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A B S T R A C T   

Road extraction from optical remote sensing images has many important application scenarios, such as navi
gation, automatic driving and road network planning, etc. Current deep learning based models have achieved 
great successes in road extraction. Most deep learning models improve abilities rely on using deeper layers, 
resulting to the obese of the trained model. Besides, the training of a deep model is also difficult, and may be easy 
to fall into over fitting. Thus, this paper studies to improve the performance through combining multiple 
lightweight models. However, in fact multiple isolated lightweight models may perform worse than a deeper and 
larger model. The reason is that those models are trained isolated. To solve the above problem, we propose an 
Adaboost-like End-To-End Multiple Lightweight U-Nets model (AEML U-Nets) for road extraction. Our model 
consists of multiple lightweight U-Net parts. Each output of prior U-Net is as the input of next U-Net. We design 
our model as multiple-objective optimization problem to jointly train all the U-Nets. The approach is tested on 
two open datasets (LRSNY and Massachusetts) and Shaoshan dataset. Experimental results prove that our model 
has better performance compared with other state-of-the-art semantic segmentation methods.   

1. Introduction 

Road extraction has become a crucial technique in many daily 
application scenarios, such as navigation, road network update, road 
network planning, automatic driving and intelligent transportation, etc. 
Compared with traditional methods for road area labeling (such as 
manually or GPS based methods), remote sensing image based methods 
are much more balance in the economy and labeling accuracy. Manually 
labeling is with hard manual burden, while GPS based road extraction 
methods usually loss the road detail information, such as road width, 
road edge, etc. 

Although road extraction from optical remote sensing images is such 
meaningful, it still faces many challenges such as complex background, 
occlusions, etc. Thus, road extraction from remote sensing images is a 
hot study area and have attracted many researchers’ attention. 
Currently, most state-of-the-art road extraction methods are deep 
learning model based (Liu et al. 2018, Guo and Wang 2020, Tao et al. 

2019, Lu et al. 2019, Gao et al. 2019, Liu et al. 2019, Abdollahi et al. 
2020, Yang et al. 2019). It is found that the deeper a model is, the better 
performance it will achieve once the model is well trained. So most state- 
of-the-art road extraction deep learning models are with deep layers and 
large scale of parameters. A model with deeper layers and higher 
complexity may achieve better performance, but it may also means the 
harder for training and easier for over-fitting, asking to take actions 
(such as drop out, pooling) for preventing over fitting problems(Xie et al. 
2016). To alleviate the training difficulty, this paper aims at using a 
lightweight model to achieve the same good or even better performance. 
A simple idea is to combine multiple lightweight models to improve the 
performance. However, the cruel fact is that a model with deeper layers 
and larger scale of parameters usually gets better performance than the 
performance of multiple lightweight models’ combination. The reason 
lays on two aspects. (1) multiple lightweight models are isolatedly 
trained and combined with simple rules, resulting to unable to release 
the largest power of models’ combination. (2) The multiple models has 
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no relationship of stepwise enhancement, which is the key idea of 
Adaboost. 

To solve the above two problems, aiming at combining lightweight 
deep models to achieve better performance than deeper and larger 
models, this paper proposes an Adaboost-like combination of multiple 
lightweight U-Nets with end-to-end training. To make multiple U-Nets 
be Adaboost-like combination and has relationship of stepwise 
enhancement, each output of prior U-Net is used as the input of next U- 
Net. To make the multiple U-Nets be jointly training, we design the loss 
function as a multiple-objective optimization problem. We test our 
model on three datasets. One is the open dataset LRSNY (Chen, 2020). 
The second dataset is the Shaoshan dataset, which is not publicly 
available. The third dataset is Massachusetts Road dataset (Mnih, 2013), 
which is a publicly open dataset for road extraction from remote sensing 
images. In the experiments, our model shows an impressive and satis
factory results. We also compared with many other state-of-the-art 
models, the better comparison results prove the effectiveness of our 
AEML U-Nets. We also analyze the effectiveness of multiple U-Nets and 
Adaboost-like strategies. 

The contributions of this paper lie on:  

(1) We propose an Adaboost-like combination strategy of multiple U- 
Nets.  

(2) We design multiple U-Nets’ combination as multiple-objective 
optimization problem, thus we jointly train multiple U-Nets. 

The rest of this paper is organized as follows. Section 2 reviews 
related works. We give a detail introduction about AEML U-Nets in 
Section 3. Section 4 illustrates the results. Section 5 shows the analysis. 
Finally, we give a conclusion in Section 6. 

2. Related works 

2.1. Adaboost 

Ensemble methods have a prosperity time before the great breakages 
of deep learning methods, such as Adaboost (Li and Lei Wang 2008, Zhu 
et al. 2006, Hu et al. 2008, Zhang and Zhang 2008, Lv and Nevatia 2006, 
Viola and Jones 2001, Zhang and Yang 2018, Zhang et al. 2020, Chen 
et al. 2021). The main idea of Adaboost is to train a set of weak classifiers 
and then through a rule (such as linear combination) to combine those 
weak classifiers together as one, thus make weak classifiers become a 
strong good classifier (Li and Lei Wang 2008). Adaboost have been 
proved be quite effective in many studies. Li et al proposed SVM-based 
component classifiers with Adaboost and achieved better performance 
compared with standard SVM (Li and Lei Wang 2008). Hu et al proposed 
an Adaboost-based algorithm for network intrusion detection (Hu et al. 
2008). In the experiments, they proved that Adaboost-based method can 
obtain better detection performance compared with other non- 
Adaboost-based methods. Viola et al proposed an Adaboost based fast 
and robust face detector and presented quite good results (Viola and 
Jones 2001). Zhang proposed a novel Adaboost framework with robust 
threshold and structural optimization for regression (Zhang and Yang 
2018). They tested the model on UCI benchmarks and showed state-of- 
the-art results. Zhang et al. proposed a small target recognition model 
through combining CNN and Adaboost (Zhang et al. 2020). In their 
experiments, the accuracy was improved about 20%. Chen et al. used 
AdaBoost-KNN for emotion classification for dynamic emotion recog
nition in human-robot interaction (Chen et al. 2021). Their experimental 
results demonstrated the dynamic emotion understanding ability of ro
bots in human-robot interaction. 

2.2. Multiple-Objective optimization 

It has been found that a learning paradigm in which data from 
multiple tasks is used with the hope to obtain superior performance over 

learning each task independently (Caruana 1997). Since then, multi-task 
learning has attracted attentions of large amounts of researchers (Zhou 
et al. 2011, Rosenbaum et al. 2017, Rudd et al. 2016, Misra et al. 2016, 
Liu et al. 2017, Shen et al. 2017). In multi-task learning, multiple tasks 
are jointly trained and sharing inductive bias between them (Volpia and 
Tuiab 2018). In essentially, multi-task learning is a multiple-objective 
problem. The different tasks can be divided into two types. The first 
type is that different tasks are conflict and it needs a trade-off between 
different tasks. The second type is that different tasks have no conflict, 
thus it does not need a trade-off consideration among different tasks. 
Multi-task learning has many meaningful application scenario and 
shows its great power in many researches. Ranjan et al designed a joint 
multi-task learning CNN network for face detection (Ranjan et al. 2017). 
In their network, they combined face detection, localization, pose esti
mation and gender recognition together and simultaneously ran the 
above different works as a multi-task project. In their extensive experi
ments, they proved that their model performed impressive good results 
compared with many other competitive methods. Rad et al. used multi- 
task learning strategy for super-resolution from a single image, they 
illustrated good performance in their experiments (Rad et al. 2020). Liu 
et al designed gas classification and concentration estimation as multi- 
task learning in a LSTM network, in which different tasks shared basic 
features (Liu et al. 2020). The strategy was proved be effective for per
formance improvement. Liu et al. proposed a hierarchical clustering 
multi-task learning method for joint human action grouping and 
recognition (Liu et al. 2017). They showed breakthroughs in the 
experimental results. Shen et al. used multi-task deep learning for object 
skeleton extraction in natural images and obtained good results (Shen 
et al. 2017). 

2.3. Road extraction from remote sensing images 

Area extraction and centerline extraction are the two major aspects 
of works for road extraction from remote sensing images (Cheng et al., 
2017a, 2017b, Zhang et al. 2017). Given a remote sensing image, area 
extraction based methods will automatically label out all the pixels 
which belong to roads (Tao et al. 2019, Zhang et al. 2017, Maboudi et al. 
2018, Sghaier and Lepage 2016, Alshehhi et al. 2017, Coulibaly et al. 
2017, Lv et al. 2017, Li et al. 2016, Yin et al. 2016, Poullis 2014, Chen 
et al., 2020a, 2020b, Ren et al. 2020). While in a centerline extraction 
based method, it will figure out the road skeleton through algorithms 
(Guo and Wang 2020, Liu et al. 2019, Cheng et al., 2017a, 2017b, Zang 
et al. 2017, Cheng et al. 2016, Zang et al. 2016, Hui et al. 2016, Courtrai 
and Lefèvre 2016, Liu et al. 2016, Shi et al., 2014a, 2014b). 

As roads have outstanding shape feature compared with other 
ground targets, the morphological features are utilized for road extrac
tion (Cheng et al., 2017a, 2017b, Sghaier and Lepage 2016, Alshehhi 
et al. 2017, Shi et al., 2014a, 2014b). Due to the development of ma
chine learning methods, e.g. Sparse Representation, Support Vector 
Machine (SVM), Tensor-Voting and Hough Forest, etc. based methods, 
many researchers used machine learning methods combining with 
artificial designed features for road extraction from remote sensing 
images and obtained many achievements (Li et al. 2016, Poullis 2014). 
Morphological feature based road extraction methods usually only focus 
extraction strategy on morphological features such as curves, lines, etc. 
Thus, Morphological feature based methods may suffer from wrong 
extractions where have similar morphological features with roads. 
Under complex background of remote sensing images, only relying on 
morphological features for road extraction is forceless. 

To enforce the feature power during road extraction, traditional 
artificial designed features are spring up and combined with machine 
learning methods. Poullis et al. used a framework called Tensor-Cuts 
which did not need any threshold for pre-processing. The framework 
was especially suitable for the extraction of linear features which are the 
major features of roads, thus they achieved good results in the experi
ments (Poullis 2014). Lv et al. proposed a road area extraction method, 
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in which they proposed a combination feature containing color, local 
entropy and HSC features (Lv et al. 2017). The feature extraction pro
cedure in their method was adaptive and sparsity. In the experiments, 
they obtained satisfactory results. Movaghati et al. combined PF (par
ticle filtering) with EKF (extended kalman filtering) for road extraction 
and obtained quite good performance in the experiments (Movaghati 
et al. 2010). In their method, they focused their attention on fixing the 
continuations of roads when the extraction was break by obstacles or 
junctions. 

Morphological features and traditional artificial designed features 
are also combined to promote the road extraction performance. Len
inisha et al. used geometric active deformable model to extraction road 
network in remote sensing images (Leninisha and Vani 2015). In their 
method, they used Water Flow to extraction different shape types of road 
junctions. After the extraction of road junctions, they combined the 
junctions to figure out the final road network. They tested in images with 
high resolution. And they achieved good results on the tests. Ziems et al. 
proposed a road databases verification through combining ten road 
detection methods (Ziems et al. 2017). In their approach, different 
method was applied to different detection scenario. The verification 
results was obtained after the stage by stage verification through all the 
ten methods. In their experiment, they proved their method can achieve 
state-of-the-art performance and was flexible due to the adaptation of 
verification modules’ number. Xiao et al. proposed a road detection 
method through fusing the data of cameras and LiDARs (Xiao et al. 
2017). In their method, they used a novel conditional random field 
model to fuse data obtained from different sources. To classify the pixels 
in image and points in LiDAR data, they used booted decision tree. 
Through a probabilistic way of integrations, they successfully fused 
image and LiDAR data to get a good road detection result. 

For traditional artificial designed feature based machine learning 
methods, they usually need to consider the sensibility of model pa
rameters. As using artificial designed features, the generalization ability 
is unstable. 

Except traditional artificial designed feature based machine learning 
methods, recently, deep convolutional neural networks (CNN) have 
brought a large amount of showy and excellent breakthroughs in various 
tasks of compute vision (He et al. 2016, Krizhevsky et al. 2012, Redmon 
and Farhadi 2017, Ren et al. 2015, Taigman et al. 2014, Simonyan and 
Zisserman 2015, Szegedy et al. 2015, He et al. 2020, Huang et al. 2017). 
Meishvili et al. proposed a CNN based model which used images with 
very low resolution and audio information for face super-resolution 
reconstruction (Meishvili et al. 2020). Their experimental results 
exhibited quite impressive performance. Chen et al. proposed a visual 
tracking network which made the anchors be free (Chen et al., 2020a, 
2020b). They verified their model on large amount of datasets and 
presented impressive performance. 

CNN based methods have also illustrated its great power and excel
lent performances in road extraction from remote sensing images (Liu 
et al. 2018, Guo and Wang 2020, Tao et al. 2019, Lu et al. 2019, Gao 
et al. 2019, Liu et al. 2019, Abdollahi et al. 2020, Yang et al. 2019). 
Currently, the CNN based methods usually can achieve the best per
formance compared with artificial designed feature based methods. 
Zhang et al. proposed a U-Net based model which combined residual 
structure together for road extraction (Zhang et al. 2017). They tested 
their model on remote sensing images and proved that their method can 
obtain better results comparing with other state-of-the-arts. Chen et al. 
combined Dirichlet Mixture Models (DMM) and CNN model together to 
make the road extraction be a stage by stage framework (Chen et al., 
2020a, 2020b). They firstly used unsupervised DMM to obtain the coarse 
extraction result, then a CNN model is applied for precisely classifica
tion. They tested a large dataset and achieved impressive performance 
compared with other methods. Alshehhi et al. used superpixel strategy 
to instead pixel strategy, thus can effectively use contextual structures. 
Besides, they combined texture features for road classification and 
proposed a shortest approach to deal with the discontinuous problems. 

In their experiments, they showed quite good results (Alshehhi et al. 
2017). 

Although CNN based methods have led a great step forward for road 
extraction from remote sensing image, several problems still need to be 
concerned. Current deep learning based road extraction methods are 
rarely considering using multi-objective learning, which has been 
proved can improve a model’s performance. Also, the combination 
strategy of multiple models is simple (usually use simple linear combi
nation) and the multiple models are usually isolatedly trained. The 
models’ combination and combined learning strategies still need to be 
studied. Considering to solve the above problems, we propose this paper. 

3. Materials and methods 

In this section, we first illustrate the datasets used in this paper. 
Then, we give an introduction about our model architecture. Third, we 
give a detail presentation about model designs. Finally, we illustrate the 
multiple-objective learning and Adaboost-like combination of our 
model. 

3.1. Datasets 

In this paper, we use third datasets for performance evaluation. The 
first dataset is LRSNY (Large Road Segmentation Dataset from Optical 
Remote Sensing Images of New York) (Chen, 2020), which is a publicly 
open dataset and can be obtained from the website: ftp://154.85.52.76/ 
LRSNY/. The images in LRSNY are optical remote sensing images with a 
resolution of 0.5 m. 716, 220 and 432 images are contained in the 
training, validation and test sets, respectively. The original images 
include two versions with different image sizes: 1000 × 1000 and 256 ×
256. The images has a resolution of 256 × 256 are the smaller version of 
images with a resolution of 1000 × 1000. In our experiments, we use 
images with a resolution of 256 × 256. Fig. 1 shows several sample 
images of training, validation and test sets in LRSNY dataset. 

The second dataset used in our experiment is Shaoshan dataset (Chen 
et al., 2020a, 2020b). The dataset is not publicly available due to the 
copyright problem. The Shaoshan dataset is a 11125 × 7918 Pleiades 
optical image of part Shaoshan (in China) with a resolution of 0.5 m. We 
follow the doings in our prior work and cut the large image into 49 
pieces, including 29 training images and 20 test images. To fit our model 
input size, we further divide the images into smaller ones with a reso
lution of 256 × 256 for both training and test images. Fig. 2 shows 
several training, validation and testing images in Shaoshan dataset. It 
should be note that we generate 256 × 256 training images with a part of 
overlapping, generating 14,580 images for training finally. In detail, we 
generate the training images having overlapping with neighbor images 
of 10 pixels in both row and column directions. We divide the original 
test images into 256 × 256 pieces without overlappings, obtaining 456 
test images. We randomly select 4400 images from training images for 
validation during training. It should be note that the Shaoshan dataset 
only label the visible road areas and omit the road areas which are 
occluded, resulting to breakages of labeled roads in visual. 

The third dataset used in our experiment is Massachusetts Road 
dataset (Mnih, 2013), which is a publicly open dataset for road extrac
tion from remote sensing images. The Massachusetts Road dataset 
contains 1108 training images, 14 validation images and 49 test images. 
Each original image in Massachusetts is 1500 × 1500. In our experi
ment, we divide the original training, validation and test images into 
256 × 256 without overlappings, generating 27,700 training images, 
350 validation images and 1225 test images, respectively. Fig. 3 shows 
several sample image of training, validation and test images in Massa
chusetts Road dataset. 

3.2. Model architecture 

Fig. 4 shows the model architecture of our Adaboost-like multiple 
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Fig. 1. Sample images of training, validation and test sets in LRSNY dataset.  

Fig. 2. Sample images of training, validation and test sets in Shaoshan dataset.  
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lightweight U-Nets for road extraction from remote sensing images. 
First, we design a small and lightweight U-Net. Then, we combine 
multiple lightweight U-Nets stage by stage. It should be note that all the 
U-Nets have the same network structure. To make next U-Net have 
strong relationship with prior U-Net, the output of prior U-Net is used as 
the input of next U-Net. Furthermore, to maintain the standalone ability 
of road extraction, the initial image is also used as the input of each U- 
Net. Thus, except first U-Net, the output of prior U-Net and the initial 
image are concatenated as the input of next U-Net. 

To make our model as Adaboost-like, i.e. combining multiple weak 
classifiers together as a strong and better classifier, we merge all the 
outputs of U-Nets through concatenation, convolution and sigmoid op
erations. After the merge stage, we can get the final result. It should be 
note that we jointly train multiple U-Nets during training stage through 
multiple-objective learning method. Thus, our model is an end-to-end 

training model. 

3.3. Detail structure of lightweight U-Net 

Fig. 5 shows the detail model structure of lightweight U-Net used in 
our method. In our single lightweight U-Net, it is divided into two parts: 
encoding part and decoding part. The encoding part consists of four 
operation groups. In the first two operation groups, two convolutions, 
two ReLU and one pooling are used. In the last two operation groups, the 
drop out operation is added into each operation group. Other operations 
in the last two operation groups are just as same as the operations in the 
first two operation groups. 

In the decoding part, there are four groups of upsampling, convo
lution and ReLU operations. After each upsampling operation group, a 
concatenation operation group is followed. In each concatenation group, 

Fig. 3. Sample images of training, validation and test sets in Massachusetts Road dataset.  

Fig. 4. The model architecture of our Adaboost-like multiple lightweight U-Nets. Our model contains multiple lightweight U-Nets. The output of prior U-Net is 
combined with initial input image as the input of next U-Net, except the first U-Net. 
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one concatenation layer, two convolutional layers and two ReLU layers 
are included. In the final concatenation group, a sigmoid layer is fol
lowed to obtain the final output results. 

Table 1 shows the detail network parameters in our lightweight U- 
Nets. For the first U-Net, its input size is 256 × 256 × 3. Differently, the 
input size of other U-Nets is 256 × 256 × 6. In the encoding part, the 

convolutional kernel size is 3 × 3, the pooling kernel size is set as 2 × 2 
and the dropout rate is set at 0.5. The convolutional kernel numbers for 
all the convolutional layers are 32, 32, 64, 64, 128, 128, 256, 256, 512 
and 512, respectively. Thus, the outputs of four operation groups in the 
encoding part are 128 × 128 × 32, 64 × 64 × 64, 32 × 32 × 256, 16 ×
16 × 512, respectively. 

Fig. 5. The model structure of lightweight U-Net used in our method.  
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In the decoding part, the convolutional kernel size is 2 × 2 for all the 
convolutional layers. Besides, the kernel size is also 2 × 2 for all the 
upsampling layers. For the final sigmoid layer, the kernel size is 1 × 1. 
The convolutional kernel numbers for all the convolutional layers are 
256, 256, 128, 128, 64, 64, 32, 32, 3 and 3, respectively. Thus, the 
outputs for the four upsampling operation groups are 32 × 32 × 256, 64 
× 64 × 128, 128 × 128 × 64, 256 × 256 × 32, respectively. The con
volutional kernel numbers of the final two convolution layers are both 3. 
We use a similar structure of U-Net as (Ronneberger et al. 2015), the 
differences between our lightweight U-Net and the original U-Net are 
the filter number in different layers. Our filter number in each layer are 
much less than the original U-Net, thus we call our single U-Net as 
lightweight U-Net. 

3.4. Multiple-objective learning 

In our paper, we follow the multiple-objective learning in (Sener and 
Koltun 2018). For our multiple U-Nets, we consider each U-Net as one 
task, and denote training images and their corresponding labeling im
ages as (Xi,yi),i ∈ M, where M represents the number of training images. 
Multiple U-Nets can be considered as a multi-task learning problem over 
an input dataset X and a corresponding tasks’ objective set 

{
yt
}
, t ∈ T, 

where T is the task number. Denote the [xi, yi1, yi2,⋯, yiT ] as a couple of 
input image xi and the corresponding T task labels [yi1, yi2,⋯, yiT ]. For 
each task, we consider a parametric hypothesis mapping between X and 
yt , which can be represented as: 

ft(X,Wt) : X→yt (1)  

where Wt is the mapping parameters. The loss function of task t can be 
represented as follow: 

L t(X,Wt) = yt − ft(X,Wt) (2)  

where L t(X,Wt) represents the loss value of task t over dataX with 
parameter Wt . For task t, the task objective function can be written as 

follow: 

minL t(X,Wt). (3) 

For all the T tasks’ objective function, we want to minimize the total 
loss of T tasks. Thus, for a multiple-task learning with T tasks, the 
objective function can be written as follow: 

min
∑T

t=1
qtL t(X,Wt), (4)  

where qtrepresents the weight of loss in task t. 
Through the above functions, we can make our multiple-U-Nets’ 

training as multiple-objective learning. 

3.5. Adaboost-like U-Nets 

In this paper, we follow the Adaboost in (Hu et al. 2008). Denote n as 
the number of classifiers which will be combined together using Ada
boost. Then, an iteration with K steps will be applied for updating the 
weight of each classifier. For step k of tth classifier, the training error 
will be calculated, which can be denote as εkt. Then, according to εkt, the 
combination weight of tth classifier will be updated, which can be 
written as follow: 

qkt =
1
2

ln
(

1 − εkt

εkt

)

(5) 

In our Adaboost-like U-Nets, we do not update the weights of each U- 
Net according to Eq. (5). Instead, we use convolution concatenation to 
automatically learn the combination weights for all the U-Nets, as shown 
in Fig. 6. 

4. Results 

In this section, we first introduce the details about implementations. 
Then, we introduce the evaluation criteria used in the experiments. 
Finally, we present and analyze the experimental results on the test 
datasets. 

4.1. Experimental implementation detail 

We train our model on a computer with Intel® Core™ i9-9900X 3.5 
GHz and 128 GB memories. The computer has two GPUs, which type is 
RTX 2080 Ti with 11 GB GPU memories. During training and test, we use 
only one GPU. When training our model, we set the training epoch as 
200 and the learning rate as 0.0001. Our training batch size is 2. After 
training, we save the model with minimum loss within 200 epochs. 

Our implementation is based on Python, Tensorflow (Abadi et al. 
2016) and Keras. To further strengthen the training stage and avoid the 
over fitting problem of model training, we utilize the data augmentation 
for training images. The rotation, zoom, shift, shear and flip operations 
are all used in our training data augmentation. In our experiment, the 
rotation range is set at 0.9, the width shift range and height shift range 

Table 1 
The detail network architecture of lightweight U-Net.   

Operation couple Convolution 
Filter 

Stride Output size 

Input    256 × 256 × 3 
(or 256 × 256 
× 6) 

Encoding 
⎡

⎢
⎢
⎢
⎣

Conv
ReLU
Conv
ReLU

MaxPooling

⎤

⎥
⎥
⎥
⎦
×

3  

⎡

⎢
⎢
⎢
⎣

3 × 3
− −

3 × 3
− −

2 × 2

⎤

⎥
⎥
⎥
⎦
× 3  

⎡

⎢
⎢
⎢
⎣

1
− −

1
− −
1

⎤

⎥
⎥
⎥
⎦
×

3  

[128 × 128 ×
32] [64 × 64 ×
64] [32 × 32 ×
128]  

⎡

⎢
⎢
⎢
⎢
⎣

Conv
ReLU
Conv
ReLU

DropOut
MaxPooling

⎤

⎥
⎥
⎥
⎥
⎦
×

1  

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3 × 3
− −

3 × 3
− −
0.5

2 × 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

× 1  

⎡

⎢
⎢
⎢
⎢
⎣

1
− −
1
− −
− −

− −

⎤

⎥
⎥
⎥
⎥
⎦

× 1  

[16 × 16 ×
256]  

⎡

⎢
⎢
⎢
⎣

Conv
ReLU
Conv
ReLU

DropOut

⎤

⎥
⎥
⎥
⎦
× 1  

⎡

⎢
⎢
⎢
⎣

3 × 3
− −

3 × 3
− −
0.5

⎤

⎥
⎥
⎥
⎦
× 1  

⎡

⎢
⎢
⎣

1
− −
1
− −

− −

⎤

⎥
⎥
⎦

× 1  

[16 × 16 ×
512] 

Decoding 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Up
Conv
ReLU

Concat
Conv
ReLU
Conv
ReLu

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

× 4  

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 × 2
2 × 2
− −

− −
2 × 2
− −

2 × 2
− −

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

4  

[
1
1

]

× 4  
[32 × 32 ×
256] [64 × 64 
× 128] [128 ×
128 × 64] [256 
× 256 × 32]  

⎡

⎣
Conv
Conv

Sigmoid

⎤

⎦

[
1 × 1
1 × 1
1 × 1

] ⎡

⎣
1
1
1

⎤

⎦
[256 × 256 ×
3]  

Fig. 6. Automatically learning for combination weights of multiple U-Nets.  
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are set at 0.1. And the shear range and zoom range are also set at 0.1. 

4.2. Evaluation criteria 

To comprehensively evaluate the performance of models, we use five 
evaluation criteria which are widely used for evaluating road segmen
tation performance. The first to fourth criteria are recall, precision, IoU 
and F-Score (Zang et al. 2017), the representations are as follows: 

recall =
TP

TP + FN

precision =
TP

TP + FP

IoU =
TP

TP + FN + FP

F - Score =
2*precision*recall
precision + recall

,

(6)  

where TP, FN and FP denote true positive, false negative and false 
positive, respectively. 

The fifth evaluation criterion is PRI (Probabilistic Rand Index) (Hu 
et al. 2018), which can be computed as follow: 

PRI
(
Sseg, Sgt

)
=

1
C2

n

∑

i

∑

j(i∕=j)

[ψ(li = lj&l’
i = l’

j) + ψ(li ∕= lj&l’
i ∕= l’

j)], (7)  

where ψ is a discrimination function, li and lj are the labels of Sseg, l’i and 
l’
j are the labels of Sgt , cn is the total pixel numbers of Sseg. 

4.3. Experimental results and analysis 

4.3.1. Experimental results on LRSNY dataset 
In this section, we first exhibit the comparisons among our model 

and other seven state-of-the-art semantic segmentation methods on 
LRSNY and Shaoshan datasets. The seven state-of-the-art semantic seg
mentation methods include the original U-Net(Ronneberger et al. 2015), 
SegNet (Badrinarayanan et al. 2017), PSPNet-50 (Zhao et al. 2017), 
Residual U-Net(Zhang et al. 2018), DeepLabV3(Chen et al. 2018), 
DANet (Fu et al. 2019) and PSPNet-101 (Zhao et al. 2017). For each 
compared method, we obtain the source code from the original author or 
from the the GitHub. During model training, the training settings are just 
as same as the settings in our model training. 

Table 2 shows the Recall, Precision, IoU and F-Score comparison 
results among our AEML U-Nets and other seven state-of-the-art se
mantic segmentation methods tested on LRSNY dataset. In this experi
ment, we use the results obtained by 3 U-Nets for comparison, which 
achieves 0.88215 in IoU score. For other compared methods, the IoU 
scores are about 0.838, 0.856, 0.865, 0.827, 0.85, 0.86 and 0.871, 
respectively. It is obviously that our model achieves best IoU score in the 
experiment, which is about 5.25%, 3.1%, 1.98%, 6.6%, 3.8%, 2.6% and 
1.3% higher than other seven state-of-the-art methods, respectively. In 

F-Score, our result also achieves the highest score among all the 
compared methods, which is about 0.938. The performance convinc
ingly demonstrate the good performance of our AEML U-Nets. Besides, 
Table 2 also shows the model parameter numbers for all the models. Our 
AEML U-Nets only uses about 20.9 × 106 parameters to obtain better 
performance than PSPNet-101 which has about 65.7 × 106 parameters. 
Except SegNet and Residual U-Net, all the parameter scales of other 
models are much larger than the parameter scale of our model. The 
parameter scales prove the effectiveness of our model from another 
aspect, as our model uses less parameters than most of other compared 
models while obtaining better performance. The SegNet and Residual U- 
Net seem to obtain worse performance due to their much smaller 
parameter scales. 

Fig. 7 shows the PRI comparison among our AEML U-Nets and other 
seven state-of-the-art methods tested on LRSNY dataset. The original U- 
Net, SegNet, PSPNet-50, Residual U-Net, DeepLabV3, DANet, PSPNet- 
101 and our AEML U-Nets obtain the PRI values of 0.941, 0.9548, 
0.95816, 0.9455, 0.9531, 0.9565, 0.9593 and 0.9628, respectively. Our 
AEML U-Nets improves the performance about 0.0218, 0.008, 0.0464, 
0.0173, 0.0097, 0.0063, 0035 PRI scores compared with other methods. 
It is obvious that AEML U-Nets obtains highest PRI score among all the 
compared methods. The experimental results further prove the superior 
performance of our AEML U-Nets. Fig. 8 exhibits several examples of 
visual test results of AEML U-Nets and other seven compared methods. 
The 1–10 columns are the original images, ground truth, visual results of 
original U-Net, PSPNet-50, SegNet, Residual U-Net, DeepLabV3, DANet, 
PSPNet-101 and AEML U-Nets, respectively. From Fig. 8 we can see that 
our AEML U-Nets obtains better visual results in the tested example 
images. The results of our method are more consistent, smooth and 
possess better road properties in vision. 

4.3.2. Experimental results on Shaoshan dataset 
To further verify the superior performance of our AEML U-Nets, we 

also compare AEML U-Nets with other methods on Shaoshan dataset. 
The compared methods include (Zhang et al. 2017, Chen et al., 2020a, 
2020b, Zang et al. 2017, Zhao et al. 2017, Sachin et al. 2018). As the 
results of other methods have shown in our prior paper (Chen et al., 
2020a, 2020b), thus we just follow the results in (Chen et al., 2020a, 
2020b). Table 3 shows the comparison results, from which we can see 
our AEML U-Nets obtains better performance than other compared 
methods. The IoU scores of Zang et al., ResidualUnet, PSPNet, ESPNet 
and Chen et al are 0.5963, 0.6970, 0.6615, 0.6795, 0.7159, respectively. 
Our AEML U-Nets can achieve as high as 0.75085 score in IoU score, 
which is about 4% higher than our prior method. And the 0.75085 IoU 
score is also much higher than other four methods, which is about 
25.8%, 7.6%, 13.4%, 10.5% higher than the results of Zang, Residual U- 
Net, PSPNet and ESPNet, respectively. The experimental results prove 
the satisfactory performance of our method once again. 

Fig. 9 shows several road extraction visual results on Shaoshan 
dataset by our method. The first, second and third rows are the original 
images, ground truth and road extraction results by our method, 
respectively. It can be seen that our method obtains quite good visual 
road extraction results on Shaoshan dataset. 

4.3.3. Experimental results on Massachusetts road dataset 
In the third experiment, we verify the performance of our AEML U- 

Nets on Massachusetts Road dataset. In this experiment, we also 
compared with other methods including the original U-Net(Ronneberger 
et al. 2015), SegNet (Badrinarayanan et al. 2017), PSPNet-50 (Zhao 
et al. 2017), Residual U-Net(Zhang et al. 2018), DeepLabV3(Chen et al. 
2018), DANet (Fu et al. 2019) and PSPNet-101 (Zhao et al. 2017). The 
parameter settings for training models have been illustrated in our prior 
section. As we finally has 27,700 training images, we set our steps per 
epoch as 27700, epochs as 20 and validation step as 350. Table 4 shows 
the comparison results among our method and other seven state-of-the- 
art segmentation methods tested on the Massachusetts Road dataset. 

Table 2 
The comparison results among our method and other seven state-of-the-art 
segmentation methods tested on the LRSNY dataset.  

Method Recall Precision IoU F-Score Parameters 
(106) 

U-Net 0.8836 0.9582 0.8379 0.9118 31 
SegNet 0.91233 0.93219 0.85555 0.92215 0.93 
PSPNet-50 0.91221 0.94351 0.86497 0.9276 46.77 
Residual U-Net 0.90218 0.90899 0.82744 0.90558 4.36 
DeepLabV3 0.90588 0.9323 0.84996 0.9189 41.25 
DANet 0.90504 0.94521 0.85993 0.92469 71.4 
PSPNet-101 0.9291 0.9327 0.87073 0.9309 65.7 
AEML U-Nets (3 

U-Nets) 
0.94069 0.93411 0.88215 0.93739 20.9  
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Fig. 7. The PRI comparison among AEML U-Nets and other seven state-of-the-art methods on LRSNY dataset.  

Fig. 8. The examples of visual comparison results on LRSNY dataset among AEML U-Nets and other seven methods. The 1–10 columns are the original images, 
ground truth, results of original U-Net, PSPNet-50, SegNet, Residual U-Net, DeepLabV3, DANet, PSPNet-101 and AEML U-Nets, respectively. 
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Our method and other seven methods achieve IoU scores of 0.64779, 
0.59888, 0.62477, 0.6271, 0.64271, 0.6141, 0.6334 and 0.62297, 
respectively. Our method achieves the highest IoU score among all the 
compared methods on Massachusetts Road dataset. For detail, our 
method promote the IoU score about 8.1%, 3.7%, 3.3%, 0.8%, 5.5%, 
2.3% and 4% compared with the original U-Net, SegNet, PSPNet-50, 
Residual U-Net, DeepLabV3, DANet and PSPNet-101, respectively. For 
F-Score, our method achieves as high as 0.78625, which is the highest 
score among all the compared methods. The experimental result proves 
the superior performance of our method compared with the seven state- 
of-the-art methods. 

Fig. 10 shows several road extraction visual results on Massachusetts 
Road dataset. The 1–10 columns are the original images, ground truth, 
results of original U-Net, PSPNet-50, SegNet, Residual U-Net, Deep
LabV3, DANet, PSPNet-101 and AEML U-Nets, respectively. In Fig. 10, 
the results of our method shows better results compared with other 
method in visual. The results of our method obtain clearer results in the 
extraction details, which proves the satisfactory results of our method. 

5. Discussion 

5.1. Analysis about multiple U-Net strategy 

To verify the effectiveness of multiple U-Nets strategy in our model, 
we examine the performance of our model with different lightweight U- 
Net number, ranging from 1 to 3. We test on LRSNY dataset. Table 5 
shows the comparison results among our method with 1, 2 and 3 
lightweight U-Nets tested on LRSNY dataset. In Table 5, the IoU scores of 
AEML U-Nets with 1 U-Net, 2 U-Nets and 3 U-Nets achieve 0.8626, 
0.88071 and 0.88215, respectively. From Table 5 we can see that the IoU 
performance is increased when the number of lightweight U-Net struc
ture is increased. This phenomenon shows the effectiveness of our 
multiple lightweight strategy. It should be noted that we do not use 4 or 
more lightweight U-Nets as the performance seems not improved, on 
which our future work will focus. 

Table 3 
The comparison among (Zang et al. 2017), (Zhang et al. 2017), (Zhao et al. 
2017), (Sachin et al. 2018) (Chen et al., 2020a, 2020b) and our method on 
Shaoshan dataset.  

Method Precision Recall IoU 

Zang et al. (Zang et al. 2017) 0.7786 0.7135 0.5963 
ResidualUnet(Zhang et al. 2017) 0.7454 0.9149 0.6970 
PSPNet(Zhao et al. 2017) 0.6888 0.9434 0.6615 
ESPNet(Sachin et al. 2018) 0.7431 0.8882 0.6795 
Chen et al. (Chen et al., 2020a, 2020b) 0.8247 0.8443 0.7159 
AEML U-Nets (3 U-Nets) 0.86493 0.88841 0.75085  

Fig. 9. Visual road extraction results in Shaoshan dataset by our AEML U-Nets. The first row, second row and third row are the original images, ground truth and 
road extraction results by AEML U-Nets, respectively. 

Table 4 
The comparison results among our method and other seven state-of-the-art 
segmentation methods tested on the Massachusetts Road dataset.  

Method Recall Precision IoU F-Score 

U-Net 0.73964 0.75886 0.59888 0.74913 
SegNet 0.72053 0.82459 0.62477 0.76905 
PSPNet-50 0.76261 0.77921 0.6271 0.77082 
Residual U-Net 0.79688 0.76862 0.64271 0.7825 
DeepLabV3 0.73984 0.78322 0.6141 0.76092 
DANet 0.74218 0.81209 0.6334 0.77556 
PSPNet-101 0.72838 0.81149 0.62297 0.76769 
AEML U-Nets (3 U-Nets) 0.76332 0.81061 0.64779 0.78625  
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5.2. Analysis about Adaboost-like combination strategy 

To verify the effectiveness of Adaboost-like strategy, we also 
compare the outputs of multiple lightweight U-Nets. In this experiment, 
we also use our model with three multiple lightweight U-Nets. Thus, 
there will be four output results, i.e. outputs of first U-Net, second U-Net, 
third U-Net and final combination. Besides, the experiment is imple
mented on LRSNY dataset. Table 6 shows the comparison results. The 
four outputs obtain the IoU scores of 0.85904, 0.87662, 0.87772 and 
0.88215, respectively. It is obviously that the output of third U-Net is 
better than the output of second U-Net, and the output of second U-Net is 
better than the output of first U-Net. The output of final combination 
result is the best among all the outputs, which proves the effectiveness of 
our Adaboost-like strategy combination of multiple lightweight U-Nets. 
Due to combinations through convolutional layers, the combination 
weights can be learned jointly through the training of whole model. 

5.3. Analysis about false extractions 

From the IoU analysis of the above experiments, we know that our 
approach still fails to extract right road areas under some situations. To 
make an investigation of wrong extractions, we visualize our extractions 
through labeling wrong extractions with red and right extractions with 
green on the original images. The right extracted road areas will be paint 
with green color and the wrong extracted road areas will be paint with 
red color. Fig. 11 shows several serious wrong extraction examples of 
our method on LRSNY dataset. From Fig. 11, we can see that the serious 
wrong extractions majorly occur in areas which are occluded by trees or 
the road areas near a car parking lot. The reason for wrong extractions of 
areas with serious occlusion may be that the situation is out of the 
limition of logical reasoning ability of our model. For the wrong ex
tractions near a car parking lot, we think the reason may be there exists 
negative training samples like roads in road parking lots. The classifi
cation ability about road areas in or out a car parking lot is still need to 
be improved. 

5.4. Analysis about stability of our method 

In this section, we analysis the stability of our method on LRSNY 
dataset. To verify the stability of our method’s performance, we repeat 
training our model five times and compute the average IoU performance 
and standard deviation. For comparison, we also repeat training and test 
five times of other six state-of-the-art methods on LRSNY. Fig. 12 shows 
the average IoU performance comparisons of different methods tested 
on LRSNY dataset. In Fig. 12, our method obtains average IoU score of 
0.871162, which is the highest average IoU score among all the 
compared methods. For the original U-Net, SegNet, PSPNet-50, Residual 
U-Net, DeepLabV3, DANet and PSPNet-101, they achieve average IoU 
scores of 0.844078, 0.857044, 0.867278, 0.838208, 0.8605675, 
0.859528, and 0.869118, respectively. Besides, our model also achieves 
highest score in a single training epoch, which is 0.88215. The PSPNet 
and DANet seems more stable as their standard deviations are small. 

Fig. 10. The examples of visual comparison results on Massachusetts Road dataset among AEML U-Nets and other seven methods. The 1–10 columns are the original 
images, ground truth, results of original U-Net, PSPNet-50, SegNet, Residual U-Net, DeepLabV3, DANet, PSPNet-101 and AEML U-Nets, respectively. 

Table 5 
The comparison among our method using 1, 2 and 3 U-Nets on LRSNY dataset.  

Method Recall Precision IoU 

AEML U-Nets (1 U-Net) 0.94008 0.91279 0.8626 
AEML U-Nets (2 U-Nets) 0.93506 0.93809 0.88071 
AEML U-Nets (3 U-Nets) 0.94069 0.93411 0.88215  

Table 6 
The comparison among outputs of first U-Net, second U-Net, third U-Net and 
final combination tested on LRSNY dataset.  

Method Recall Precision IoU 

First U-Net 0.93897 0.90984 0.85904 
Second U-Net 0.93877 0.92978 0.87662 
Third U-Net 0.94123 0.92861 0.87772 
AEML U-Nets (3 U-Nets) 0.94069 0.93411 0.88215  
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However, our average IoU is higher than PSPNet and DANet. The worst 
performance of our method in five training times is still good, which IoU 
score is as high as 0.86379. From this experiment, we prove that our 
method can achieve better performance than other six state-of-the-art 
methods tested on LRSNY. The performance stability of our method is 
satisfactory. 

6. Conclusions 

This paper proposed an Adaboost-like multiple lightweight U-Nets 
for road extraction from optical remote sensing images. To enhance the 
model’s segmentation ability, we used multiple lightweight U-Nets. To 
solve the combination of multiple U-Nets, we proposed Adaboost-like 
strategy combination of multiple U-Nets. Finally, we used multiple- 
objective learning strategy to jointly train the multiple lightweight U- 
Nets. We tested our model on three datasets: LRSNY, Shaoshan and 
Massachusetts. The quantitative analysis and visual exhibitions all 
proved that our method can achieve state-of-the-art performance. 
Compared with other state-of-the-art methods, our model obtained 
better performances. In LRSNY dataset, our model achieved IoU score as 
high as about 0.8825. In Shaoshan dataset, our model achieved IoU 
score as high as about 0.75. In Massachusetts Road dataset, our model 
achieved IoU score as high as 0.6477. Finally, we also proved the 
effectiveness of our multiple U-Nets strategy and Adaboost-like joint 
strategy. 

In our future work, we will focus on the combination of multiple 
kinds of models with Adaboost-like strategy and multi-objective 
learning. 
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Fig. 11. Several wrong extraction examples of our method on LRSNY dataset. Green represents the right extraction and Red represents the wrong extraction. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Average IoU performance comparison of different methods tested on LRSNY dataset.  
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Recognition in HumaŽ Robot Interaction. IEEE Trans. Emerg. Top. Comput. Intell. 5, 
205–213. https://doi.org/10.1109/TETCI.2019.2909930. 

Caruana, R., 1997. Multitask learning. Mach. Learn. 28 (1), 41–75. https://doi.org/ 
10.1023/A:1007379606734. 

Zhou, J., Chen, J., Ye, J., 2011. Clustered multi-task learning via alternating structure 
optimization. Paper presented at the Advances in neural information processing 
systems 24, 2011. 

Rosenbaum, C., Klinger, T., Riemer, M., 2017. Routing networks: Adaptive selection of 
non-linear functions for multi-task learning. Paper presented at the ICLR 2018, 
Vancouver, BC, Canada, May, 2018. 

Rudd, E.M., Günther, M., Boult, T.E., 2016. Moon: A mixed objective optimization 
network for the recognition of facial attributes. Paper presented at the Computer 
Vision – ECCV 2016 Amsterdam, The Netherlands, October, 2016. 

Misra, I., Shrivastava, A., Gupta, A., Hebert, M., 2016. Cross-stitch networks for multi- 
task learning. Paper presented at the 2016 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), Las Vegas, NV, USA, June 2016. 

Liu, A., Su, Y., Nie, W., Kankanhalli, M., 2017. Hierarchical Clustering Multi-Task 
Learning for Joint Human Action Grouping and Recognition. IEEE Trans. Pattern 
Anal. Mach. Intell. 39, 102–114. https://doi.org/10.1109/TPAMI.2016.2537337. 

Shen, W., Zhao, K., Jiang, Y., Wang, Y., Bai, X., Yuille, A., 2017. DeepSkeleton: Learning 
Multi-Task Scale-Associated Deep Side Outputs for Object Skeleton Extraction in 
Natural Images. IEEE Trans. Image Process. 26, 5298–5311. https://doi.org/ 
10.1109/TIP.2017.2735182. 

Volpia, M., Tuiab, D., 2018. Deep multi-task learning for a geographically-regularized 
semantic segmentation of aerial images. ISPRS J. Photogramm. Remote Sens. 144, 
48–60. https://doi.org/10.1016/j.isprsjprs.2018.06.007. 

Ranjan, R., Patel, V.M., Chellappa, R., 2017. Hyperface: A deep multi-task learning 
framework for face detection, landmark localization, pose estimation, and gender 
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41 (1), 121–135. https://doi. 
org/10.1109/TPAMI.2017.2781233. 

Rad, M.S., et al., 2020. Benefiting from multitask learning to improve single image super- 
resolution. Neurocomputing 398, 304–313. https://doi.org/10.1016/J. 
NEUCOM.2019.07.107. 

Liu, H., Li, Q., Gu, Y., 2020. A multi-task learning framework for gas detection and 
concentration estimation. Neurocomputing 416, 28–37. https://doi.org/10.1016/j. 
neucom.2020.01.051. 

Cheng, G., Wang, Y., Xu, S., Wang, H., Xiang, S., Pan, C., 2017a. Automatic Road 
Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural 
Network. IEEE Trans. Geosci. Remote Sens. 55 (6), 3322–3337. https://doi.org/ 
10.1109/TGRS.2017.2669341. 

Zhang, Z., Liu, Q., Wang, Y., 2017. Road Extraction by Deep Residual U-Net. IEEE Geosci. 
Remote Sens. Lett. 15 (5), 749–753. https://doi.org/10.1109/LGRS.2018.2802944. 

Maboudi, M., Amini, J., Malihi, S., Hahn, M., 2018. Integrating fuzzy object based image 
analysis and ant colony optimization for road extraction from remotely sensed 
images. ISPRS J. Photogramm. Remote Sens. 138, 151–163. https://doi.org/ 
10.1016/J.ISPRSJPRS.2017.11.014. 

Sghaier, M.O., Lepage, R., 2016. Road Extraction From Very High Resolution Remote 
Sensing Optical Images Based on Texture Analysis and Beamlet Transform. IEEE J. 
Sel. Top. Appl. Earth Obs. Remote Sens. 9 (5), 1946–1958. https://doi.org/10.1109/ 
JSTARS.2015.2449296. 

Alshehhi, R., Marpu, P.R., Wei, L.W., Mura, M.D., 2017. Simultaneous extraction of roads 
and buildings in remote sensing imagery with convolutional neural networks. ISPRS 
J. Photogramm. Remote Sens. 130, 139–149. https://doi.org/10.1016/J. 
ISPRSJPRS.2017.05.002. 

Coulibaly, I., Spiric, N., Lepage, R., St-Jacques, M., 2017. Semiautomatic Road Extraction 
From VHR Images Based on Multiscale and Spectral Angle in Case of Earthquake. 
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11 (1), 238–248. https://doi.org/ 
10.1109/JSTARS.2017.2760282. 

Lv, Z., Jia, Y., Zhang, Q., Chen, Y., 2017. An Adaptive Multifeature Sparsity-Based Model 
for Semiautomatic Road Extraction From High-Resolution Satellite Images in Urban 
Areas. IEEE Geosci. Remote Sens. Lett. 14 (8), 1238–1242. https://doi.org/10.1109/ 
LGRS.2017.2704120. 

Li, M., Stein, A., Bijker, W., Zhan, Q., 2016. Region-based urban road extraction from 
VHR satellite images using Binary Partition Tree. Int. J. Appl. Earth Obs. Geoinf. 44, 
217–225. https://doi.org/10.1016/j.jag.2015.09.005. 

Yin, D., Du, S., Wang, S., Guo, Z., 2016. A Direction-Guided Ant Colony Optimization 
Method for Extraction of Urban Road Information From Very-High-Resolution 
Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8 (10), 4785–4794. https:// 
doi.org/10.1109/JSTARS.2015.2477097. 

Poullis, C., 2014. Tensor-Cuts: A simultaneous multi-type feature extractor and classifier 
and its application to road extraction from satellite images. ISPRS J. Photogramm. 
Remote Sens. 95 (95), 93–108. https://doi.org/10.1016/J.ISPRSJPRS.2014.06.006. 

Chen, Z., Fan, W., Zhong, B., Li, J., Du, J., Wang, C., 2020a. Corse-to-fine road extraction 
based on local Dirichlet mixture models and multiscale-high-order deep learning. 
IEEE Trans. Intell. Transp. Syst. 21 (10), 4283–4293. https://doi.org/10.1109/ 
TITS.2019.2939536. 

Ren, Y., Yu, Y., Guan, H., 2020. DA-CapsUNet: A Dual-Attention Capsule U-Net for Road 
Extraction from Remote Sensing Imagery. Remote Sensing 12 (18), 2866. https:// 
doi.org/10.3390/rs12182866. 

Cheng, G., Zhu, F., Xiang, S., Pan, C., 2017b. Road Centerline Extraction via 
Semisupervised Segmentation and Multidirection Nonmaximum Suppression. IEEE 
Geosci. Remote Sens. Lett. 13 (4), 545–549. https://doi.org/10.1109/ 
LGRS.2016.2524025. 

Zang, Y., Wang, C., Yu, Y., Luo, L., Yang, K., Li, J., 2017. Joint Enhancing Filtering for 
Road Network Extraction. IEEE Trans. Geosci. Remote Sens. 55 (3), 1511–1525. 
https://doi.org/10.1109/TGRS.2016.2626378. 

Cheng, G., Zhu, F., Xiang, S., Wang, Y., Pan, C., 2016. Accurate urban road centerline 
extraction from VHR imagery via multiscale segmentation and tensor voting. 
Neurocomputing vol. 205, no. C, 407–420. https://doi.org/10.1016/j. 
neucom.2016.04.026. 

Zang, Y., Wang, C., Cao, L., Yu, Y., Li, J., 2016. Road Network Extraction via Aperiodic 
Directional Structure Measurement. IEEE Trans. Geosci. Remote Sens. 54 (6), 
3322–3335. https://doi.org/10.1109/TGRS.2016.2514602. 

Hui, Z., Hu, Y., Jin, S., Yao, Z.Y., 2016. Road centerline extraction from airborne LiDAR 
point cloud based on hierarchical fusion and optimization. ISPRS J. Photogramm. 
Remote Sens. 118, 22–36. https://doi.org/10.1016/J.ISPRSJPRS.2016.04.003. 
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