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A B S T R A C T   

High spatial resolution hyperspectral images (HR-HSIs) have shown considerable potential in urban green 
infrastructure monitoring. A prevalent scheme to overcome spatial resolution limitations in HSIs is by fusing low- 
resolution hyperspectral images (LR-HSIs) and high-resolution multispectral images (HR-MSIs). Existing methods 
considering the spectral dictionary or spatial dictionary can only reflect the unilateral characteristics of the HSI 
and cannot completely restore full information in the latent HSI. To overcome this issue, we propose a novel HSI- 
MSI fusion method, named DDSSLR, which joins spatial-spectral dual-dictionary and structured sparse low-rank 
representation. The spectral dictionary characterizing generalized spectra and the corresponding spectral sparse 
coefficients are extracted from LR-HSI and HR-MSI, while sparse low-rank priors of the local structure are 
imposed on the spectral pixels within the same superpixel in HR-MSI. Additionally, in the spatial domain, we 
exploit the remaining high-frequency components to learn the spatial dictionary and use the unitary trans
formation to factorize the spatial sparse coefficient into the sparse low-rank matrix in subspace, establishing the 
relationship between low-rank and sparse. We formulate the two fusion models as variational optimization 
problems, which are effectively solved by the alternating direction methods of multipliers (ADMM). Experiments 
on three HSI datasets show that DDSSLR achieves state-of-the-art performance.   

1. Introduction 

The increasing development of modern urbanization has brought 
new challenging issues about the monitoring and management of urban 
expansion and urban green spaces. High-resolution satellite images can 
quickly discover the speed of urban expansion and the species distri
bution of urban green spaces (Rougier et al., 2016), and hyperspectral 
satellite images can quickly identify species of urban green spaces 
(Modzelewska et al., 2020; Shi et al., 2018) and land cover types in 
urban areas (Chen et al., 2018). Therefore, HR-HSIs have shown 
considerable potential in urban green infrastructure monitoring. Since 
the HSIs satisfy spectral continuity and spectral separability, they have 
the strong spectral diagnostic capability to distinguish materials, which 
facilitate image classification (Abbas et al., 2021), object detection 
(Noomen et al., 2015), and band selection (Long et al., 2019). The 
traditional HSIs contain rich and successive narrow bands in the same 

scene, but an acceptable signal-to-noise ratio for each spectral window 
requires long exposures to the imaging system to collect enough pho
tons, which leads to the inevitable trade-off between the resolutions of 
the spatial-spectral modes. Therefore, fusing HSI having low spatial but 
high spectral resolution with MSI having high spatial but low spectral 
resolution over the same scene is a super-resolution (SR) method to 
obtain HR-HSI, which will play an important role in the construction and 
monitoring of urban green space. 

Recently, there are roughly four categories of the HSI-SR methods. 
Spectral unmixing-based methods unmix the latent HR-HSI into under
lying pure endmembers matrix and HR abundance matrix. For example, 
the coupled nonnegative matrix factorization (CNMF) method (Yokoya 
et al., 2012) alternately unmixes each image base on the linear mixture 
model to generate a new HR-HSI. The joint super-resolution and 
unmixing method (Lanaras et al., 2017) jointly unmixes the two input 
images into pure reflectance spectra and the associated mixing 
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coefficients by a coupled matrix factorization with efficient proximal 
mappings. Sparsity representation-based methods reconstruct the latent 
HR-HSI by the learned redundant dictionary with the relative sparse 
coefficients. For example, a generalization of the Simultaneous 
Orthogonal Matching Pursuit (G-SOMP+) algorithm (Akhtar et al., 
2014) estimates the sparse coefficients of each local patch by jointly 
exploiting non-negativity and similarities among the spectral pixels. 
Non-parametric Bayesian sparse representation scheme (BSR) (Akhtar 
et al., 2015) infers the probability distributions and proportions for the 
material spectra in the scene and uses Bayesian sparse coding strategy to 
infer the sparse coding coefficient. A novel superpixel-based sparse 
representation (SSR) scheme (Fang et al., 2018) employs a joint sparse 
regularization on the pixels within the same superpixel to improve the 
sparse decomposition. Tensor factorization-based methods represent an 
HSI image as a 3D tensor and reconstruct the latent HR-HSI via the 
multiplication of the dictionary and the core tensor. For example, the 
non-local sparse tensor factorization (NLSTF) method (Dian et al., 2017) 
introduces tensor factorization to HSI super-resolution and approxi
mates the HSI cube by core tensor multiplication by dictionaries of three 
modes base on Tucker decomposition. A new low tensor-train rank 
representation (LTTR) (Dian et al., 2019) further reconstructs the HSI by 
grouping the similar cubes as a 4-D tensor and imposes the LTTR prior to 
grouped 4-D tensors. Deep learning-based methods use powerful feature 
extraction, often achieving high fusion quality but resulting in high time 
complexity. For example, a novel spatial and spectral fusion convolu
tional neural network (SSRCNN) (Han et al., 2018) improves the spatial 
resolution of the input HSI by concatenating the spatial feature of HR- 
RGB and the spectral feature of LR-HSI. A two-stream fusion network 
(TFNet) (Liu et al., 2020) can accomplish pan-sharpening in the CNN 
feature domain, producing promising pan-sharpened qualities. 

Among them, the sparse representation-based methods have a wide 
range of applications, since they are concise and do not require addi
tional training datasets. Although the existing methods have achieved 
great performance for the HSI-MSI fusion task, the efficient passing of 
information between spatial and spectral modes is still a challenge, 
which significantly impacts the fusion quality (Yi et al., 2018). For 
example, the HSI-MSI fusion methods (Ghasrodashti et al., 2017) only 
using a spatial dictionary can exploit detailed structural information, 
but they cause severe spectral distortion. On the contrary, the methods 
(Dian et al., 2018; Sui et al., 2019) that only consider the spectral dic
tionary often ignore the high-frequency spatial features. To preserve 

both spectral and spatial information simultaneously, the method 
(Nezhad et al., 2016) combines the spectral dictionary constructed by 
the spectral mixing model with sparse coding to inject HR information 
from a spatial dictionary of unrelated HR images. Typically, a fusion 
method with optimized twin dictionaries (OTD) is proposed (Han et al., 
2020). It can fully integrate the spectral feature and the spatial features 
into the latent HSI, but it rarely incorporates the prior information of the 
raw image into the fusion model, so its fusion performance still has a 
large room for improvement. The HSIs possess abundant redundancy, 
that is, spectral global correlation and spatial nonlocal similarity, which 
have significantly improved HSI restoration methods (Chen et al., 2020; 
Xue et al., 2019). Low-rank representation (LRR) projects high- 
dimensional signals into a lower-dimensional subspace, then uses a 
sparse linear combination of dictionary atoms to recover the underlying 
structure hidden in the original data (Pan et al., 2018; Yang et al., 2020). 
Since there are the spectral correlations along with successive spectral 
bands and the spatial correlations among spatial nonlocal similarity 
patches in HSIs, the design of a rational LRR constraint to represent such 
correlations is key to regularizing the ill-posed problem of the HSI-MSI 
fusion task. 

To this end, we recast the optimized twin dictionaries model used in 
the OTD method and propose a novel HSI-MSI fusion method, named 
DDSSLR, by joining spatial-spectral dual-dictionary fusion with relevant 
structured sparse low-rank representation. On one hand, a spectral 
dictionary characterizing generalized spectrum is learned from the two 
input images in the spectral domain. Given that spectral vectors selected 
neighborhoods represent the same materials, we employ a shape adap
tive superpixel strategy to segment the HR-MSI and impose the low-rank 
prior of the local structure to the sparse coefficients of the spectral pixels 
within the same superpixel. Here, the variational regularization model 
of the regression coefficients for the spectral dictionary has been derived 
theoretically, for which the solutions are efficiently given by split 
augmented Lagrangian shrinkage algorithm (SALSA) (Afonso et al., 
2010). On the other hand, we utilize the remaining high-frequency in
formation that is unrepresented by the spectral dictionary to learn the 
spatial dictionary. Moreover, we impose the structured sparse constraint 
into the low-rank subspace to characterize the relationship between the 
low-rankness and sparsity of the regression coefficients in the spatial 
domain. Then, the variational regularization model of the regression 
coefficients for the spatial dictionary is derived theoretically, for which 
the solutions are efficiently given by ADMM (Boyd et al., 2011). The 

Fig. 1. Two degradation models in fusion task.  
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three major advantages and innovations of this paper include:  

(1) A novel structured sparse low-rank representation strategy for the 
HSI-MSI fusion task via joining spatial-spectral dual-dictionary is 
devised to construct the fusion models in both the spatial and 
spectral domain;  

(2) In the spectral domain, an efficient shape adaptive superpixel 
strategy is exploited to segment the HR-MSI, and the low-rank 
prior of the local structure is imposed to the sparse coefficients 
of the spectral pixels within the same superpixel;  

(3) In the spatial domain, an efficient low-rank structure constraint 
for the sparse subspace of the regression coefficients is exploited 
to characterize the inherent relationship between low-rankness 
and sparsity. 

2. Method 

2.1. Problem formulation 

We consider the fusion task as a post-processing step which can be 
interpreted as the inverse problem of the forward models with instru
ment knowledge priors, where the input LR-HSI is supposed to be a 
blurred and down-sampled version of the latent HR-HSI in the spatial 
domain, while the HR-MSI image is viewed as a spectrally degraded 
version of the latent HR-HSI in the spectral domain, as illustrated in 
Fig. 1. 

For representation convenience, X ∈ RλX×WH denotes the targeted 
HR-HSI with W × H spatial resolution and λX spectral bands, YM ∈

RλY×WH denotes the available HR-MSI with λY spectral bands (λY≪λX) 
and YH ∈ RλX×wh denotes the available LR-HSI with w × h spatial reso
lution (w≪W,h≪H), let n = w× h,N = W× H. X̂ ∈ RλX×WH denotes the 
ground truth as the reference image. The two forward observation 
degraded models can be formulated as follows 

YH = XBS + NH
YM = RX + NM

(1)  

where B ∈ RN×N denotes a block circulant convolution; S ∈ RN×n de
notes a spatial down-sampling operator; R ∈ RλY×λX represents the 
spectral degradation operator; NH ∈ RλX×n and NM ∈ RλY×N represent 
noise matrices. It is assumed that the HR-HSI X can be represented as the 
linear combination of a small number of distinct spectral signatures, 

X = DSA + E
E = DP

◦ Ψ (2)  

where DS ∈ RλX×KS denotes spectral dictionary, KS is the size of DS, A ∈

RKS×N denotes the spectral sparse coefficients, E ∈ RλX×N is the error 
component that cannot be represented by DS. The remaining spatial 
information in E can be further recovered by a spatial dictionary DP ∈

RBP×KP and the relevant spatial sparse coefficients Ψ ∈ RKP×NP , where KP 
is the size of DP, NP is the number of the image patches. The symbol “◦” 
represents the equivalent expression of multiplication in the image 

patch domain (Zhang et al., 2019). 
By substituting Eq. (2) into Eq. (1), the fusion degradation observa

tion model can be reformulation as 

YH = DSABS + EH
YM = RDSA + EM
εH = PDPΨ + nH
εM = DPΨRP + nM

(3)  

where εH and εM are the stretched patches of the error matrixes EH and 
EM, respectively. P, RP, nH, nM are the equivalent expressions of 
H = BS, R, NH, NM in image patch domain, respectively. 

Based on the reformulation of the forward observation degraded 
models associated with the MSI-HSI fusion, the MSI-HSI fusion problem 
in this paper can be formulated as follows 

argmin
Ds ,A

‖YH − DSABS‖2
F+η‖YM − RDSA‖

2
F+λ1ϕ(A) (4)  

argmin
DP ,Ψ

‖εH − PDPΨ‖
2
F+β‖εM − DPΨRP‖

2
F+λ2ϕ(Ψ) (5)  

where ϕ(A) denotes the regularization term derived from YH and YM, 
while ϕ(Ψ) denotes the regularization term derived from εH and εM. 
η > 0, β > 0 are the trade-off parameters to balance the spatial error and 
the spectral error, respectively. λ1, λ2 are the regularization parameters. 
Eq. (4) and Eq. (5) are the fusion model in the spectral and spatial 
domain, respectively. In the following subsections, we will introduce the 
specific forms of ϕ(A) and ϕ(Ψ), which are introduced into the fusion 
models to ensure stable estimation for A and Ψ. 

2.2. Spectral dictionary and sparse coefficient optimization 

As is summarized in Algorithm 1, we derive theoretically the opti
mization process of the spectral dictionary DS and spectral sparse co
efficients A via using the spectral information provided by the observed 
image YH and YM. 

2.2.1. Spectral dictionary optimization 
Since the urban green space scenes covered by the HSI often contain 

different materials, their reflectivity changes greatly, and the use of a 
common HSI dictionary cannot fully represent the spectral information 
of different materials, which tends to give considerable spectral distor
tion. The spectral dictionary DS in this paper can be considered as a more 
generalized spectral signature, which may better represent the scene 
spectra. In this subsection, this paper firstly uses the K-SVD method to 
initialize DS, and then uses the biconvex iteration optimization strategy 
proposed in the OTD method (Han et al., 2020) to iteratively estimate DS 
according to the following augmented Lagrangian function: 

L ⊖(DS,Z,V1) = ‖YH - DSAH‖
2
F + η‖YM - RZ‖2

F + μ
⃦
⃦
⃦
⃦DSA - Z +

V1

2μ1

⃦
⃦
⃦
⃦

2

F

(6)  

where AH = ABS ∈ RK×n,V1 ∈ RλX×N is the Lagrangian multiplier, 
Z = DsA is the splitting variable, μ > 0 is the Lagrangian parameter. 
Then, solving Eq. (6) will consist of the following alternative iterations:  

The above optimization problems in Eq. (7) admit closed-form solutions, 
namely: 

argminDS

⃦
⃦YH - D(k)

s AH
⃦
⃦2

F + μ
⃦
⃦
⃦
⃦
⃦

D(k)
s A - Z +

V(k)
1

2μ

⃦
⃦
⃦
⃦
⃦

2

F

argminZη
⃦
⃦YM - RZ(k+1)

⃦
⃦2

F + μ
⃦
⃦
⃦
⃦
⃦

DsA - Z(k+1) +
V(k)

1

2μ

⃦
⃦
⃦
⃦
⃦

2

F

V(k + 1)
1 = V(k)

1 + μ
(
D(k+1)

s A - Z(k+1)) (7)   

N. Chen et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102570

4

Z =
(
ηRTR + μI

)− 1
[

ηRTYM + μ
(

DSA +
V1

2μ

)]

DS =

[

YHAT
H + μ

(

Z −
V1

2μ

)

AT
]
(
AHAT

H + μAAT)− 1

(8)  

2.2.2. Spectral sparse coefficient optimization 
The spectral vectors of the HSI in selected neighborhoods often 

represent identical materials; they will provide a more promising 
reconstruction result by simultaneously encoding the pixels within a 
local fixed window than the pixel-wise sparse representation method 
which often ignores the similarity of neighbor pixels. Since HR-HSI 
preserves the same spatial information as HR-MSI counterparts, we try 
to sufficiently utilize the spatial information of MSI to search the local 
windows. The pixels in the adaptive windows are assumed to have 
similar spectral characteristics, so we can impose a constraint formula
tion based on locally low-rank to regularize the MSI-HSI fusion model in 
spectral-domain to achieve more robust performance. We firstly apply 
the entropy rate-based superpixel segmentation (ERS) method (Liu 
et al., 2011) to over-segment the HR-MSI into K superpixels { Yi

M= }
K
i=1. 

According to the corresponding superpixels segmentation maps, the 
latent HR-HSI is also segmented into K superpixels 

{
Xi = DSAi}K

i=1. We 
impose a constraint formulation based on local low-rank prior for the 
spectral pixels’ sparse coefficients within the same superpixel. The nu
clear norm is applied to promote local low-rankness in this paper. The 
obtained fusion model Eq. (4) can be specifically formulated as follows 

Algorithm 1. (The spectral dictionary and spectral sparse coefficient opti
mization algorithm)  

Input: YH, YM, B, S, R, regularization parameters η1,η2, superpixel number K, auxiliary 
parameter η, μ = μ1 = 10− 3  

Outer loop: For k = 0, 1,…,TS do  
Step 1: Spectral dictionary optimization 

Inner loop: (Solving (6) via ADMM): While not converged do 
(a) Compute Z via Eq. (8);  
(b) Compute DS via Eq. (8);  

End while 

(continued on next column)  

(continued ) 

Step 2: Spectral sparse coefficient optimization 
Superpixel segmentation 

(a) over segment the HR-MSI into K superpixels 
{

Yi
M =

}K
i=1,  

(b) over segment the HR-HSI into K superpixels, 
{

Xi = DSAi}K
i=1  

Inner loop:(Solving (10) via SALSA): While not converged do 
(a) Compute A via Eq. (11);  
(b) Compute V1, V2, V3, V4 via Eq. (12)-Eq. (15);  
(c) Compute G1,G2,G3,G4 via Eq. (16);  

End while 
End for 
Output: Spectral dictionary DS and spectral sparse coefficient A    

argmin
A

‖YH − DSABS‖2
F+η‖YM − RDSA‖

2
F+η1‖A‖1 + η2

∑K

i=1

⃦
⃦Ai

⃦
⃦

* (9)  

where ‖A‖1 denotes the sparse constraint on the coefficient matrix; 
⃦
⃦Ai⃦⃦

* is the nuclear norm of the coefficients in ith superpixel which 
promotes local low-rankness; η1⩾0 denotes sparse regularization pa
rameters, η2⩾0 denotes low-rank regularization parameters. Eq. (9) is 
convex and can be efficiently solved via SALSA. By introducing four 
splitting variables V1 = AB, V2 = A, V3 = A and V4 = A, we can 
obtain the following augmented Lagrangian function: 

L ⊖ = ‖YH − DSV1S‖2
F+μ1‖V1 − AB + G1‖

2
F+η‖YM − RDSV2‖

2
F+ μ1‖V2 

− A + G2‖
2
F+η1‖V3‖1 + μ1‖V3 − A + G3‖

2
F+ η2

∑K

i=1

⃦
⃦Vi

4

⃦
⃦

* + μ1‖V4 

− A + G4‖
2
F (10)  

where μ1 > 0 is the Lagrangian parameter. Eq. (10) can be divided into 
the following subproblems, in which all variables are iteratively updated 
with the others fixed:  

(1) Update A = argminAL : 

Fig. 2. The proposed DDSSLR framework.  
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A = [(V1 + G1)BT + V2 + G2 + V3 + G3 + V4 + G4]×(BBT
+ 3I)− 1

(11)    

(2) Update V1 = argminV1
L : 

V1S =
(
DT

S DS + μ1I
)− 1[DT

S YH + μ1(AB − G1)S
]

V1S = (AB − G1)S
(12)  

where S denotes the down-sampling matrix which selects the pixels not 
selected by S.  

(3) Update V2 = argminV2 L : 

V2 =
[
η(RDS)

TRDS + μ1I
] - 1[η(RDS)

TYM + μ1(A-G2)
]

(13)    

(4) Update V3 = argminV3 L : 

V3 = soft
(

A-G3,
η1

2μ1

)

(14)  

where soft(υ1, υ2) = sign(υ1)× max(|υ1| - υ2,0).  

(5) Update V4 = argminV4
L : 

The sparse coefficient of each superpixel is solved separately. For the 
ith superpixel Vi

4, we calculate its sparse coefficients by: 

Vi
4 = U

(

Σ −
η2

2μ

)

+

VT (15)  

where UΣVT is the singular value decomposition (SVD) of Ai- ​ Gi
4, and 

(⋅)+ denotes positive singular values.  

(6) Update Lagrangian multipliers G1, G2, G3 and G4: 

G1 = G1 + V1 - AB
G2 = G2 + V2 - A
G3 = G3 + V3 - A
G4 = G4 + V4 - A

(16)  

2.3. Spatial dictionary and sparse coefficient optimization 

As is summarized in Algorithm 2, we derive theoretically the opti
mization process of the spatial dictionary DP and spatial sparse co
efficients Ψ via utilizing the remaining spatial information provided by 
the image εH and εM which cannot represent by the spectral dictionary 
DS. 

2.3.1. Spatial dictionary optimization 
The spatial dictionary DP represents the structure primitives of edges 

and textures in the remaining spatial information provided by the image 
εH and εM. However, it is challenging to obtain the exact values of the 
equivalent matrixes RP and P in the image patch domain. In this section, 
we try to use variable substitution to eliminate the constraints of two 
equivalent matrixes (Han et al., 2020). From Eq. (17), we notice that εM 

and εHRP can sparsely represent by the spatial dictionary DP and the 
degraded spatial dictionary PDP with the same sparse coefficient 
ΨP = ΨRP, respectively. 

εHRP = PDPΨRP + nH
εM = DPΨRP + nM

(17)  

It can be found that Eq. (17) is a typical sparse representation problem, 
and the spatial dictionary DP can be estimated by optimizing the 
following Eq. (18). 

argmin
DP

⃦
⃦
⃦εP − D̃PΨP

⃦
⃦
⃦

2

F
+λ‖ΨP‖0 (18)  

where D̃P =

[
βPDP

DP

]

, εP =

[
βεHRP

εM

]

. β is a tradeoff parameter between 

matching LR patch and finding corresponding HR patch that is 
compatible with its neighbors. Here, we can utilize the consistent 
adaptive sequential dictionary learning algorithm (CASDL) (Seghouane 
and Iqbal, 2018) to efficiently estimate the spatial dictionary DP =

[0 I] D̃P, the degraded spatial dictionary PDP = 1/β[I 0] D̃P, and the 
degraded sparse coefficients ΨP = ΨRP. 

Algorithm 2. (The spatial dictionary and spatial sparse coefficient optimi
zation algorithm)  

Input: Spectral dictionary DS and spectral sparse coefficient A, auxiliary parameter, δ, 
β, τ = 1, μ2 = 10− 3, ρ = 1.1;  

Initialization: EH = YH − DSABS, EM = YM - RDSA ;  
Step 1: Spatial Dictionary Optimization 

(a) Compute DP via Eq. (18) by CASDL;  
Step 2: Spatial sparse coefficient optimization 
Solving (36) via ADMM: For k = 0,1,…,TP do  

(a) Compute U via Eq. (22);  
(b) Compute V via Eq. (23);  
(c) Compute J via Eq. (24);  
(d) Compute Ψ via Eq. (25);  
(e) Compute nH via Eq. (26);  
(f) Compute P1, P2, P3 via Eq. (27);  
(g) Compute μ : μ = min(ρμ, μmax);  
End for 
Step 3: X = DSA + DP

◦ Ψ  
Output: The final fusion HSI X.    

2.3.2. Spatial sparse coefficient optimization 
Another important prior feature of the HSI in the urban green spaces 

scenes is that it has spatial nonlocal similarity, so the remaining spatial 
information unrepresented by the spectral dictionary appears more low- 
rank. To recover the high-frequency information hidden in the 
remaining part more accurately, in this subsection, we present a struc
tured sparse low-rank representation strategy to recover the spatial 
sparse coefficient. Inspired by the idea of sparse transform learning (Xue 
et al., 2021), we take the low-rank structure U of Ψ into consideration 

when characterizing the sparse property of Ψ in the transform domain. 
As Ψ is simultaneously sparse and low-rank, so is U. The fusion model 
Eq. (5) can be specifically formulated is therefore  

where ‖Ψ‖* is the low-rank term, ‖U‖1 is the sparse term, ‖n‖2,1 is the 
error term, and V is the transform matrix. δ is a tradeoff parameter and τ 
is a balance parameter. The DP, PDP, and ΨRP are obtained in the last 

argmin
Ψ

‖εH − PDPΨ‖
2
F+β‖εM − DPΨRP‖

2
F+‖Ψ‖* + δ‖U‖1 + τ‖n‖2,1s.t. Ψ = UVT ,VV = I, (19)   

N. Chen et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102570

6

subsection, so we can simplify the optimization problem Eq. (19) as 
follows: 

argmin
Ψ

‖εH − PDPΨ‖
2
F+‖Ψ‖* + δ‖U‖1 + τ‖nH‖2,1s.t. Ψ = UVT ,VV = I

(20)  

By introducing an auxiliary variable J = Ψ, we can equivalently trans
form Eq. (20) into an augmented Lagrangian function: 

G = ‖J‖* + δ‖U‖1 + τ‖nH‖2,1 +

〈P1, εH − PDPΨ − nH〉 + 〈P2,Ψ − J〉 +
〈
P3,Ψ − UVT〉+

μ2

2

(
‖εH − PDPΨ − nH‖

2
F+‖Ψ − J‖2

F+
⃦
⃦Ψ − UVT

⃦
⃦2

F

)
(21)  

where P1, P2, P3 are three Lagrange multipliers, μ2 represents positive 
penalty parameters, μ2 = ρμ2, ρ ≻ 0. Eq. (21) can be solved by breaking 
into six subproblems in the ADMM framework:  

(1) Update U: 

U = argmin
U

δ
μ2
‖U‖1 +

1
2

⃦
⃦
⃦
⃦Ψ − UVT +

P3

μ

⃦
⃦
⃦
⃦

2

F
U = Sδ/μ

((

Ψ +
P3

μ2

)

V
)

(22)  

where Sβ/μ() is the soft thresholding operator.  

(2) Update V: 

V = argmin
V

μ
2

⃦
⃦
⃦
⃦Ψ +

P3

μ2
− UVT

⃦
⃦
⃦
⃦

2

F
, s.t. VT V = I, V = WCT

(23)  

where [W,D,C] = SVD
(
(Ψ + P3/μ2)

TU
)

.  

(3) Update J: 

J = argmin
J

‖J‖* +
μ2

2

⃦
⃦
⃦
⃦J −

(

Ψ +
P2

μ2

)⃦
⃦
⃦
⃦

2

F
J = ES1/μ2 (Σ)F

T (24)  

where [E,Σ,F] = SVD(Ψ + P2/μ2).  

(4) Update Ψ: 

Ψ=argmin
Ψ

⃦
⃦
⃦
⃦PDPΨ−

(

εH − nH+
P1

μ2

)⃦
⃦
⃦
⃦

2

F
+

⃦
⃦
⃦
⃦Ψ− J+

P2

μ2

⃦
⃦
⃦
⃦

2

F
+

⃦
⃦
⃦
⃦Ψ− UVT+

P3

μ2

⃦
⃦
⃦
⃦

2

F 

Ψ=
(
PDT

PPDP+2I
)− 1( PDT

PM1+M2+M3
)

(25)  

where M1 = εH − Ψ + P1/μ2, M2 = J − P2/μ2 and M3 = UVT − P3/μ2.  

(5) Update nH: 

nH = argmin
nH

τ
μ2
‖nH‖2,1 +

1
2

⃦
⃦
⃦
⃦nH −

(

nH − PDPΨ +
P1

nH

)⃦
⃦
⃦
⃦

2

F   

[
nH:,i

]
=

⎧
⎪⎨

⎪⎩

⃦
⃦[θ]:,i

⃦
⃦

2 − τ
/

μ2⃦
⃦[θ]:,i

⃦
⃦

2

[θ]:,i, if
⃦
⃦[θ]:,i

⃦
⃦

2 > τ/μ2;

0, otherwise

(26)  

where θ = εH - PDPΨ + P1/μ2. The ith column of nH and M are denoted 
by [nH]:,i and [M]:,i, respectively.  

(6) Update Lagrange multipliers P1, P2, P3: 

P1 = P1 + μ2(εH - PDPΨ − nH)

P2 = P2 + μ2(Ψ − J)
P3 = P3 + μ2

(
Ψ − UVT)

(27) 

The HSI-MSI fusion framework proposed in this paper reconstructs 
the latent HR-HSI from the input HR-MSI and LR-HSI by combining the 
spectral dictionary with the spatial dictionary to preserve full spatial and 
spectral information simultaneously. Moreover, structured sparse low- 
rank priors are imposed into two fusion models in the spectral domain 
and spatial domain, respectively, which can reduce less spectral dis
tortions and ensure more accurate spatial features. The overall frame
work of our DDSSLR method is illustrated in Fig. 2. 

3. Experiments 

To evaluate the performance of our DDSSLR method, experiments 
are conducted on both two synthetic datasets and one real dataset from 
different urban green spaces scenes, featuring a variety of different 
sensor and geographical characteristics. 

3.1. Experiment datasets  

1) Synthetic datasets 

We perform our experiments on two synthetic datasets, namely, 
Pavia University (Wei et al., 2015) and Washington DC Mall (Zhang 
et al., 2020). For the Pavia dataset, we crop a sub-region of size 128 ×
128 × 93 with a ground sampling distance (GSD) of 1.3 m as the ground 
truth (GT) and generate LR-HSI of size 32 × 32 × 93 by applying a 
rotationally symmetric 5 × 5 Gaussian blur filter with a standard devi
ation of 2.5, followed by downsampling with a ratio of 4 along with both 
horizontal and vertical directions for all bands. The corresponding HR- 
MSI is obtained by the IKONOS-like reflectance spectral response filter 
that contains four multispectral bands. For the Washington dataset, we 
select a sub-region of size 250 × 250 × 191 with a GSD of 2.5 m as the 
GT and generate LR-HSI of size 50 × 50 × 191 by applying a rotationally 
symmetric 5 × 5 Gaussian blur filter with a standard deviation of 2.5, 
followed by downsampling with a ratio of 5 along with both horizontal 
and vertical directions for all bands. The corresponding HR-MSI is ob
tained by the Landsat TM bands 1–5 and 7, covering the spectral regions. 
Additionally, these simulated LR-HSIs are corrupted by Gaussian noise 
with SNR = 30 dB, and HR-HSIs are corrupted by Gaussian noise with 
SNR = 40 dB.  

2) Real dataset 

The real dataset was acquired by the Earth Observing-1 Mission (EO- 
1) satellite over Paris, France (Simões et al., 2015). we selected a sub- 
region of size 72 × 72 × 128 with a GSD of 30 m in Hyperion as the 
GT and a sub-region of size 72 × 72 × 9 with a GSD of 30 m in ALI as HR- 
MSI. We first generate the LR-HSI of size 24 × 24 × 128 by applying the 
Starck-Murtagh blur filter and downsampling with a ratio of 3. We 
normalize all bands of the EO-1 dataset before fusion making the 0.999 

Table 1 
Six PQIs of the eight methods over the testing image from Pavia University 
dataset.  

PQIs PSNR RMSE SAM UIQI ERGAS DD 

GSOMP+ 38.831  1.179  2.248  0.988  1.122  0.883 
BSR  42.785  0.801  1.199  0.994  0.737  0.481 
NLSTF  40.923  0.905  1.562  0.992  0.849  0.634 
SSR  39.306  1.092  1.897  0.989  1.025  0.759 
SSFCNN  42.941  0.743  1.274  0.995  0.674  0.522 
TFNet  45.047  0.575  0.972  0.996  0.525  0.395 
OTD  44.985  0.578  0.998  0.996  0.529  0.404 
Ours  45.542  0.548  0.909  0.997  0.497  0.369  
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intensity quantile corresponded to 1. The GT and the LR-HSI were 
denoised by subspace projection through truncated SVD. This is a real 
dataset, so we estimate the real spatial blurring matrix B and the real 
spectral response matrix R by the Hysure (Simões et al., 2015). 

3.2. Evaluation criterion 

We use six quantitative image quality indices (PQIs) to gauge the 
reconstruction quality: peak signal-to-noise ratio (PSNR)(dB), universal 
image quality index (UIQI), root mean square error (RMSE)(in 10-2), 
spectral angle mapper (SAM)(in degrees), degree of distortion (DD)(in 
10-2) and dimensionless global relative error of synthesis (ERGAS). The 

higher PSNR and UIQI values imply the better fusion results, whereas 
the lower RMSE, SAM, ERGAS, and DD values correspond to the better 
fusion results. For visual evaluation, the darker the error map, the better 
the fusion results. Brighter spots represent greater deviations. 

3.3. Experimental settings 

We benchmark our method with several state-of-the-art methods, 
including Generalization of Simultaneous Orthogonal Matching Pursuit 
(G-SOMP+) (Akhtar et al., 2014), Bayesian Sparse Representation (BSR) 
(Akhtar et al., 2015), Nonlocal Sparse Tensor Factorization (NLSTF) 
(Dian et al., 2017), Superpixel-based Sparse Representation (SSR) (Fang 
et al., 2018), Spatial and Spectral Fusion Convolutional Neural Network 

Fig. 3. 1st row: the GT and reconstructed images from Pavia University dataset, bands 45–25-8 as R-G-B at scaling factor s = 4. 2nd row: the reconstructed images of 
different methods at band 45. 3rd row: the error maps of the corresponding methods at band 45. 

Table 2 
Six PQIs of the eight methods over the testing image from Washington DC Mall 
dataset.  

PQIs PSNR RMSE SAM UIQI ERGAS DD 

GSOMP+ 43.452  0.676  1.831  0.771  1.021  0.469 
BSR  48.115  0.396  1.047  0.862  0.538  0.276 
NLSTF  41.093  0.902  1.752  0.711  1.422  0.486 
SSR  43.123  0.712  1.872  0.770  1.035  0.478 
SSFCNN  47.627  0.442  1.204  0.867  0.552  0.309 
TFNet  49.806  0.334  0.842  0.875  0.415  0.227 
OTD  49.869  0.304  0.844  0.874  0.412  0.223 
Ours  50.919  0.261  0.695  0.898  0.339  0.186  

Fig. 4. 1st row: the GT and reconstructed images from Washington DC Mall dataset, bands 60–27-17 as R-G-B at scaling factor s = 5. 2nd row: the reconstructed 
images of different methods at band 60. 3rd row: the error maps of the corresponding methods at band 60. 

Table 3 
Six PQIs of the eight methods over the testing image from EO-1 dataset.  

PQIs PSNR RMSE SAM UIQI ERGAS DD 

GSOMP+ 26.714  4.797  3.099  0.834  4.375  3.308 
BSR  26.847  4.713  2.985  0.847  4.289  3.253 
SSR  26.729  4.788  3.089  0.835  4.362  3.304 
NLSTF  26.491  5.037  3.573  0.808  4.561  3.547 
SSFCNN  26.776  4.761  3.289  0.847  4.328  3.338 
TFNet  27.041  4.569  3.188  0.856  4.143  3.211 
OTD  26.944  4.662  3.011  0.855  4.244  3.213 
Ours  27.246  4.563  2.858  0.873  4.144  3.165  
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(SSFCNN) (Han et al., 2018), Two-stream Fusion Network (TFNet) (Liu 
et al., 2020), Optimized Twin Dictionary (OTD) (Han et al., 2020). All 
the competing experiments are implemented using an Intel(R) Core(TM) 
i9-9900X CPU and GeForce RTX 1080Ti GPU. 

3.4. Result and analysis 

3.4.1. Performance evaluation on the Pavia University dataset 
Table 1 tabulates the average performance in terms of six PQIs over 

the testing image from the Pavia University dataset. Our method out
performs other methods across all PQIs. The fusion results of GSOMP+, 
BSR, SSR are far inferior to that of OTD and our method, which is due to 
these methods only considering a single spectral dictionary, while OTD 

Fig. 5. 1st row: the GT and reconstructed images from the real EO-1 dataset, bands 51–30-20 as R-G-B at scaling factor s = 3, 2nd row: the reconstructed images of 
different methods at band 51. 3rd row: the error maps of the corresponding methods at band 51. 

Fig. 6. SAM error images. 1st row: Pavia University (s = 4), 2nd row: Washington DC Mall (s = 5), 3rd row: real EO-1 (s = 3).  

Fig. 7. The spectral curves of the representative pixels on (a) Pavia University, (b) Washington DC Mall.  
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and our method combine the advantages of using both spectral dictio
nary and spatial dictionary. We can easily observe that the PSNR of our 
method is higher than that of OTD by 0.557 dB. Our method imposes 
strong structure sparse low-rank prior in the spectral and spatial do
mains, therefore we can achieve higher fusion accuracy. The SSFCNN 

and TFNet utilize the convolution operation to explore the end-to-end 
mapping between LR-HSI and HR-HSI and obtain excellent fusion ef
fects. Fig. 3 shows the false-color visual fusion results of the eight 
competing methods on the testing image with scaling factor s = 4. 
Moreover, we present fusion images and relative error maps on band 45 

Fig. 8. The PSNR change curves with different parameters settings.  
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for the different methods. From visual inspection, GSOMP+, NLSTF, and 
SSR cause blurred results, while BSR and SSFCNN seem to induce some 
texture deformation at the edge of the building. TFNet, OTD, and our 
method show noticeable improvement in the fusion performance. By 
fully considering the structure sparse low-rank prior and spatial-spectral 
features in the fusion model, our method recovers clearer texture 
structure and spectral information. Furthermore, the clear contour lines 
are not present in the error map of our method, indicating that our 
method contains fewer spectral distortions and maintains the main 
structural information at band 45. 

3.4.2. Performance evaluation on Washington DC Mall dataset 
Table 2 lists the average performance in terms of six PQIs over the 

testing image from the Washington DC Mall dataset. It can be observed 
that our method significantly outperforms other competing methods for 
almost all PQIs. This implies that DDSSLR makes better use of the latent 
spatial-spectral information of the HSI to maintain spectral reliability 
and restore more spatial details. The GSOMP + and SSR only utilize a 
spectral dictionary, resulting in information loss in the fusion results. 
The SSFCNN and TFNet present excellent fusion performance, but they 
may ignore the spectral correlation properties of HSI by using a black- 
box model. Fig. 4 demonstrates the false-color visual fusion results of 

the eight competing methods on the testing image from the Washington 
DC Mall dataset with scaling factor s = 5. We also present fusion images 
and relative error maps on band 60 for the different methods. As shown 
in Fig. 4, our method achieves better recovery of building structures and 
coarser-grained textures in the visual comparison. There are clear 
blurred details around the building in the error maps of GSOMP+, SSR, 
and NLSTF. This dataset mainly contains buildings and urban green 
spaces, in which the shadows can cause spectral distortion of the fusion 
result. However, the fusion result of our method is the closest to the GT 
and has the least bright spots on the error map. This shows our method 
can better preserve the spectral characteristics of the shadows caused by 
the buildings and trees. 

3.4.3. Performance evaluation on the real EO-1 dataset 
Table 3 presents the average performance in terms of six PQIs on the 

real EO-1 image for the competing methods. We can see the fusion re
sults of GSOMP+, SSR are similar and NLSTF is slightly inferior, while 
our method achieves visually satisfying results. According to the quan
titative metric results, the average PSNR value of our method is more 

Table 4 
Comparisons of fusion results on Pavia University dataset in four cases at s = 4.  

PQIs PSNR RMSE SAM UIQI ERGAS DD 

Xhat OTD   44.450  0.626  1.065  0.996  0.572  0.433 
Xhat Our   44.923  0.584  0.972  0.997  0.530  0.394 
Xhat OTD + Ehat_OTD   44.985  0.578  0.998  0.996  0.529  0.404 
Xhat Our + Ehat Our   45.542  0.548  0.909  0.997  0.497  0.369  

Fig.9. The upper row is the GT in typical bands and the lower row is the estimated images Ehat_Our using DP.  

Fig.10. The convergence analysis of Algorithm 1 and Algorithm 2. (a) the RMSE curve of Eq. (9) versus iterations, (b) the RMSE curve of Eq. (20) versus iterations.  

Table 5 
Comparisons of running time for different HSI-SR methods (in seconds).  

Datasets Pavia University Washington DC Mall EO-1 

GSOMP+ 636 2301 524 
BSR 125 612 44 
SSR 888 4235 703 
NLSTF 11 25 7 
SSFCNN 78 552 29 
TFNet 104 384 24 
OTD 44 56 17 
Ours 423 924 457  
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than 0.302 dB higher than that of OTD and 0.205 dB higher than that of 
the TFNet. Fig. 5 shows the false-color visual fusion result of the eight 
competing methods on the EO-1 dataset with scaling factor s = 3. 
Identically, we show fusion images and relative error maps on band 51 
among eight competing methods. From these subfigures, we can notice 
that our method reconstructs a result most visually similar to the GT. 
The EO-1 image mainly shows a high-density building area in Paris. The 
texture feature is mostly clustered in dot-like patches. For all methods, 
the fusion results of building areas are blurred, and the bright spots on 
the error maps mainly appear around the buildings. Our method has 
relatively fewer bright spots on the error map compared to other 
methods, indicating that the fusion performance of our method on the 
real dataset is still more satisfactory. 

4. Discussion 

4.1. Model validation 

To visually discern the differences in the spectral reconstruction 
quality across the different methods, Fig. 6 shows the SAM error images 
from the three datasets obtained by the eight competing methods. These 
SAM error images visualize the spectral distortion severity and distri
bution for the fusion results. Obviously, the GSOMP+, SSR, and NLSTF 
methods show more spectral distortion than other methods. Although 
the BSR, SSFCNN have better fusion performance, there are unsatisfac
tory SAM errors in edge regions. We can notice that the spectral 
distortion is mainly distributed in the shadow cast by buildings and trees 
in the SAM error maps (2)-(10). Our method best preserves the spectral 
properties of the shadow in the original LR-HSI. The spectral reflectance 
curves of the pixel (96,79) in the Pavia University dataset and the pixel 
(89,100) in the Washington DC Mall dataset are shown in Fig. 7 as 
representative examples. We can see that the trend of the spectral curves 
of the eight competing methods on representative pixels is roughly the 
same. Still, the ability of different methods to restore the spectral 
reflectance values on different wavelength bands is different. As shown 
in Fig. 7, the spectral response curve of the DDSSLR is the closest to that 
of the GT compared to other methods. This further implies that our 
method is better at preserving spectral information. 

4.2. Parameter analysis 

The key parameters in our experiment are set as follows: the size of 
DS and DP are set to 100 and 800, respectively; the number of super
pixels K is set to 500; the sparsity regularization parameters η1 = 1×

10− 4, δ = 1× 10− 3; the low-rank regularization parameters η2 = 1×

10− 3, the trade-off parameters β = 1.5, η = 2. 
To assess the sensibility of these eight parameters on fusion perfor

mance, we evaluated model performance by varying these parameters 
individually. When evaluating the effect of one of the eight parameters 
for the fusion performance, we fixed the other parameters according to 
the above settings. 

Fig. 8 (a) represents the PSNR change curve concerning the different 
parameters in the fusion experiment on the Pavia University dataset at s 
= 4. Fig. 8 (b) describes the PSNR change curve with the different pa
rameters in the fusion experiment on the Washington DC Mall dataset at 
s = 5. Fig. 8 (c) demonstrates the PSNR change curve with the different 
parameters in the fusion experiment on the real EO-1 at s = 3. 

We can see the PSNR values in these three datasets are gradually 
increasing when the size of DS changes within the range [0,100], but 
gradually decreasing when DS is greater than 100; Similarly, the PSNR 
change curves with the size of DP in these three datasets show that the 
PSNR values are maximized at DP of 800. The PSNR change curves with 
K in these three datasets imply that the PSNR values reach their peaks 
when K = 500. In addition, the effects of the sparsity regularization 
parameters η1, δ and the low-rank regularization parameters η2 on fusion 

performance for the three datasets are shown in Fig. 8. The PSNR values 
are maximized when η1 = 1× 10− 4, η2 = 1 × 10− 3 and δ = 1× 10− 3, 
respectively. Also, the PSNR change curves versus the trade-off param
eters η and β show that our method achieves the optimal performances 
on these three datasets when β = 1.5 and η = 2, respectively. 

Due to the similar trends of the PSNR change curves of the same 
parameter across the three datasets in Fig. 8, we believe that our method 
has stable performances across different datasets and that our parameter 
settings are universal and effective. 

4.3. Ablation experiments 

Our method achieves better fusion performance on the three datasets 
by combining spatial-spectral dual-dictionary fusion with structured 
sparse low-rank representation. To assess the effectiveness of our 
method joining spatial-spectral dual-dictionary with structured sparse 
low-rank representation, we perform ablation experiments to test the 
effect of the individual components. In this section, we consider four 
cases of fusion experiments on the testing image of the Pavia University 
dataset at s = 4. 

The first case is to only consider the spectral dictionary in OTD 
(denoted as Xhat OTD); the second case is to consider only the spectral 
dictionary in our method (denoted as Xhat Our); the third case is to use 
the OTD (denoted as Xhat OTD + Ehat_OTD,) and the fourth case is to use 
our method (denoted as Xhat Our + Ehat Our), which Ehat_OTD and 
Ehat Our denote the fusion results using the spatial dictionary in OTD 
and our method, respectively. The fusion results of these four cases are 
shown in Table 4. By comparing Xhat OTD with Xhat Our, we observe that 
constructing local low-rank structures by using superpixels to constrain 
the fusion model in the spectral domain can greatly improve the fusion 
effect. Similarly, comparing Xhat Our and Xhat Our + Ehat Our, we can 
find that the joint optimization of the spectral dictionary and the spatial 
dictionary can fully restore the spatial information on the latent HSI and 
reduce the spectral distortion. 

Fig. 9 presents the GT and the estimated images Ehat Our using DP in 
typical bands. The upper and lower row images have high similarity, 
which demonstrates the effectiveness of the spatial dictionary DP in our 
method. 

4.4. Convergence analysis 

We can efficiently solve the fusion model in the spectral domain via 
SALSA, which involves optimizing iteratively multiple variables. Fig. 10 
(a) plots the RMSE of the fusion result in Eq. (9) in each iteration to 
analyze the convergence of Algorithm 1. We can see Algorithm 1 cov
erages after 20–25 iterations. Similarly, we efficiently solve the fusion 
model in the spatial domain via ADMM. Fig. 10 (b) plots the RMSE of the 
fusion result in Eq. (20) in each iteration to analyze the convergence of 
Algorithm 2. It shows that Algorithm 2 coverages faster and coverage to 
a small RMSE value after 10 iterations. This convergence analysis of two 
algorithms is performed on the testing image of the Pavia University 
dataset with scaling factor s = 4. 

4.5. Computational cost 

A speed benchmark on two synthetic datasets and a real dataset is 
shown in Table 5. The GSOMP+, BSR, SSR, NLSTF, OTD, and our 
method are implemented with MATLAB, while SSFCNN and TFNet are 
implemented in PyTorch. Our method was slower than BSR, NLSTF, and 
OTD, but faster than GSOMP + and SSR. On one hand, our method is 
more complex due to alternating the optimization of the spectral sparse 
coefficients and the spectral dictionary using ADMM. On the other hand, 
two fusion models in both domains are constrained by the sparse low- 
rank prior and those optimization processes will be more costly. Since 
GSOMP + and SSR compute the cumulative correlation between 
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dictionary atom and the image patch during each iteration, they have 
the slowest computing time. It is worth noting that the deep learning- 
based methods of SSFCNN and TFNet are different from traditional 
methods. They require the preparation of a training set with the same 
structure as the testing image, as well as a long training time. Only the 
time spent in the testing phase is recorded in Table 5. 

5. Conclusion 

We construct a novel HSI-MSI fusion framework that combines 
spatial-spectral dual-dictionary and relevant structured sparse low-rank 
representation to fuse the input LR-HSI and HR-MSI. Specifically, the 
spectral dictionary characterizing the generalized spectrum is learned 
and sparse low-rank priors of the local structure are imposed to the 
spectral pixels within the same superpixel in HR MSI/HSI. Additionally, 
in the spatial domain, the spatial dictionary is learned by utilizing the 
remaining high-frequency information, and a unitary transformation is 
used to factorize the regression coefficient into a low-rank matrix in the 
subspace. Experiments on two synthetic HSI datasets and a real HSI 
dataset demonstrate the PSNR of our method exceeds that of OTD by 
0.557 dB, 1.050 dB, and 0.302 dB, respectively. The structured sparse 
low-rank representation imposed into two fusion models as constraints 
can improve the fusion performance. This paper serves as basic research 
on the data source for urban green infrastructure monitoring. The ob
tained HR-HSI can provide an intuitive decision basis for the monitoring 
and management of urban green infrastructure. Future research will 

focus on urban vegetation mapping and classification by species using 
the obtained HR-HSI. 
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Appendix A 

Notations  

Notation Description Notation Description 

X ∈ RλX×WH  the targeted HR-HSI U  the low-rank structure ofΨ  

YM ∈ RλY×WH,YH ∈ RλX×wh  the available HR-MSI/LR-HSI V  the transform matrix ofΨ  

DS ∈ RλX×KS ,DP ∈ RBP×KP  the spectral/spatial dictionary K  the superpixel number 

A ∈ ℝKS×N,Ψ ∈ RKP×NP  the spectral/spatial coefficients matrix λ1,λ2  the regularization parameters 

EH ∈ RλX×wh,EM ∈ RλY×WH  the error components that cannot be represented by DS in YM 

andYH  

η1⩾0  the sparse regularization parameters 

εH,εM  the stretched patches of the error matrixes EH and EM image patch 
domain  

η2⩾0  the low-rank regularization parameters 

B ∈ RN×N  the block circulant convolution η, β,δ  the trade-off parameters 
S ∈ RN×n  the spatial down-sampling operator P, RP, nH,nM  the equivalent expressions of H = BS,R, NH, NM in image patch 

domain  
R ∈ RλY×λX  the spectral response transform factor ‖⋅‖1,‖⋅‖F  the 1-norm and Frobenius norm 
NH ∈ RλX×n,NM ∈ RλY×N  noise matrices V1  the Lagrangian multiplier for solvingDS  

μ2  the positive penalty parameters. μ,μ1  the Lagrangian parameter for solving DS,A  
Sβ/μ() the soft thresholding operator G1G2G3G4  the Lagrangian multipliers for solvingA  
[nH:,i], [θ:,i] The i − th column of nH andθ  P1,P2 P3  the Lagrange multipliers for solvingΨ  
τ  a balance parameter ‖ ‖*,‖ ‖2,1  the nuclear norm andl2,1 norm   
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