsule convolutional layers and capsule
pooling layers for different scales of high-level capsule
feature abstraction. The scalar features output by the
second convolutional layer are further encoded into
vectorial capsule representations to characterize entity
features. This primary capsule layer can be con-
structed through traditional convolution operations.

Figure 1. Architecture of the proposed context-augmentation and self-attention capsule feature pyramid network (CS-CapsFPN).
The dimension of a capsule is configured as 16.
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For example, denote Dp as the number of feature
channels in the primary capsule layer and Sp as the
dimension of a capsule. Then, a total of Dp�Sp differ-
ent convolution kernels are performed on the second
convolutional layer, resulting in Dp�Sp feature chan-
nels (see Figure 2). After convolutions, the generated
feature channels are equally partitioned into Dp

groups, each of which contains Sp feature channels.
As shown in Figure 2, for each group, the Sp compo-
nents at the same position are concatenated to consti-
tute an Sp-dimensional capsule. In such a way, the
low-level scalar feature representations are converted
into high-level vectorial entity representations.
Specifically, for these two traditional convolutional
layers, the widely used rectified linear unit (ReLU) is
adopted as the activation function.

As shown in Figure 1, the capsule convolutional
and pooling layers in the bottom-up pathway are split
into four network stages for computing a pyramid of
capsule features at different scales with a scaling step
of two. Within each stage, the feature maps in each
capsule layer maintain the same resolution and spatial
size. The spatial size of feature maps is gradually
scaled down stage by stage to generate lower-
resolution feature maps with a scaling step of two.
Specifically, the feature maps in the first stage have
the same spatial size as the input image. At the end of
each stage (except the last stage), a capsule pooling
layer is appended to conduct feature downsampling
and salient feature selection, and to enlarge the recep-
tive field. Here, we adopt max-pooling operations to
select the most representative capsule features.
Concretely, for the capsules within a max-pooling ker-
nel in each feature channel, only the capsule having
the longest length is retained and the others are dis-
carded. After max-pooling, a feature map is scaled
down to the half size. From bottom layer to top layer,
the spatial resolution of the feature maps in each stage
is decreased gradually, whereas higher-level features
with larger receptive fields are generated.

Theoretically, the deepest layer in each stage has the
strongest and most representative feature encodings.
Therefore, for the bottom-up pathway, we pick the
feature map of the last capsule layer in each stage as
the reference set of feature maps for the subsequent
feature fusion, augmentation, and refinement. To
facilitate feature fusion, we apply a 1� 1 capsule con-
volution operation (kernel size is 1� 1) to each of the
reference feature maps to modulate their channel
numbers to the same configuration of d¼ 32 while
keeping their original spatial resolutions. As shown in
Figure 1, after feature map selection and modulation,
we obtain the final reference set of feature maps {C1,
C2, C3, C4}, which have scales of {1, 1/2, 1/4, 1/8},
respectively, with regard to the input image.

The receptive field of a capsule in each stage is
enlarged slowly layer by layer through capsule convo-
lutions. Thus, to rapidly expand the receptive field of
a capsule to include more context properties, we
append a max-pooling layer at the end of each stage
to scale down the feature maps to a small size. This is
a common design pattern in CNN models. However,
after max-pooling, the feature details are partially
damaged in the resultant lower-resolution feature
maps, which is adverse for the feature encoding and
the extraction of small-size roads. In addition, capsule
convolution operations behave equally on all the
channels of a feature map within the local receptive
fields at each layer. The interdependencies and salien-
cies among the channels are weakly exploited, which
is not helpful to obtain informative features. Thus, in
order to rapidly enlarge the receptive field of a capsule
to consider more context information in each stage
without the loss of feature map resolution and expli-
citly model the interdependencies among the feature
channels to emphasize informative features and
suppress the less useful ones, we embed a cascaded
multi-scale context-augmentation (CA) and channel-
wise self-attention (SA) module over the deepest layer
in each stage. Through feature recalibration by the

Figure 2. Illustration of the construction of the primary capsule layer.
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CA and SA module, the output features are more
robust and more informative.

As shown in Figure 3, the CA module takes a fea-
ture map as the input and outputs an augmented fea-
ture map having the same number of channels and
the same size as the input feature map. In this paper,
we leverage the atrous convolutions (Chen et al. 2018)
to design the CA module. Different from standard
convolutions, atrous convolutions involve an extra
hyperparameter, i.e., atrous rate, to indicate the stride
of the kernel parameters. Specifically, a standard con-
volution is actually a special case of an atrous convo-
lution with the atrous rate of 1. An important
property of atrous convolutions is that, by adjusting
the atrous rate, different receptive fields can be
accessed without increasing the number of kernel
parameters. For example, a 3� 3 atrous convolution
kernel with an atrous rate of 3 has the same size of
receptive field as a standard 7� 7 convolution kernel,
but fewer parameters (9 versus 49). Thus, taking into
account the advantageous properties, we adopt atrous
convolutions to design the multi-scale CA module. As
shown in Figure 3, four parallel branches are per-
formed on the input feature map to exploit different
scales of context features with the gradual increment
of the atrous rates. The first branch applies a 3� 3
atrous convolution with an atrous rate of 1 to include
a small scope of context. The second and third branch
perform a 3� 3 atrous convolution with atrous rates
of 2 and 3, respectively, to consider a medium size of
context. The last branch stacks two 3� 3 atrous con-
volutions with atrous rates of 3 and 5, respectively, to
encapsulate a large area of context. For each branch, a
1� 1 atrous convolutional layer is appended to
smooth the extracted features and modulate the fea-
ture channels. Afterwards, the features encoding dif-
ferent scales of context information from these four
branches, along with the original input feature, are
concatenated and further fused through a 1� 1 atrous
convolution to generate the output feature map. By
introducing the CA module, the output feature map
can rapidly include different scales of context infor-
mation without the loss of feature details and

resolutions, which is quite powerful to characterize
entities of varying sizes, especially those of small sizes.

As shown in Figure 3, the output of the CA mod-
ule is fed into the SA module to conduct feature reca-
libration to emphasize informative features. The
output of the SA module involves a recalibrated fea-
ture map having the same number of channels and
the same size as the input feature map. We expect the
input features to be enhanced by explicitly modeling
the channel interdependencies in order to increase the
sensitivity of the network to informative features with
a global perspective. To this end, first, by collecting
channel-wise statistics, we apply a global average pool-
ing operation to the input feature map to transform it
into a channel descriptor V, whose length equals to
the number of channels of the input feature map.
Formally, for each channel of the input feature map, a
scalar value is generated by spatially squeezing the
lengths of the capsules in this channel through a glo-
bal average pooling operation as follows:

vi ¼ 1
H �W

X
j
kUi

jk, i ¼ 1, 2, :::, 64 (4)

where H and W denote the height and width of the
input feature map; Ui

j is the output of a capsule in the
i-th channel; vi denotes the squeezed value corre-
sponding to the i-th channel. As shown in Figure 3,
by concatenating the squeezed values from all the
channels, we constitute the channel descriptor V. Each
element of V encodes a global perspective of the fea-
ture statistics in the corresponding channel. Then, to
take advantage of the globally aggregated information
in the channel descriptor, we further append two
fully-connected layers to exploit channel-wise interde-
pendencies. By learning nonlinear interactions among
the channels in a non-mutually-exclusive manner,
these two fully-connected layers allow multiple chan-
nels to be emphasized, rather than a one-hot activa-
tion. Specifically, we adopt the ReLU and the sigmoid
functions to, respectively, activate the outputs of these
two layers. Finally, the probability-encoded output of
the second fully-connected layer forms a channel-wise
attention descriptor T, each of whose elements reflects
the saliency and the informativeness of the

Figure 3. Architecture of the multi-scale context-augmentation (CA) and channel-wise self-attention (SA) module.
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corresponding channel of the input feature map. The
attention descriptor T functions as a weight descriptor
to recalibrate the input feature map. As shown in
Figure 3, this is achieved by multiplying the attention
descriptor with the input feature map in a channel-
wise way as follows:

Ui�
j ¼ ti � Ui

j , i ¼ 1, 2, :::, 64 (5)

where ti denotes the i-th element of the attention
descriptor T; Ui

j and Ui�
j are the outputs of the ori-

ginal capsule and the recalibrated capsule in the i-th
channel, respectively. After channel-wise recalibration,
the informative features are effectively highlighted,
whereas the less salient features are rationally sup-
pressed, thereby further enhancing the feature repre-
sentation robustness.

Generally, with the layers going deeper, the
extracted features become higher-level and semantic-
ally stronger. That is, feature maps at high stages have
semantically strong features with large receptive fields,
but low resolutions. In contrast, feature maps at low
stages have high resolutions, but semantically weak
features with small receptive fields. Thus, through the
top-down pathway and lateral connections, we aim to
fuze the different-level and different-scale capsule fea-
tures in {C1, C2, C3, C4} selected from the bottom-up
pathway to provide a high-resolution and semantically
strong feature representation to improve the road
extraction accuracy. To this end, as shown in
Figure 1, first, the top-down pathway recovers higher-
resolution features by upsampling spatially a feature
map to its twice size to facilitate feature concatenation
and fusion. In this paper, we adopt capsule deconvo-
lution operations to perform feature upsampling.
Then, the upsampled features are concatenated with
the modulated features from the previous stage
through the lateral connection. Finally, we apply a
3� 3 capsule convolutional layer to the concatenated

features to conduct feature fusion and modulate the
channel number to the configuration of d. In this
way, high-resolution features (with accurate localiza-
tion details) are fused with and augmented by seman-
tically strong features (with large scopes of context
information) to provide a high-resolution, semantic-
ally strong feature representation. As shown in
Figure 1, the above feature fusion process starts from
feature map C4, and repeats downward till all the fea-
tures in {C1, C2, C3, C4} are fused, resulting in a set of
fused feature maps {P1, P2, P3}. The feature map P1
combining all the scales of features and with the high-
est resolution is used to generate the final road pre-
diction map.

To train the CS-CapsFPN, an input image should
be coupled with a road label map as the ground truth.
A common way is to assign a binary road region map
with the input image (see Figure 4(a and b)).
However, a deficiency of using binary road region
map is that the extracted roads might not be perfectly
solid probably with the presence of tiny holes. In this
paper, we leverage the signed distance map (Yuan
2018) as the road label map, which is capable of
encoding both the interior and exterior information of
roads simultaneously. As shown in Figure 4(b), based
on the binary road region map, we transform it into
the signed distance map shown in Figure 4(c). The
value at a position in the signed distance map is cal-
culated as the distance from the position to its nearest
point on the road boundary with a positive value indi-
cating the road interior and a negative value indicat-
ing the background. Specifically, rather than directly
using the signed values as the ground truths, we bin
and quantify the signed values into 128 integers rang-
ing from �64 to 63 as the ground truths to direct the
training process.

As shown in Figure 1, based on the quantified
signed distance map, the road prediction layer

Figure 4. Illustration of the label map used for training the CS-CapsFPN. (a) Remote sensing image, (b) road region map, and (c)
signed distance map.
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contains a stack of 128 prediction maps, each of
which corresponds to one of the 128 binned distance
ranges (i.e., �64 to 63), to convert the road extraction
task into a multi-class classification issue. At each pos-
ition of the prediction maps, the outputs indicate the
probability of the pixel in the input image belonging
to one of the 128 classes (i.e., a certain distance range
from the interior or the exterior of a road). To this
end, the outputs at each position of the prediction
maps are normalized by the softmax function to pro-
vide a one-hot activation. At the training stage, the
loss function used for training the CS-CapsFPN is for-
mulated as the Focal Loss (Lin et al. 2020) between
the prediction results and the quantified signed dis-
tance map as follows:

L ¼
X

i
� ð1� piÞ2 log ðpiÞ (6)

where pi denotes the softmax output at a position on
the prediction map corresponding to the ground truth.

Road extraction

Once the CS-CapsFPN is constructed, we apply it to
the remote sensing images to conduct road extraction.
For a test image fed into the CS-CapsFPN, the output
of the road prediction layer contains a stack of 128
prediction maps. Then, we convert these prediction
maps into a signed distance map having the same spa-
tial size as the prediction maps for road extraction. To
this end, for each position of the prediction maps, the
resultant value of the corresponding position in the
signed distance map is assigned as the class label (i.e.,
�64 to 63) of the prediction maps with the maximum
softmax output. Finally, based on the generated signed
distance map, the positions with values greater than
or equal to 0 are marked as the road regions (see
Figure 1).

Results and discussion

Datasets

In this paper, we built two big remote sensing image
datasets to evaluate the performance of the proposed
CS-CapsFPN on road extraction. The first dataset was
collected from the Google Earth service using the
BIGEMAP software (http://www.bigemap.com). We
named it as the GE-Road dataset. The GE-Road data-
set contains 20,000 images covering roads of different
materials and types, varying widths and shapes, and
diverse environmental and surface conditions (e.g.,
occlusions and shadows) in urban, rural, and moun-
tainous areas. All the images in the GE-Road dataset

have the same image size of 800� 800 pixels. The
second dataset was collected using a DJI Phantom 4
Pro UAV system flying in the urban and suburban
areas in China. We named it as the UAV-Road data-
set. The UAV-Road dataset consists of 15,000 images,
each of which has an image size of 800� 800 pixels.
The roads in the images exhibit with different widths,
types, and shapes, as well as diverse scenarios and sur-
face conditions. To facilitate network training and
performance assessment, each of the images in these
two datasets has been annotated with a binary road
region map as the ground truth (see Figure 4(b)). In
our experiments, we randomly divided the two data-
sets into a training set, a validation set, and a test set.
Concretely, 60% of the images in each dataset were
randomly selected to construct the training set, 5% of
the images in each dataset were randomly selected as
the validation set, and the rest 35% of the images in
each dataset were used as the test set for performance
evaluation. For the training set, a signed distance map
(see Figure 4(c)) was generated for each training
image based on the associated binary road region map
as the ground truth for constructing the proposed
CS-CapsFPN.

Network training

The proposed CS-CapsFPN was trained in an end-
to-end manner by backpropagation and stochastic gra-
dient descent on a cloud computing platform with ten
16-GB GPU, one 16-core CPU, and a memory size of
64GB. Before training, we randomly initialized all
layers of the CS-CapsFPN by drawing parameters
from a zero-mean Gaussian distribution with a stand-
ard deviation of 0.01. Each training batch contained
two images per GPU and was trained for 1000 epochs.
During training, we configured the initial learning
rate as 0.001 for the first 800 epochs and decreased it
to 0.0001 for the rest 200 epochs. To trade off the
computational efficiency and the feature representa-
tion capability, as well as the road extraction accuracy,
we configured the value of d as 32 and the dimension
of a capsule as 16 for all capsule layers.

At the training stage, to effectively train the CS-
CapsFPN toward high-performance road extraction,
data augmentation was also conducted on the training
images to enlarge the training set to cover roads of
different orientations and illumination conditions.
Concretely, first, each training image was flipped in
the horizontal direction to generate a horizontal mir-
ror image. Then, these two images were rotated clock-
wise in four directions with an angle interval of 90
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degrees. Finally, we increased and decreased the image
brightness of each of the eight images to generate two
other images. The ground-truth binary road region
map of a training image was also transformed in the
same way. As a result, after data augmentation, a
training image was transformed into 24 images cover-
ing roads of different orientations and illumination
conditions. The data-augmented training set, which
was 24 times in size of the original training set, was
finally leveraged to train the CS-CapsFPN.

Road extraction

At the test stage, we applied the constructed
CS-CapsFPN to the test set containing 12,250 images
to examine the road extraction performance. For a
test image, first, it was passed to the bottom-up
pathway to extract different-level and different-scale
capsule features, which were contextually augmented
and channel-wisely recalibrated by the CA and SA
module in each stage. Then, the top-down pathway
and lateral connections were executed to integrate
these multi-level and multi-scale capsule features to
provide a high-resolution, semantically strong feature
representation for generating the road prediction
maps. Finally, the road prediction maps were con-
verted into a signed distance map to generate the
road extraction result by labeling the positions with
values greater than or equal to zero on the signed dis-
tance map.

To quantitatively evaluate the road extraction
accuracy, we adopted the following four commonly
used evaluation metrics: precision (P), recall (R),
intersection-over-union (IoU), and Fscore. Precision is
defined as the proportion of the correctly identified
road pixels with regard to the road extraction result.
Recall is defined as the proportion of the correctly
extracted road pixels with regard to the annotated
ground truth. IoU is defined as the proportion of the
correctly recognized road pixels with regard to the
union of the annotated ground truth and the extrac-
tion result. Fscore evaluates the overall road extraction
performance by taking into account both the precision
and the recall measures. Let denote TP, FP, and FN as
the numbers of true positives, false positives, and false
negatives, respectively. Then, these four metrics can
be defined as follows:

P ¼ ðTPÞ
ðTPÞ þ ðFPÞ (7)

R ¼ ðTPÞ
ðTPÞ þ ðFNÞ (8)

IoU ¼ ðTPÞ
ðTPÞ þ ðFNÞ þ ðFPÞ (9)

Fscore ¼ 2� P � R
P þ R

(10)

The road extraction results on the two test datasets
are reported in Table 1 by using the above four evalu-
ation metrics. In Table 1, “Overall” denotes the overall
performance obtained on the two test datasets. It
includes the average precision, average recall, average
IoU, and average Fscore. In addition, a precision-recall
curve is also provided in Figure 5.

As reflected in Table 1, the proposed CS-CapsFPN
achieved quite promising road extraction performan-
ces on the two test datasets. Specifically, a road extrac-
tion performance with a precision of 0.9562, a recall
of 0.9493, an IoU of 0.9056, and an Fscore of 0.9527
was obtained on the GE-Road dataset. For the UAV-
Road dataset, an extraction performance with a preci-
sion, a recall, an IoU, and an Fscore of 0.9378, 0.9321,
0.8857, and 0.9349, respectively, was achieved on road
extraction. The GE-Road dataset is a very challenging
dataset due to the following aspects: (1) Surface
material differences of the roads, such as asphalt-
paved, concrete-paved, and unsurfaced roads. The
surface material differences of the roads result in dif-
ferent spectral and textural properties of the roads in
the remote sensing images. Thus, it requires that the
road extraction model should be accurately enough to
identify all kinds of roads with low false detection and
misdetection rates. (2) Width and shape diversities of
the roads. The roads in the images exhibit with
diverse widths, shapes, and distributions. Such diver-
sities require that the road extraction model should
have high adaptabilities to correctly locate small-size
roads and adhere tightly to the edges of large-size and
varying-shape roads. (3) Complicated environmental
conditions of the roads. Due to the existence of spec-
tral and textural similarities between the roads and
the scene objects, the road extraction model should
perform efficiently to verify the presence of the roads
and correctly differentiate the roads from the sur-
rounding environments. (4) Occlusions and shadow
covers of the roads. Due to the bird-view image cap-
ture mode of remote sensing images, the roadside
high-rise buildings and trees often cause different lev-
els of occlusions to the roads, thereby resulting in the
incompleteness and topology changes of the roads in
the images. In addition, the shadows cast on the roads
also change the spectral and texture consistency of the
roads. Thus, it requires that the road extraction model
should be highly capable of guaranteeing the continu-
ities and the topology completeness of the extracted
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roads. The UAV-Road dataset mainly covers asphalt-
paved roads. Except for the challenges caused by
width and shape diversities, complicated scenarios,
occlusions, and shadow covers, the roads also suffer
from the contaminations of on-road objects (e.g.,
vehicles and pedestrians) due to the high-resolution
properties of the UAV images. The influence of on-
road objects alters the solid and continuity properties
of the roads. Thus, it requires that the road extraction
model should be robust enough to suppress the influ-
ences of on-road objects and extract solid and con-
tinuous roads. Despite the challenging scenarios of the
GE-Road and UAV-Road datasets, our proposed CS-
CapsFPN still performed effectively with high road
extraction accuracies. On the whole, the CS-CapsFPN
showed superior performance in processing rural
roads and mountainous roads since the road condi-
tions were less complicated and the roads usually
exhibited with stronger contrasts with their surround-
ings. In contrast, a relatively lower performance was
obtained in extracting urban roads and suburban
roads because of the complicated scenarios. However,
the performance was still promising and competitive.
The advantageous performance is benefited from
the following two aspects. First, by integrating

different-level and different-scale capsule features, the
deep capsule feature pyramid network architecture
contributes to enhance both the localization accuracy
and the feature representation capability. Second, by
performing feature augmentation and recalibration,
the embedded CA and SA module is capable of
enhancing informative features and suppressing the
less useful ones to further improve the feature repre-
sentation robustness. In the whole, the proposed CS-
CapsFPN achieved a high overall performance (0.9470
for precision, 0.9407 for recall, 0.8957 for IoU, and
0.9438 for Fscore) on the two test datasets in extracting
roads of different types, diverse topologies, and vary-
ing environmental and surface conditions.

To visually inspect the road extraction accuracy,
Figures 6 and 7 present two subsets of the road
extraction results obtained on the GE-Road dataset
and the UAV-Road dataset, respectively. As observed
from the road extraction results, the majority of the
roads were correctly detected and segmented. Despite
the diversities in road surface materials, road topolo-
gies, and complex scenarios, the road regions were
accurately differentiated from the surroundings with a
very small proportion of false detections and misde-
tections. In addition, the extracted roads were well

Table 1. Road extraction results obtained by different methods.

Method Dataset

Quantitative evaluation

Speed (images s–1)Precision Recall IoU Fscore
CS-CapsFPN GE-Road 0.9562 0.9493 0.9056 0.9527 7

UAV-Road 0.9378 0.9321 0.8857 0.9349
Overall 0.9470 0.9407 0.8957 0.9438

C-CapsFPN GE-Road 0.9407 0.9356 0.8924 0.9381 7.3
UAV-Road 0.9256 0.9231 0.8719 0.9243
Overall 0.9332 0.9294 0.8822 0.9312

S-CapsFPN GE-Road 0.9382 0.9335 0.8879 0.9358 7.7
UAV-Road 0.9234 0.9217 0.8613 0.9225
Overall 0.9308 0.9276 0.8746 0.9292

CapsFPN GE-Road 0.9289 0.9235 0.8765 0.9262 8
UAV-Road 0.9168 0.9146 0.8469 0.9157
Overall 0.9229 0.9191 0.8617 0.9210

MDRCNN GE-Road 0.8968 0.8872 0.8053 0.8920 11
UAV-Road 0.8734 0.8711 0.7853 0.8722
Overall 0.8851 0.8792 0.7953 0.8821

SII-Net GE-Road 0.9392 0.9381 0.8943 0.9386 6
UAV-Road 0.9209 0.9237 0.8598 0.9223
Overall 0.9301 0.9309 0.8771 0.9305

FCN GE-Road 0.9261 0.9214 0.8671 0.9237 9
UAV-Road 0.9089 0.9076 0.8315 0.9082
Overall 0.9175 0.9145 0.8493 0.9160

MFPN GE-Road 0.9274 0.9255 0.8778 0.9264 8
UAV-Road 0.9115 0.9103 0.8374 0.9109
Overall 0.9195 0.9179 0.8576 0.9187

GAN GE-Road 0.9251 0.9203 0.8632 0.9227 7
UAV-Road 0.9068 0.9057 0.8287 0.9062
Overall 0.9160 0.9130 0.8460 0.9145

ResUnet GE-Road 0.9049 0.8977 0.8212 0.9013 7
UAV-Road 0.8864 0.8767 0.7945 0.8815
Overall 0.8957 0.8872 0.8079 0.8914

HCN GE-Road 0.9373 0.9366 0.8892 0.9369 2
UAV-Road 0.9194 0.9222 0.8537 0.9208
Overall 0.9284 0.9294 0.8715 0.9289
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adhered to the road edges and solid in spite of the
existence of shadow covers and on-road objects.
Specifically, as shown in Figures 6 and 7, due to dif-
ferent road surface materials and illumination condi-
tion variations, the roads exhibited with different
spectral and texture properties in the remote sensing
images. The topologies of the roads varied greatly in
width, length, and shape. In addition, some roads
were covered with shadows cast by roadside objects,
leading to the spectral and texture inconsistencies of
the roads. Some roads were partially occluded by
roadside high-rise buildings, trees, and vehicles,
thereby changing the topologies of the roads.
Moreover, the on-road objects in the UAV images
replaced the presence of the corresponding road
regions and resulted in a hole-like structure on the
road surfaces, thereby affecting the consistencies of
the roads. All of the above phenomena bring chal-
lenges to accurate extraction of the roads from the
remote sensing images. Fortunately, owing to the
advantages of the deep capsule network formulation
and the SA module in abstracting high-level, distinct-
ive, and informative feature representations and the
superiorities of the feature pyramid architecture and
the CA module in effectively exploiting and fuzing
multi-scale contextual properties, the proposed CS-
CapsFPN still performed promisingly in dealing with
such road images toward road extraction. However, as
shown in Figures 6 and 7, some roads were severely
occluded by the roadside buildings, trees, and vehicles.
Thus, the proposed CS-CapsFPN failed to accurately

locate the actual road edges. In addition, some court-
yards were directly connected with the roads and
exhibited similar spectral and texture properties with
the roads. As a result, such courtyards were falsely
recognized as the road regions. Moreover, the pro-
posed CS-CapsFPN performed less effectively on the
busy road segments with many on-road vehicles due
to the severe damage of the road consistencies.
On the whole, designed with a novel and high-
performance capsule network architecture, the pro-
posed CS-CapsFPN was promising and feasible in
extracting roads of varying surface and environmental
conditions from remote sensing images.

At the test stage, the proposed CS-CapsFPN was run
on the aforementioned cloud computing platform. The
processing time was also recorded and analyzed with
the means of processing speed to evaluate the computa-
tional performance of the proposed CS-CapsFPN. The
processing speed was computed as the number of
images processed per second on a GPU. On average,
the proposed CS-CapsFPN achieved a processing speed
of 7 images per second on a GPU. The processing speed
was quite acceptable. Thus, through computational per-
formance analysis, we concluded that the proposed CS-
CapsFPN provided an efficient and promising solution
to remote sensing image based road extraction tasks.

Ablation studies

As ablation studies, we demonstrated the advanta-
geous performance of embedding the CA and SA

Figure 5. Illustration of the overall precision-recall curves of different models on the test datasets.
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modules into the capsule feature pyramid network
architecture. The CA and SA modules functioned to
exploit multi-scale context properties and emphasize
informative features to enhance the feature

representation capabilities. To this end, we con-
structed three modified networks based on the
CS-CapsFPN. First, we removed all the SA modules
from the CS-CapsFPN (leaving only the CA modules)

Figure 6. Illustration of a subset of the road extraction results obtained by different models on the GE-Road dataset.
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and named the modified network architecture as C-
CapsFPN. Then, we removed all the CA modules
from the CS-CapsFPN (leaving only the SA modules)
and named the modified network architecture as

S-CapsFPN. Finally, we removed all the CA and SA
modules from the CS-CapsFPN and named the modi-
fied network architecture as CapsFPN. For fair com-
parisons, the same training and validation sets and the

Figure 7. Illustration of a subset of the road extraction results obtained by different models on the UAV-Road dataset.
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same data-augmentation and training strategies were
applied to construct and optimize these three modi-
fied models. Once these models were optimized, we
applied them to the same test set to analyze their road
extraction performances. The quantitative evaluations
of the road extraction results on the test set are
reported in Table 1. In addition, the precision-recall
curves of these three modified models are also pro-
vided in Figure 5. Apparently, without the CA and SA
modules, the road extraction performance of the
CapsFPN was degraded on both of the GE-Road and
the UAV-Road datasets. The performance degradation
was mainly caused by the images with the roads
occluded by roadside objects, the roads covered with
shadows, and the roads containing on-road objects.
Comparatively, the performance degradation was
more obvious on the UAV-Road dataset because of
the influences of the on-road vehicles. In contrast,
with the integration of the CA modules to compre-
hensively consider multi-scale context properties with
a high-resolution perspective, the C-CapsFPN per-
formed superiorly in processing small-scale roads,
thereby effectively improving the road extraction
accuracy. In addition, with the integration of the SA
modules to distinguish and highlight informative fea-
tures, the roads covered with shadows or containing
on-road objects were accurately recognized by the S-
CapsFPN, resulting in the enhancement of the road
extraction accuracy. Therefore, by integrating both the
CA and SA modules, the proposed CS-CapsFPN
achieved a dramatic performance enhancement com-
pared with the CapsFPN. However, the CapsFPN still
performed effectively on road extraction and the road
extraction accuracy was still very promising. This is
actually benefited from the superior properties of the
capsule formulations in abstracting high-level, dis-
tinctive, and representative features of the roads and
the design of the feature pyramid architecture of the
network by integrating different-level and different-
scale capsule features. For visual comparisons, Figures
6 and 7 also present a subset of the road extraction
results obtained by these three models.

Furthermore, the computational performances of
these three modified models were also analyzed.
Specifically, without the CA and SA modules
embedded in each stage, the CapsFPN became less
light-weight and ran faster than the C-CapsFPN and
the S-CapsFPN at the test stage. On average, the
CapsFPN achieved a processing speed of 8 images per
second on a GPU, the C-CapsFPN achieved a process-
ing speed of 7.3 images per second on a GPU, and
the S-CapsFPN achieved a processing speed of 7.7

images per second on a GPU. Through ablation ana-
lysis, we confirmed that the road extraction perform-
ance can be effectively upgraded by embedding the
CA and SA modules to take into consideration the
multi-scale context properties and the channel-wise
feature informativeness and saliencies.

Comparative studies

To further evaluate the accuracy and robustness of the
proposed CS-CapsFPN, we conducted a group of
comparative studies with some recently developed
deep learning based road extraction methods. The fol-
lowing seven methods were selected for performance
comparisons: MDRCNN (Dai et al. 2019), SII-Net
(Tao et al. 2019), FCN (Zhang et al. 2020), MFPN
(Gao et al. 2018), GAN (Zhang et al. 2019a), ResUnet
(Zhang et al. 2018a), and HCN (Li et al. 2019a).
Specifically, the MDRCNN adopted multi-size kernels
with different receptive fields to obtain hierarchical
features and concatenated these features to predict
road maps. The HCN consisted of multiple parallel
backbone branches to extract different-grained fea-
tures and fused these features to conduct road extrac-
tion. The other models focused on extracting and
fuzing different-level and different-scale features to
enhance the feature representation capabilities. For
fair comparisons, the same training and validation
sets and the same data-augmentation strategy were
leveraged to train and optimize these road extraction
models. Once these models were optimized, we
applied them to the same test set to conduct perform-
ance evaluations. As shown in Table 1, the road
extraction performances obtained on the test set by
these models were quantitatively measured using pre-
cision, recall, IoU, and Fscore. In addition, the preci-
sion-recall curves of these models are provided in
Figure 5. For visual comparisons, Figures 6 and 7 also
present some road extraction results obtained by these
models. As observed in Table 1, the SII-Net and the
HCN performed better than the other models with
respect to the overall accuracy. The FCN, the MFPN,
and the GAN obtained similar performances. In con-
trast, the MDRCNN and the ResUnet behaved less
effectively than the other models. By developing a spa-
tial information inference structure, the SII-Net was
capable of learning both the local visual characteristics
and the global spatial structure information of the
roads, thereby effectively solving less severe occlusions
and preserving the continuity of the extracted roads.
The competitive accuracy obtained by the HCN owed
to the integration of the multi-grained features

16 YU ET AL.



extracted by different parallel backbones, resulting in
the dramatic enhancement of the output features. In
addition, by fuzing multi-level and multi-scale features
and improving the loss functions to alleviate the
imbalance issues, the FCN, the MFPN, and the GAN
obtained superior performances over the MDRCNN
and the ResUnet models. Comparatively, by designing
the capsule feature pyramid architecture to extract
and integrate different-level and different-scale high-
order capsule features and embedding the CA and SA
modules to effectively exploit multi-scale context
properties and emphasize channel-wise informative
and salient features, our proposed CS-CapsFPN exhib-
ited advantageous performance over the seven com-
pared models in extracting roads of varying scales.

In addition, to compare the computational efficien-
cies of these models, the processing time was also
recorded and analyzed with the means of processing
speed for each model and reported in Table 1. The
processing speed was measured by the number of
remote sensing images processed each second on a
GPU. As shown in Table 1, the MDRCNN executed
faster than the other models because of the single for-
ward feature abstraction architecture. In contrast, the
HCN was less efficient than the other models due to
the hybrid network architecture with three parallel
multi-grained feature extraction backbones.

Conclusion

This paper has presented a novel and high-perform-
ance deep capsule network, named CS-CapsFPN, for
extracting roads from remote sensing images. Taking
advantage of the superior properties of vectorial cap-
sule representations, the CS-CapsFPN can extract dif-
ferent levels and different scales of inherent,
distinctive, and salient features of the roads. By inte-
grating the multi-level and multi-scale capsule fea-
tures, the CS-CapsFPN provided a high-resolution
and semantically strong feature representation for
improving the road extraction accuracies. Benefited
from the embedding of the CA and SA modules, the
CS-CapsFPN is capable of considering multi-scale
context properties at a high-resolution perspective and
emphasizing channel-wise informative and salient fea-
tures, thereby further enhancing the feature represen-
tation capabilities and improving the road extraction
accuracies. The proposed CS-CapsFPN performed
effectively and efficiently in processing roads of differ-
ent types, diverse topologies, and complicated envir-
onmental and surface conditions. Quantitative
evaluations on two large remote sensing image

datasets showed that an overall road extraction per-
formance with a precision, a recall, an IoU, and an
Fscore of 0.9470, 0.9407, 0.8957, and 0.9438, respect-
ively, was achieved. Comparative studies and detailed
analysis with seven recently developed deep learning
based road extraction methods also demonstrated the
robust applicability and the superior performance of
the proposed CS-CapsFPN in road extraction tasks.
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