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la d�etection des toits dans les images a�eriennes

Yuwei Caia, Hongjie Hea, Ke Yangb, Sarah Narges Fatholahia, Lingfei Mac, Linlin Xub, and Jonathan Lia,b

aDepartment of Geography and Environmental Management, University of Waterloo, Waterloo, ON, N2L 3G1, Canada; bDepartment of
Systems Design Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada; cEngineering Research Center of State Financial
Security, Ministry of Education, Central University of Finance and Economics, Beijing, 102206, China

ABSTRACT
This paper investigates the deep neural networks for rapid and accurate detection of build-
ing rooftops in aerial orthoimages. The networks were trained using the manually labeled
rooftop vector data digitized on aerial orthoimagery covering the Kitchener-Waterloo area.
The performance of the three deep learning methods, U-Net, Fully Convolutional Network
(FCN), and Deeplabv3þ were compared by training, validation, and testing sets in the data-
set. Our results demonstrated that DeepLabv3þ achieved 63.8% in Intersection over Union
(IoU), 77.8% in mean IoU (mIoU), 74% in precision, and 78% in F1-score. After improving the
performance with focal loss, training loss was greatly cut down and the convergence rate
experienced a significant growth. Meanwhile, rooftop detection also achieved higher per-
formance, as Deeplabv3þ reached 93.6% in average pixel accuracy, with 65.4% in IoU,
79.0% in mIoU, 77.6% in precision, and 79.1% in F1-score. Lastly, in order to evaluate the
effects of data volume, by changing data volume from 100% to 75% and 50% in ablation
study, it shows that when data volume decreased, the performance of extraction also got
worse, with IoU, mIoU, precision, and F1-score also mostly decreased.

RÉSUMÉ

Cet article �etudie les r�eseaux de neurones profonds pour une d�etection rapide et pr�ecise
des toits de bâtiments dans les orthoimages a�eriennes. Les r�eseaux ont �et�e form�es �a l’aide
des donn�ees vectorielles sur les toits �etiquet�ees manuellement et num�eris�ees sur une ortho-
imagerie a�erienne couvrant la r�egion de Kitchener-Waterloo. Avec les ensembles de forma-
tion, de validation et de test dans l’ensemble de donn�ees, les performances des trois
m�ethodes d’apprentissage en profondeur, U-Net, R�eseau enti�erement convolutionnel (FCN)
et Deeplabv3þ ont �et�e compar�ees. Nos r�esultats ont d�emontr�e que DeepLabv3þ a atteint
63,8% en Intersection over Union (IoU), 77,8% en moyenne IoU (mIoU), 74% en pr�ecision et
78% en F1-score. La perte focale a �et�e appliqu�ee pour �evaluer et am�eliorer les performances
de d�etection sur les toits. Celle-ci a consid�erablement r�eduit la perte d’entrâınement et le
taux de convergence a connu une croissance significative. Pendant ce temps, la d�etection
sur les toits a �egalement obtenu des performances plus �elev�ees, car Deeplabv3þ an atteint
93,6% en pr�ecision de pixel moyenne, avec 65,4% en IoU, 79,0% en mIoU, 77,6% en
pr�ecision et 79,1% en score F1. Enfin, afin d’�evaluer les effets du volume de donn�ees, en fai-
sant passer le volume de donn�ees de 100% �a 75%, 50% dans l’�etude d’ablation, il montre
que lorsque le volume de donn�ees a diminu�e, les performances d’extraction ont �egalement
empir�e, avec IoU, mIoU, la pr�ecision et le score F1 ont �egalement diminu�e pour la plupart.
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Introduction

As urban areas have been developing and expanding
rapidly in recent years, increasing efforts have been
gradually allocated to identify the relevant location

information of the buildings (Chen, Papandreou, et al.
2018). For instance, governments should take the
responsibility of rational administrating of the city,
including city planning, state cadastral inspection, and
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infrastructure development (Cote and Saeedi 2013). In
order to achieve these goals, updated information
related to rooftops or footprints of buildings should be
specified. However, timely mapping and updating of
rooftops in urban areas remains a very challenging task.

Aerial images can obtain all buildings images at one
shot. High spatial resolution (HSR) aerial images have
been the first choice in accurately localizing the build-
ings within one certain area (Yang et al. 2018). Hence,
rooftop extraction from HSR aerial images plays a sig-
nificant role in urban applications such as urban land
use and land cover mapping, population estimation,
change detection, urban flood management, and other
urban planning issues (Alshehhi et al. 2017; Boogaard
et al. 2017; Ha 2017; Shao et al. 2016). HSR aerial
images have been used as a major data source for roof-
top extraction. However, compared to traditional visual
interpretation, advanced methods using machine learn-
ing have proved more effective for automated extrac-
tion of rooftops from HSR aerial images.

Meanwhile, deep learning methods have demon-
strated their high performance in image segmentation
in the field of computer vision. Unfortunately, the
insufficient extraction and low segmentation accuracy
with HSR aerial images always restrict automated
extraction of rooftops (Chen, Papandreou, et al. 2018).
Both accuracy and efficiency are the main concerns
for developing an effective method to extract rooftops
from HSR aerial images. Therefore, we aim at testing
and comparing several deep learning methods for
rooftop extraction in this study to identify potential
solutions. The contribution of this paper is threefold:
first, it evaluates our new building rooftop dataset that
was generated using HSR aerial images with a spatial
resolution of 12 cm. Second, it studies three deep
learning algorithms, including Fully Convolutional
Network (FCN) (Long et al. 2015), U-Net
(Ronneberger et al. 2015), and DeepLabv3þ (Chen,
Zhu, et al. 2018), and compares them with respect to
their accuracy and efficiency in rooftop extraction.
Third, it assesses the performance of the three deep
learning algorithms by applying focal loss to image
segmentation followed by a comparison between focal
loss and binary cross entropy. The performance of
rooftop extraction with high spatial resolution images
can be enhanced by focal loss (Yun et al. 2019).

Related work

Related work in building dataset

Currently, there are several open datasets for building
detection with high spatial resolution satellite/aerial

images. To compare the classification methods over
large areas, Mnih (2013) created building and road
classification datasets over Massachusetts, which cov-
ered 340 km2 and 2600 km2, respectively. An aerial
image labeling dataset was constructed by researchers
from Inria (Institut national de recherche en informa-
tique et en automatique) in France (Maggiori et al.
2017). Covering 810 km2 (405 km2 for training and
405 km2 for testing), the dataset contains aerial
orthorectified color imagery with 30 cm spatial reso-
lution. In this dataset, there are two semantic classes
including building and non-building. Ji et al. (2019)
constructed an aerial and satellite imagery dataset of
building samples covering 450 km2. It consists of over
220,000 independent buildings, extracted from aerial
images with 7.5 cm spatial resolution in Christchurch,
New Zealand.

Related work in building rooftop
extraction methods

Throughout the process of completing building or
rooftop extraction, many approaches have been pro-
posed. These methods start from using machine learn-
ing techniques in individual-pixel classification (Mnih
2013), and then turn into higher-level information inte-
gration such as shaping features (Maggiori et al. 2015).
In details, traditional methods of design features can
represent the buildings by extracting them from satel-
lite or aerial images. Color (Sirmacek and Unsalan
2008), spectrum (Zhang 1999; Zhong et al. 2008),
length, edge (Ferraioli 2010; Li and Wu 2008), shape
(Dunaeva and Kornilov 2017), texture (Awrangjeb
et al. 2011; Guo et al. 2016; Tiwari and Pande 2008),
shadow (Sirmacek and Unsalan 2008; Chen et al.
2014), height, and semantic (Zhong et al. 2015) have
been commonly used to extract buildings from satellite
or aerial images. However, these metrics can be influ-
enced by changing the factors such as atmospheric con-
ditions, weather, light, surroundings, density of the
buildings, and some other relevant conditions around
the buildings in the research area. The initial idea of
utilizing designed features can only extract the specific
buildings or rooftops in specific research area with spe-
cific data (Ji et al. 2019). This does not complete the
manual-free process which inspires researchers to find
and apply more automatic rooftop segmentation tech-
nology for completing the extraction task.

In recent years, deep learning methods have started
to gain wide attention, and many networks related to
deep learning, especially CNNs, have been used for
image segmentation (Maggiori et al. 2017; Maggiori
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et al. 2017; Mnih 2013; Volpi and Tuia 2017). CNNs
are not only applied for object detection, but also for
semantic segmentation to deal with progress fine
inference (Ladick�y et al. 2009). Although the convolu-
tional networks have been employed for years,
researchers are still struggling to find new methods to
implement the classification tasks in a faster and more
accurate way (Chen, Papandreou, et al. 2018). Great
progress has been made in semantic segmentation to
classify image pixels; however, the challenge is that
each pixel need to be labeled with one class (Lu
et al. 2019).

To improve the accuracy of semantic segmentation
on the whole image, Long et al. (2015) applied FCNs
for transferring pre-trained classifier weights to fuze
various layer representations to train end-to-end and
pixel-to-pixel. The fully connected layers of CNNs
were then replaced by convolutional and de-
convolutional layers (Pan et al. 2019) to construct the
pixel-based encoder–decoder architectures (Long et al.
2015). The operations of end-to-end and pixel-to-pixel
both simplify and accelerate the learning speed and
reasoning. After FCNs, increased CNN architectures
were proposed to improve the image segmentation
performance (Pan et al. 2019). In 2015, U-Net was
proposed to modify and extend the architecture of
FCNs by replacing the pooling operators with upsam-
pling operators, and concatenation of feature maps of
encoder and decoder (Pan et al. 2019). U-Net is a
training strategy that performs better than others in
biomedical segmentation (Ronneberger et al. 2015).
With concatenation architecture and by taking
adequate use of both low-level features and high-level
features, Ronneberger et al. (2015) obtained more
accurate segmentation results. Consequently, U-Net
has been proved as a first-class convolutional network
with high efficiency. After that, DeepLabv1 (Chen
et al. 2014), DeepLabv2 (Chen, Zhu, et al. 2018), and
DeepLabv3 (Chen, Papandreou, et al. 2018) were pro-
posed to alleviate the information loss due to the
pooling operations (Pan et al. 2019). The atrous con-
volution which is also called dilated convolution
(Russakovsky et al. 2015) was proposed to both
increase receptive field size and protect high reso-
lution of the feature maps (Giusti et al. 2013;
Holschneider et al. 1990; Papandreou et al. 2015;
Sermanet et al. 2014; Pan et al. 2019). By updating the
atrous convolutions with upsampled filters,
DeepLabv3 can simultaneously extract the dense fea-
ture maps and capture long range context to achieve
the best performance. Based on the architecture of
DeepLabv3, in 2018, DeepLabv3þ was developed after

adding depth wise separable convolution in atrous
convolution and encoder-decoder architecture
(Badrinarayanan et al. 2017; Ronneberger et al. 2015).
The structure of encoder-decoder in DeepLabv3þ can
identify sharp object boundaries for semantic segmen-
tation. Besides, DeepLabv3þ also employed a new
Deep Convolutional Neural Network (DCNN) to its
architecture (Chen, Papandreou, et al. 2018).
According to previous studies, U-Net and
Deeplabv3þ always achieve better performance than
FCNs (Hui et al. 2019; Ji et al. 2019; Li et al. 2018;
Pan et al. 2019).

Related work in class imbalances and focal loss

One-stage object detector and two-stage detector are
two methods usually used in object detection. When
using one-stage detectors, there are 104�105 locations
in one image, but just a few locations are included in
objects that need to be detected. This phenomenon
usually leads to two problems: one is training effi-
ciency and the other is overwhelmed training process
and degenerate models (Lin et al. 2014). However,
data-level and algorithm-level methods can be chosen
to alleviate these problems (Dong et al. 2019; Zhao
et al. 2019). In data-level methods, the imbalance
problem can be alleviated by re-sampling the training
data (Kong et al. 2017), while in algorithm-level meth-
ods, the algorithmic behavior can be modified by
making changes in weight for each class, especially
minority classes (Zhao et al. 2019). Lin et al. (2014)
chose focal loss as an algorithm-level method to
improve the performance of object detection. By
stressing sparse hard examples and preventing consid-
erable easy negatives by overwhelming the detection
methods during training, Lin et al. (2014) concluded
that class imbalances can be dealt with as the focal
loss in one-stage object detector and its training
accuracy cannot be lower than results with two-stage
object detectors. Therefore, to improve the performan-
ces, focal loss have been presented to take place of the
binary cross entropy (BCE) loss.

Nie et al. (2019) applied focal loss in U-Net and
detected that it can improve the performance of pros-
tate’s base and apex parts with medical image segmen-
tation. Focal loss improved the Dice Similarity
Coefficient (DSC) of U-Net for more than 2% in med-
ical image segmentation (Nie et al. 2019). Ma et al.
(2020) applied focal loss in U-Net for road segmenta-
tion. Compared with binary cross entropy, focal loss
raised the IoU of experimental results by 3% (Ma
et al. 2020). In most of the recent studies, focal loss
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has always enhanced the performance of image seg-
mentation, especially by increasing IoU and mIoU
(Doi and Iwasaki 2018; Ma et al. 2020; Nie et al. 2019;
Ye et al. 2019; Zhao et al. 2019).

Deep learning methods

FCN in building segmentation

FCN can be accurately trained to make dense predic-
tions, and can train semantic segmentation in an end-
to-end, pixel-to-pixel manner (Long et al. 2015).
Semantic segmentation is a process that matches each
object’s pixel with a label. It first downsizes the input
image step by step, and then up-samples output size
at the very end to make it similar to the input. It also
combines the output from shallow and deep layers
together to enhance the accuracy of results. Figure 1
shows the modified architecture of FCN.

Contrary to convolution, which is a process of
decreasing output size, FCNs go through a deconvolu-
tion process to expand the size of output. For the sake
of making output and input images equal in size, up-
sampling occurs before getting the output label map.
When going to the deeper layers, deep features are dis-
covered, however, location information can be lost
which makes the output image rough. To solve this
problem, FCNs combine the feature hierarchies by fuz-
ing multiple layers (Abramson et al. 2006). Based on
fixed bottom-up grouping, this fuzing operation

combines features through layers to construct a nonlin-
ear local-to-global representation, and to produce more
accurate prediction results (Shelhamer et al. 2017). In
this paper, FCN-8s were used to detect building roof-
tops in high spatial resolution aerial images.

U-Net in building segmentation

U-Net is developed based on FCNs. According to
Ronneberger et al. (2015), U-Net performs better than
others in biomedical segmentation. Following the typ-
ical convolutional network architecture, U-Net
network’s architecture contains both contracting and
expansive paths. The contracting path is a down-
sampling step which adds the number of feature
channels twice before the step. By completing two
consecutive 3� 3 convolution (black arrows) and
2� 2 max pooling (red arrows), more features can be
extracted, and the size of features can be decreased in
the down-sampling process. In contrast, expansive
path is an up-sampling step which changes the num-
ber of feature channels into half. In order to recover
the size of segmentation map, two consecutive 3� 3
Conv (black arrows) and 2� 2 Up-conv (green
arrows) is added to the U-Net architecture. Critically,
they add more feature channels after applying unpad-
ded convolutions to rectify linear unit (ReLU), and
max pooling operation in network architecture.
Although up-sampling step obtains more advanced
features, it also experiences location information loss.

Figure 1. FCN architecture modified by Long et al. (2015).
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The concatenation of feature maps provides the expan-
sion path with more location information from the con-
traction path (grey arrows). At the end, 1� 1
convolutional filter (purple arrows) changes the size of
feature map from 2 to 1 due to the only two classes,
which are the cell and membrane of the output feature
map. Figure 2 represents the architecture of U-Net net-
work proposed by Ronneberger et al. (2015).

DeepLabv31 in building segmentation

DeepLabv3 contains three special parts in the pro-
posed module including atrous convolution, multi-
grid methods, and Atrous Spatial Pyramid Pooling
(ASPP). When rate ¼ 1, it is the standard convolu-
tion. By adjusting rate to 6, 12, and 18, the filter’s
field-of-view was modified. In atrous convolution, the
relevant parameters can be calculated by Equation 1
as follow:

y½i� ¼
X

k
x iþ r � k½ �x½k� (1)

where i is the location; y is the output of each location
i; r is the atrous rate and x is the filter. Atrous convo-
lution was applied to the input feature map x, where

the atrous rate r corresponds to the stride, with which
the input signal was sampled. This process also means
that by inserting r-1 ‘zeros’ between two consecutive
filter values along each spatial dimension, upsampled
filters were convolved in the input feature map x.

When going deeper with atrous convolution, accord-
ing to the multi-grid methods, different atrous rates
were applied within block 4 to block 7 in the architec-
ture of DeepLabv3. However, because of the state-of-art
neural networks (Chollet 2017; Krizhevsky et al. 2012;
Ladick�y et al. 2009; Simonyan and Zisserman 2015;
Szegedy et al. 2015) and restricted GPU memory, as
the resolution of output feature maps is sometimes 1/8
or 1/4 times of the input images, it is difficult to extract
the output features. The output features from each
branch are then concatenated and passed through
another 1� 1 convolution, which has 256 filters and
Batch Normalization(BN), before the final 1� 1 convo-
lution, which generates the final logits (Chen, Zhu, et
al. 2018) (Figure 3).

Compared with DeepLabv3, DeepLabv3þ adds
depth-wise separable convolution in atrous convolution
encoder-decoder architecture, which can recover the
location information. Modified Aligned Xception, and

Figure 2. U-Net architecture modified from Ronneberger et al. (2015).
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Atrous Separable Convolution are developed to pro-
mote a faster and stronger network. By decomposing a
standard convolution into a depth-wise convolution
(Figure 4a), and a point-wise convolution (Figure 4b),
Atrous Separable Convolution has drastically contracted
computation complexity. Furthermore, in order to
achieve similar or even better performance, and
decrease the computation complexity at the same time,
atrous convolution which also exists in DeepLabv3, is
used to support depth-wise convolution in
DeepLabv3þ (Chen, Zhu, et al. 2018) (Figure 4c).

The encoder process is similar in DeepLabv3 and
DeepLabv3þ. When extracting various classes in the
images, the output stride is 16, as the spatial reso-
lution of feature maps of the final output is usually 1/
16 of input image spatial resolution. Since that spatial
resolution is not enough for completing semantic seg-
mentation, the striding in the last few blocks was
replaced by atrous convolution to fulfill output stride
of 16 or 8. In the encoder part in DeepLabv3 and
DeepLabv3þ, atrous spatial pyramid pooling module
is expanded so as to have access to multi-scale convo-
lutional features (Chen, Zhu, et al. 2018). While in the
decoder part, 1� 1 convolution low-level features
were concatenated with the upsampled output features
of the encoder part. After concatenation, several 3� 3
convolutions then were applied to refine those concat-
enation features with another upsampling. The ratio
of 4 is adopted in each upsampling layer to decode
the feature maps and generate pixel-wise labeling
results (Chen, Zhu, et al. 2018) (Figure 5).

Focal loss

Binary cross entropy (BCE) is widely used in many
deep learning-based images segmentation methods
such as FCN-8s, U-Net, and DeepLabv3þ. BCE can
be calculated as follow:

Cross Entropy ¼ �
XN
n¼1

XK

k¼1

XP
j¼1

dnkwhlogp (2)

where N, K, and P are the mini-batch size, number of
categories, and the number of pixels, respectively. p is
the model’s estimated probability for the class with
certain label, d is a one-hot vector and dk ¼ 1 when k
is a true classification.

Researchers have shown that BCE loss cannot avoid
the curse from class imbalance in dataset, which
impede the further improvement of segmentation
accuracy. He et al. (2016) first proposed focal loss,
which has been used in many deep learning models,
especially in object detection tasks. Focal loss can be
calculated as Equation (3). Users have shown its
power to leverage the problem from class imbalances
with many experiments (Doi and Iwasaki 2018).

Focal Loss ¼ �
XN
n¼1

XK

k¼1

XP
j¼1

dnkwhð1� pÞclogp (3)

where N, K, and P are the mini-batch size, number of
categories, and number of pixels, respectively; d is a
one-hot vector; and dk ¼ 1, when k is a true classifi-
cation. The term (1� p)c is a modulating factor,
which controls cross entropy loss. When c¼ 0, focal

Figure 3. DeepLabv3 Architecture, modified from Chen, Zhu, et al. (2018).

Figure 4. 3 � 3 Depthwise Separable Convolution, modified from Chen, Papandreou, et al. (2018).
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loss is equivalent to cross entropy loss. When c
increases, the differences between loss value of easy
and hard classes also increase.

In this research, class imbalances mean the number
of pixels (or the area) of non-rooftops which take up
much more than that of rooftops in the aerial images.
Since class imbalances also exist in our dataset, the
performance of focal loss was tested to achieve a bet-
ter segmentation result.

Metrics

In order to compare those methods mentioned at the
beginning, we incorporate several commonly used
metrics to evaluate their accuracy and efficiency.

Accuracy assessment
We use average accuracy, IoU, mIoU, precision, recall,
and F1-score (Bischke et al. 2019; Chen et al. 2019;
Khalel and El-Saban 2018; Maggiori et al. 2017; Tan
et al. 2020) as the most used metrics in image seg-
mentation to evaluate and compare deep learning
based image segmentation methods mentioned above.
The average accuracy can be expressed as follows:

Average accuracy %ð Þ : PA ¼
Pk

i¼0PiiPk
i¼0

Pk
j¼0Pij

(4)

where k is the number of categories for classification;
i, j represent different classification; pii indicate pixels

that are correctly classified in the image; and pij
denote pixels that are wrongly classified in the image.

IoU ¼ TP
TP þ FP þ FN

(5)

mIoU ¼
TP

TPþ FPþ FN þ TN
TNþ FPþ FN

h i

2
(6)

Precision ¼ TP
TP þ FP

(7)

Recall ¼ TP
TP þ FN

(8)

F1 ¼ 2TP
2TP þ FPþ FN

(9)

where TP is true positive that is the overlap between
target mask and the prediction output; FP is false
positive and is an error in output while in the test
result mistakenly indicates presence of a condition;
FN is false negative and is an error while in the test
result mistakenly identifies it as no presence of a con-
dition; TN is true negative and is an example in which
the model predicted the negative class correctly in
the output.

Efficiency evaluation
Test Rate: Test rate is the image that has been tested
in 1 s during the testing process. The testing rate can
be calculated as follow:

TR ¼ TI=t (10)

Figure 5. DeepLabv3þ Architecture, modified from Chen, Zhu, et al. (2018).
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where TI is the number of images that has been test,
and t is the total time cost for testing. FPS has similar
meaning. Thus, we use FPS in the paper to denote the
testing rate.

Dataset

Aerial imagery

As for the area covered by the aerial imagery dataset,
Waterloo is a city lying in the south-east of Ontario,
Canada. It is the smallest among three cities in the
Regional Municipality of Waterloo, and the City of
Kitchener is adjacent to it. As shown in Figure 61,
Kitchener and Waterloo are often jointly referred to
the “Kitchener–Waterloo (KW) area”.

The dataset area incorporates rural and urban areas
including residential, industrial, commercial, and edu-
cation-functional buildings. These buildings have vari-
ous shapes, size, colors, heights, and numbers
covering a land area of 205.83 km2. According to cen-
sus data from Statistics Canada, the population of KW
area increased from 302,143 in 2006 to 317,933 in
2011, and 338,208 in 2016 (Statistics Canada 2017). It
means that an increasing number of buildings are
required in the area, which motivated us to choose
this area as the dataset region, and 2014 as the time
of the most recent dataset.

The HSR aerial orthoimages mainly containing
the Kitchener-Waterloo area were provided by the
Geospatial Center of the University of Waterloo. The
Geospatial Center at the University of Waterloo
scanned the images at 600 dpi and used ArcMap 9.2
for georeferencing process. Using paper indexes, they
found the geographical location of the images and
tagged each image with latitude and longitude coordi-
nates. Street intersections, river bends and unique ter-
rain patterns on farmland were the main and
common used features for orienting the images. These
aerial images covering the Region of Waterloo were
acquired using an UltraCam D camera in 2014 and
were then calibrated and orthorectified. With the spa-
tial resolution of 12 cm, such orthoimages can be used
to recognize and delineate the boundary of the roof-
tops. These geo-referenced tiles are available in the
Universal Transverse Mercator (UTM), Zone 17N
coordinates and horizontal datum is the North
American Datum of 1983 (NAD 83).

Dataset labeling

There are usually two requirements for an image data-
set that can be used to effectively train a high-perform-
ance deep learning model: (1) a large quantity of data
covering a large geographic area, and (2) HSR images
to see rooftops clearly (Chen, Papandreous, et al. 2018).

The 12 cm resolution aerial orthoimages cover a
land area of 205.83 km2 in the KW area with almost
150,000 individual buildings. All building rooftops

Figure 6. Dataset covering the Kitchener-Waterloo area (the KW area).

1Main map is projected into Universal Transverse Mercator (UTM), Zone
17N coordinates and horizontal datum is the North American Datum of
1983 (NAD 83). Two sub maps are provided with their original
Geographic Coordinate System WGS 1984.
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were manually labeled based on building footprint
data from Statistics Canada in ArcGIS shapefiles.
However, most of those building footprints were not
accurate enough, and some buildings had been omit-
ted from the shapefiles. Therefore, the roof-by-roof
manual correction was conducted for those missing
rooftop labels. All the rooftops in the KW area were
checked and modified with ArcGIS10.6 in order to
guarantee the high accurate annotations of rooftops.
Moreover, multiple persons worked on checking the
annotations at least three times to control the labeling
error within 3 pixels to minimize the manual mis-
takes. Given that some buildings were partly shaded
or even covered by trees, their rooftop shapes were
manually delineated. Through all these processes, all
polygons of labeled rooftops were created, revised,
and validated within the dataset of the KW area
(Figure 7).

By utilizing the ‘polygon to raster’ tool in the
ArcToolbox, the edited polygons can be successfully
transferred into raster images. Subsequently, the raster
results of the images can be obtained by the raster cal-
culator in map algebra (to fill the null value in con-
verted results), and ‘copy raster’ tool (to compress
data) in ArcGIS software (Figure 8).

As the data were labeled into two classes of roof
and non-roof, the annotated images were then cut
from the resolution of 8350� 8350 pixels into
512� 512 pixels. No data area in the boundary of
each image were padded with 127. No data area in
the boundary of each labeled image were also padded
with 0. The purpose of cutting the images into
512� 512 pixels is that, not only the efficiency of cal-
culation can be improved, but also the sample size
can be augmented. In that way, the generalization

performance of the model can be improved. Finally,
these images were separated into three sets: training,
validation, and testing sets.

Experiments

Dataset

In order to construct a new dataset and test the accur-
acy of labeling work, building rooftops on HSR aerial
images were manually labeled based on rooftop shape-
files from Statistics Canada. Then, the labeled images
were transferred into binary images. By slicing the
binary images and dividing them into three sets, train-
ing set, validation set and testing set, the dataset was
constructed. In detail, around 1/6 data from the data-
set was extracted to test the accuracy of the label-
ing work.

Configurations of deep learning models

Similar configurations were set in all three deep learn-
ing models. Learning rate was set to 10�4 and the
Adam optimizer was used. Batch size was set to 5 and
epochs set to 100.

For each deep learning model, we use two different
loss function to show the superiority of focal loss. We
also used different training dataset volume (100%,
75%, 50%) to test the quality of our dataset. As a
result, we have 3 � 2 � 3 experiments in this work. As
mentioned in section 3.5, we evaluated those models
using pixel accuracy, IoU, mIoU, precision, recall, F1
score and testing rate. In this work, all models were
trained on a GPU of GeForce RTX 2080ti, a CPU of
Intel(R) Core (TM) i9-9900X and CUDA 10.2.

Figure 7. Manually edited polygons examples of labeled results of rooftops in the dataset of the KW area (blue lines in the first
row: boundary of the rooftops, blue shaded areas in second row: labeled rooftops).
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Subsequently, in order to achieve the best perform-
ance and to obtain apparent comparison results
between the binary cross entropy and the focal loss,
the value of a and c were set to be 0.25 and 2.0,
respectively. As these two settings were tested to help
achieve the best performance compared with other
settings (Doi and Iwasaki 2018; Lin et al. 2014; Ye
et al. 2019; Yun et al. 2019; Zhao et al. 2019).

Results and discussion

Results

First, almost one-sixth data from the dataset were
chosen to test the accuracy of the labeling work. All
chosen data were cut into 10,404 images which con-
tains 6,069 labeled images for training set, 1,156
labeled images for validation set, and 3,179 labeled
images for testing set. In the training process, FCN
and U-Net have no non-trainable parameters, and
only DeepLabv3þ has non-trainable parameters.
Meanwhile, FCN owns the highest number of total
parameters among the three, while the U-Net has the
lowest (Table 1).

As for the training and validation accuracy of the
three deep learning algorithms, the training and valid-
ation accuracy of FCN has always been a little bit
lower than that of U-Net and DeepLabv3þ. When the
epoch is approaching 100, the training and validation
accuracy of FCN approaches 99.2%, while the training
and validation accuracy of U-Net and DeepLabv3þ
approaches 99.8%.

As shown in Figure 9a, the training and validation
accuracy of U-Net and DeepLabv3þ is always higher
than that of FCN. When epoch is approaching 100,
the training and validation accuracy of the three deep
learning methods all approach 1. Turning to the loss
function of the three deep learning algorithms, the
loss in the training and validation process with the
FCN has always been higher than that of U-Net, and
DeepLabv3þ. When epoch is approaching 100, the
loss of FCN reaches 2.05% in the training and valid-
ation process, while the loss of U-Net, and
DeepLabv3þ approaches almost 0.58% on average in
the training and validation process. Finally, the accur-
acy of U-Net and DeepLabv3þ is much lower than
the FCN in the training and validation process
(Figure 9b).

Figure 8. RGB color aerial orthoimages (top row) and their corresponding reference data (bottom row: labeled building rooftops).
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With output images, the predicted results are rela-
tively more accurate in results with the U-Net and
DeepLabv3þ than results with the FCN. Most of the
predicted polygons accurately covered the polygons of
the ground truth in the results of U-Net and
DeepLabv3þ, and the wrong classified results are
much less in U-Net and DeepLabv3þ than those in
U-Net (Figure 10).

In the close-ups, the performance of the results
with U-Net and DeepLabv3þ are better than that of
FCN. In the output segmentation results, mistakes
mostly appear in classifying the boundary of the roof-
tops and roads (Figure 11).

From the results, although DeepLabv3þ owns the
most complex architecture, and the lowest training
and testing rates, it shows the highest accuracy in the
rooftop segmentation with high spatial resolution
images. U-Net has almost similar average accuracy as
the DeepLabv3þ, but it works much slower than the
DeepLabv3þ. As for FCN, the training and testing
rate is high, however, the training and validation
accuracy, and the average accuracy are all the lowest,
and the loss in the training and validation process is
the highest. mIoU is the average of IoUs for building
masks (foreground) and background. Due to imbal-
anced classification, mIoU appears to be higher than
IoU for all three algorithms. Precision and recall, rep-
resent correctness and completeness (Shu 2014). The
percentage of correct-classified building masks to all
predicted building masks equals correctness, and the
percentage of correct-classified building masks to all

ground truth building masks equals completeness.
Therefore, these metrics can reveal the performance of
the algorithms when processing comparison. According
to the metrics, IoU, mIoU, precision, recall, and F1-
score in the DeepLabv3þ show the best performance
compared with the other two algorithms. Therefore,
compared with FCN-8s and U-Net, DeepLabv3þ
should be the first choice in rooftop segmentation with
high spatial resolution images (Table 2).

After focal loss was applied to all three deep learn-
ing algorithms, Deeplabv3þ, U-Net, and FCN-8s,
great differences can be detected between focal loss
and binary cross entropy in the training accuracy and
loss (Figure 12). When focal loss is applied to deep
learning methods, the training loss is greatly reduced,
while the training accuracy is just slightly affected.
The training loss was especially minimized in
Deeplabv3þ, which was almost reduced by 0.1 points.
Besides, the application of focal loss extremely acceler-
ates the converging rate of training loss curve when
epoch increases.

By changing the training data volume by using ori-
ginal data to using 75% and 50% of the original data
to complete the training, the influence from the train-
ing data volume has been analyzed. The ablation
study shows that when training data size increases,
the training accuracy rises, while the training loss
decreases. This phenomenon is obviously detected in
all three deep learning methods (Figure 12).

We also calculated the relevant metrics to analyze
the performance of deep learning algorithms. Firstly,

Table 1. Parameters of three deep neural network.
Deep neural networks Trainable parameters Non-trainable parameters Total parameters

FCN 49,789,326 0 49,789,326
U-Net 31,032,837 0 31,032,837
Deeplabv3þ 41,050,273 202800 41,253,073

Figure 9. Training accuracy and loss of three deep learning algorithms.
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considering the data volumes are equal, Deeplabv3þ
keeps showing the best performance after applying the
focal loss, reaching 93.6% in average accuracy, and all
highest performance in IoU, mIoU, precision, and F1-
score. It means that using the same data size and loss
function, Deeplabv3þ can still preform the best
among others. Moreover, according to the results,
when data size increases, the performance usually
becomes greater, except for U-Net. When applying
focal loss in U-Net, 75% of training data achieves the
best performance in terms of all accuracy metrics. The

reason behind the performance is unexpected and we
will explore this in detail in our future work.

Lastly, focal loss always enhances the performance
of the algorithms. When data volume is constant, the
deep learning methods can achieve higher perform-
ance with assistance of the focal loss. For example,
with 100% data volume, the average accuracy of
Deeplabv3þ trained with focal loss achieves 93.6%,
higher than original Deeplabv3þ with BCE by 0.7
points, while IoU and mIoU of Deeplabv3þ trained
with focal loss achieves 65.4%, 79.0%, respectively,

Figure 10. Examples of segmentation results using FCN, U-Net, and DeepLabv3þ, respectively (blue: predicted, green: ground
truth, red: wrongly classified).
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higher than the results of Deeplabv3þ with BCE by
almost 2 points (Table 3).

Discussion

The reason for inaccurate output results has been dis-
cussed. Although the average accuracy of the three
algorithms is high, many obvious mis-extractions of
the rooftops can be still found in the output results. It
is quite difficult for the algorithms to identify the

exact location features of the rooftops when part of
the rooftop is covered by tree or its shadows. In this
case, inaccurate rooftop segmentation can decrease the
average accuracy. Also, it is obvious that the output
results of FCN do not have great quality as the U-Net
and the Deeplabv3þ. The contours of rooftops in the
FCN output results are zigzag, while the contours of
rooftops in the output results of U-Net and
Deeplabv3þ are smoothed curves or polygonal lines.
The reason for this may come from the differences in
the expansive path in the U-Net and Deeplabv3þ.
Additionally, when trees shade the buildings, all
experimental results of the three methods extract
inaccurate shading rooftops, especially in the results
of FCN. Although all the shading parts of the rooftops
are not extracted, the shading does have some impacts
on the accuracy of the outputs (Figure 13).

Moreover, there are many wrong classified results
in the parking lots. The reason may come from the
large-scale impervious surfaces that can be easily mis-
classified into rooftops. Both the rooftops and parking

Figure 11. Close-ups of the segmentation results by using FCN, U-Net and DeepLabv3þ, respectively (blue: predicted, green:
ground truth, red: wrongly classified).

Table 2. Evaluation of the performance of three methods (%).
FCN-8s U-Net DeepLabv3þ

Average Accuracy 78.3 91.9 92.9
Testing Rate (FPS)� 19.4 14.5 16.9
IoU 35.2 61.1 63.8
mIoU 55.3 75.9 77.8
Precision 39.2 69.5 73.7
Recall 78.0 83.5 82.5
F1-score 52.1 75.8 77.9
*Note: FPS: frames per second. The bolded figures refer to the highest
value in one evaluation factor.
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lots are impervious surfaces with similar color and
other characteristics, and when extracting rooftops in
the aerial images, the parking lots can sometimes be
misidentified as rooftops. According to output images
in Figure 14, it is obvious that the proportion of
wrongly classified parking lots decreases from the
results of FCN to U-Net, and then to DeepLabv3þ. It
can be predicted that deepLabv3þ achieves the high
performance in producing the output results, because
of its accurate extraction in identifying the parking

lots. In fact, by not extracting parking lots as rooftops,
DeepLabv3þ can achieve high accuracy and high
value in all assessment parameters (Figure 14).

Therefore, deep learning methods that can accom-
plish the rooftop extraction with rooftops even shad-
ing by trees need further study. Besides, correctly
classifying parking lots and rooftops with the deep
learning methods may also be one key point in rapid
extraction from aerial images. The method with excel-
lent performance can effectively complete rooftop

Figure 12. Application of focal loss to three deep learning algorithms (The percentages behind focal loss are percentages of train-
ing data to total data in the experiments). Examples of outputs with tree shading rooftops and non-shading rooftops.

14 Y. CAI ET AL.



segmentation in one region, which can assist the gov-
ernment in urban practical applications such as build-
ing construction characteristics, population estimation,
change detection, urban flooding prevention, and
other urban planning issues.

Lastly, when using average accuracy, IoU, mIoU,
precision, recall and F1-score to evaluate the perform-
ance of rooftop extraction, the value of recall fluctu-
ated. When average accuracy, IoU, mIoU, precision
and F1-score all increased, the value of recall irregu-
larly increased or decreased. Therefore, the value of
recall may not be a reasonable metric for assessing the
performance of rooftop extraction when using deep
learning methods. According to Equation (8), reasons
leading to weird value in recall may come from high
value in FN, which means in the test result there are
many spots of buildings in the images mistakenly
identified as non-building. That implied while extrac-
tion accuracy increased from FCN, to U-Net and to
Deeplabv3þ, TP increased while FN decreased.

Conclusions

In this paper, a deep learning approach was proposed
to complete the rapid extraction of building rooftops
from aerial imagery. Firstly, the building rooftops on
HSR aerial images were manually labeled in the
Kitchener-Waterloo area, and the high-quality dataset
was constructed for building rooftop extraction.
Almost one-sixth of the data from the dataset proved
the labeling work’s accuracy. The accuracy approached
nearly 100%, and the loss approached to 0 when
epoch approached 100.

Secondly, the performance of the three common
deep learning algorithms including FCN, U-Net, and

Figure 13. Examples of outputs with tree shading rooftops
and non-shading rooftops

Table 3. Evaluation of the performance of focal loss in three algorithms (%).
Average accuracy IoU mIoU Precision Recall F1-score Testing rate (FPS)

FCN-8s BCE loss 100% Data 78.3 35.2 55.3 39.2 78.0 52.1 19.4
75% Data 75.4 31.3 51.8 35.2 74.3 47.7 20.5
50% Data 64.3 25.4 42.4 27.1 80.4 40.5 20.4

FCN-8s focal loss 100% Data 84.7 42.4 62.6 49.6 74.6 59.6 20.4
75% Data 82.8 37.3 59.1 45.5 67.5 54.3 20.4
50% Data 73.9 29.4 50.1 33.3 71.8 45.5 20.3

U-Net BCE loss 100% Data 91.9 61.1 75.9 69.5 83.5 75.8 14.5
75% Data 89.3 53.9 70.8 60.8 82.6 70.0 14.7
50% Data 78.9 38.4 57.0 40.7 86.9 55.5 14.9

U-Net focal loss 100% Data 91.9 59.0 74.9 71.9 76.6 74.2 14.9
75% Data 92.1 60.2 75.7 72.3 78.3 75.2 14.8
50% Data 90.2 55.0 71.9 64.1 79.5 71.0 15.0

DeepLabv3þ BCE loss 100% Data 92.9 63.8 77.8 73.7 82.5 77.9 16.9
75% Data 92.7 62.3 77.0 74.0 79.7 76.8 16.9
50% Data 91.1 51.6 70.9 74.5 62.7 68.1 17.5

DeepLabv3þ focal loss 100% Data 93.6 65.4 79.0 77.6 80.6 79.1 17.5
75% Data 92.7 54.7 73.3 89.1 58.7 90.7 17.6
50% Data 92.0 54.7 72.9 78.8 64.1 70.7 17.4

*Note: FPS: frames per second. Data here refers to training and validation dataset used in training stage. The bolded figures refer to the highest value in
one evaluation factor.
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Deeplabv3þ were tested and compared. The results
indicated that the DeepLabv3þ owns the highest
accuracy, while the FCN has the lowest. As for the U-
Net, although it owns similar average accuracy as the
DeepLabv3þ, its working rate is much lower than
that of the DeepLabv3þ. The higher accuracy is the
result of sophisticated deeper architecture design
among different methods. The higher efficiency of
DeepLabv3þ comparison to U-Net also come from
the architecture design. If rooftops are extremely con-
siderable in one dataset, or the dataset’s scale is exten-
sive, then the U-Net can be a more time-consuming
choice than the DeepLabv3þ. After comparing the
performance of the algorithms, it was found that
DeepLabv3þ achieved the greatest performance, with

63.8% IoU, 77.8% mIoU, 74% precision, and 78% F1-
score. As a result, the accuracy of labeled work meets
expectations among the three selected deep learning
methods, and that DeepLabv3þ achieves the highest
accuracy in building rooftop extraction from HSR aer-
ial orthoimages.

Lastly, focal loss can deal with the class imbalance
problem, and enhance the performance of deep learn-
ing methods in extracting rooftops with high reso-
lution aerial images. After applying the focal loss to
algorithms, the training loss can be greatly cut down,
and reducing rate can undergo a significant growth.
Meanwhile, the performance of rooftop extraction can
become better, as the average accuracy, IoU, mIoU,
precision, and F1-score greatly increase after applying

Figure 14. Close-ups of parking lots wrongly classified into rooftops in segmentation results by using FCN, U-Net and
DeepLabv3þ, respectively (blue: predicted, green: ground truth, red: wrongly classified).
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focal loss. In the ablation study, when data volume
decreases, the parameters such as IoU, mIoU, preci-
sion, and F1-score mostly decline, and the perform-
ance of extraction gets worse.
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