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Abstract— Point cloud completion aims to reconstruct complete
point clouds from partial point clouds, which is widely used in
various fields such as autonomous driving and robotics. Most
existing methods are sparse point cloud completion, where the
number of point clouds after completion is relatively small and
the details are insufficient. This article proposes a novel end-
to-end generative adversarial network-based dense point cloud
completion architecture (DPCG-Net). We design two generative
adversarial network (GAN)-based modules that translate point
cloud completion into mapping between global feature distrib-
utions obtained by encoding partial point clouds and ground
truth, respectively. The first designed generator module proposes
skip connections to fully connected layer-based network for
regenerating global feature and changing the global feature
distribution derived from the encoder module to approximate the
ground truth global feature distribution. The second proposed
discriminator module divides high-dimensional global feature
vectors into several smaller batches for judgment to guarantee the
similarity between the regenerated global feature and the ground
truth. We perform quantitative and qualitative experiments on
the ShapeNet and KITTI datasets. Experiments on ShapeNet
demonstrate that our model outperforms other models in cases
where the lack of a large proportion of point clouds results in
a large loss of spatial structure, especially when 80% of point
clouds are missing. Moreover, KITTI experiments reveal that
it is also valid for realistic situations. In addition, application
in classification shows that the classification accuracy of point
clouds completed with DPCG-Net is as high as 86.5% under the
condition of 80% missing point clouds.

Index Terms— 3-D point cloud, deep learning, generative
adversarial network (GAN), shape completion.

I. INTRODUCTION

POINT clouds are the most commonly used 3-D data
format, which can maintain the original geometric infor-

mation of objects in 3-D space and are widely used in many
fields such as digital preservation, architecture, 3-D games,
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robotics, and virtual reality [1]. Point clouds can be acquired
by using laser scanners, stereo cameras, or low-cost RGB-D
scanners. In the process of point cloud collection, due to fac-
tors such as occlusion of sensor resolution and viewing angle
limitations, geometric and semantic information of object will
be lost, resulting in incomplete data obtained by scanning [2].
Point cloud completion is necessary for better application of
point clouds to subsequent fields, such as robotics and digital
industries.

In recent years, deep learning has made great progress in
many areas [3]–[5], while more and more large 3-D CAD
models, such as ShapeNet [6] dataset, have been released,
providing powerful technology and data to support point
cloud completion. Point clouds have the nature of disorder
and are difficult to be directly used in convolutional neural
networks. Many researchers voxelize point clouds and use
convolutional neural networks for training [7]–[10]. However,
as the resolution of 3-D voxel grids increases, computational
memory consumption is huge and it is difficult to handle
detailed information.

With the advent of PointNet and its extended networks
[11], [12], it is possible to train directly on point clouds.
The mainstream research methods are sparse point cloud
completion such as SA-Net [13], RL-GAN-Net [14], and
PF-Net [2], which means that the number of point clouds
after completion does not exceed 2048. Dense point clouds
contain more detailed features than sparse point clouds, but the
increase in the number of point clouds requires more compu-
tational cost, and it is a big challenge to handle and generate
denser point clouds, especially when a large percentage of
point clouds are missing. There is a relatively short history of
dense point cloud completion. To the authors’ best knowledge,
PCN [15] first proposes a two-stage approach to achieve dense
point cloud completion, and the number of point clouds is
16 384 after completion. TopNet [16] proposes a hierarchical
tree-structured decoder to implement completion. However,
these methods pay less attention to completion in the case
of larger proportional structural loss of point clouds.

To address the challenge, we propose a new approach to
dense point cloud completion using generative adversarial
network (GAN) inspired by Isola et al.’s work [17] in the
image domain. GAN aims to create a style transfer between the
high-dimensional global feature vector of partial point clouds
and that of ground truth. Generator adopts a fully connected
layer-based network combined with skip connections [18],

1558-0644 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Jonathan Li. Downloaded on September 05,2021 at 01:36:57 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-6480-6482
https://orcid.org/0000-0003-1465-6599
https://orcid.org/0000-0001-6075-796X
https://orcid.org/0000-0001-7899-0049


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

which is responsible for transforming the high-dimensional
global feature vector of partial point clouds into a new
feature vector. Discriminator is a fully connected layer-based
network inspired by PatchGAN [17], which is used to distin-
guish whether the input vector is from generator or ground
truth. GAN-based dense point cloud completion architecture
(DPCG-Net) transforms the problem of mapping between
partial point clouds and ground truth into a mapping between
their high-dimensional global feature vectors, in which the
proposed generator continuously normalizes the process by
learning in two different feature vector spaces. Regenerated
feature vectors obtained by the generator can be used by
decoder to achieve dense point cloud completion. Our main
contributions are as follows.

1) We propose a novel end-to-end DPCG-Net for com-
pleting noisy and partial 3-D point clouds. This novel
architecture is able to obtain the dense point clouds from
incomplete point clouds effectively with even an 80%
missing rate.

2) We design a novel generator module after the encoder
step to regenerate the global feature of partial point
clouds, which lies within the learned ground truth global
feature distribution and is close to the partial point
clouds global feature.

3) We design a new discriminator module to divide the
high-dimensional global feature vector into several
smaller batches for judgment, which guarantees the
similarity between the regenerated partial point clouds
global feature and the ground truth.

II. RELATED WORK

A. Voxel-Based Method

Voxelized point clouds are convenient for shape comple-
tion using convolutional neural networks. Wu et al. [7] pro-
posed 3-D ShapeNets, which used convolutional deep belief
network (CDBN) to represent the 3-D geometric shapes as
probability distributions of binary variables on a 3-D voxel
grid. Using geometric data and multiview RGB data,
Nguyen et al. [8] employed the Markov random field (MRF)
model to complement point clouds using geometric and
multiview RGB data. Han et al. [9] proposed a completion
algorithm that combined overall structural information and
local geometric information. Dai et al. [19] completed partial
3-D shapes by combining volumetric deep neural networks
and 3-D shape synthesis. Xie et al. [20] proposed a gridding
residual network (GRNet). The network regularized disordered
point clouds to the 3-D grid, so as to better obtain the
geometric structure and context information of point clouds.
Nevertheless, these methods typically perform convolution
in a regular voxel grid, which requires high memory and
computational costs.

Researchers have begun to explore the representation of
sparse voxels and structural design of irregular convolutions.
Riegler et al. [21] exploited the sparsity of input data by
using an unbalanced octree representation of data, allow-
ing for deeper networks without compromising resolution.
Wang et al. [10] presented an adaptive octree-based convo-
lutional neural network (Adaptive O-CNN), which adaptively

represented a 3-D shape with different levels of octants and
modeled the 3-D shape with a planar patch within each
octant. Based on their work [10], [21], Wang et al. [22]
introduced a new output-guided skip connection in the network
structure that can better retain the input geometric informa-
tion and effectively learn geometric priors from the data.
Graham et al. [23] proposed submanifold sparse convolutional
networks (SSCNs) for sparse data. They defined novel sparse
convolutional operations that can handle sparse data more
efficiently and implement spatially sparse convolutional net-
works. Although there are many improved algorithms that have
achieved surprising results, computational cost proportional to
the resolution of input data still makes it difficult to handle
the fine textures of data.

B. Point-Based Method

Point-based methods benefit from recent advances in deep
neural networks that operate directly on point clouds, such as
PointNet [11] and PointNet++ [12]. Many existing research
methods focus on sparse point cloud completion, where the
number of point clouds after completion does not exceed
2048. Yang et al. [24] proposed an end-to-end autoencoder
network, which introduced a decoder based on the folding
operation to deform canonical 2-D meshes to 3-D object
surfaces. Wen et al. [13] used a skip-attention mechanism
to send feature information to different stages of genera-
tion to realize point cloud completion. In addition, many
researchers have introduced GAN into the study of sparse
point cloud completion. Achlioptas et al. [25] trained GAN
in the latent feature space and remapped these latent features
to generate 3-D point clouds. Gurumurthy and Agrawal [26]
proposed an initialized encoder to bridge autoencoder and
GAN trained in the latent feature space to achieve point cloud
completion. Sarmad et al. [14] applied reinforcement learning
to construct a correspondence between the global feature
vector of partial point clouds and the input random noise
vector of GAN to complement point clouds. Huang et al. [2]
proposed a multiscale hierarchical GAN called PF-Net, which
introduced a discriminator to evaluate the quality of point
clouds. Chen et al. [27] exploited unpaired data to train GAN
for point cloud completion, which can be better applied to
realistic scenarios. However, the point clouds are relatively
sparse after completion.

Dense point clouds contain richer detail features, but there
are relatively few existing studies on dense point cloud com-
pletion. To the best of our knowledge, Yuan et al. [15] first
proposed a dense point cloud completion algorithm called
PCN with the number of completed point clouds up to 16 384.
This algorithm provided a two-stage completion approach to
achieve point cloud completion. Tchapmi et al. [16] presented
a point cloud completion method with the hierarchical tree
structure for decoder, named Topnet. Subsequent methods
also adopted the multistage strategy of coarse-to-fine simi-
lar to that in PCN. Peng et al. [28] proposed SDME-Net,
which was used for uniform completion of unstructured point
clouds. They added repulsion loss to the loss function to
make the generated point clouds more uniformly distributed.
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Fig. 1. Overall network structure of DPCG-Net algorithm. GAN is trained in the global feature vector space obtained from trained encoder (Encoderc).
As shown by double-line blue arrows in the figure, the vector [GFV G(x)] regenerated by generator is fed to trained decoder (Decoderc) to obtain dense
point clouds.

Fig. 2. Network structure of generator in DPCG-Net.

Zhang et al. [29] showed a multistage point completion net-
work (MSPCN) with critical set supervision, which utilized
critical sets for supervision and produced informative and
useful intermediate outputs for the next stage. Liu et al. [30]
obtained coarse-grained prediction with the input point clouds
at first stage, which was subsequently combined with the orig-
inal input to learn a point-wise residual for fine-grained details
of point clouds. Wang et al. [31] proposed a cascading shape
completion algorithm to synthesize local and global informa-
tion of missing point clouds to generate high-quality point
clouds. In addition, there are other approaches. Yan et al. [32]
presented a method for completion in the function space
of a 3-D surface, which embedded a reinforcement learning
agent to generate the complete output. Zhang et al. [33] used
multilevel feature extraction and separated feature aggregation
to improve the problem of detail loss in the completion
process. Son and Kim [34] adopted traditional methods to pre-
dict unknown parts and added a symmetry-aware upsampling
module (SAUM) to exploit symmetries for shape completion.
There are relatively few dense point clouds completion algo-
rithms, and the completeness of dense point cloud completion
is still worth investigating.

III. METHOD

The structure of our proposed DPCG-Net is shown in Fig. 1,
which is inspired by the GAN-based network and consists
of two main innovative modules. The designed generator
module and discriminator module are shown in Figs. 2 and 3,

Fig. 3. Network structure of discriminator in DPCG-Net.

respectively. First, we train an encoder–decoder model with
partial point clouds and ground truth. The feature vector
is relatively noisy when partial point clouds are fed into a
trained encoder (Encoderc) to obtain a high-dimensional global
feature vector (GFV x), whereas the high-dimensional global
feature vector (GFV y) of ground truth is cleaner. Then,
we propose a GAN-based method including generator module
and discriminator module that aims to establish a distribution
transfer between the high-dimensional global feature vector
of partial point clouds and ground truth. Regenerated vector
[GFV G(x)] obtained by generator is supplied to trained
decoder (Decoderc) for generating dense point clouds.

A. Encoder–Decoder

Encoder–decoder model utilizes our previously proposed
N-DPC [35] network architecture. Encoder is PointNet-based
network incorporating self-attention mechanism [36], [37] for
extracting global features of point clouds. In the encoder stage,
the number of input point clouds varies for different samples.
PointNet-based networks can deal with a different number of
point clouds and extract features of point clouds. Given N
points as input, shared multilayer perceptrons (MLPs) with a
structure of [128, 256] generate feature f with a dimension of
(N × 256). Each row in f represents the feature of a point, and
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the global feature vector g is obtained through the maxpool
operation. f is connected to g to produce feature vector F
of dimension (N × 512). Then, F is fed to the self-attention
attention mechanism to reassign the weights of points’ features
to obtain F ′, with the same dimension as F . Finally, global
feature vector G is obtained by shared MLPs with struc-
ture [512, 1024] and maxpool operation, and the dimension
of G is (1 × 1024). Compared to the global feature vector in
other algorithms that combine GAN (e.g., RL-GAN-Net [14]
with dimension 128), the global feature vector of our model
has a dimension of 1024, which is relatively high and is called
high-dimensional global feature vector.

A decoder contains coarse completion and dense com-
pletion, which is responsible for reconstructing the high-
dimensional global feature vector to generate dense point
clouds. The coarse completion module consists of three fully
connected layers with output dimensions of [1024, 1024,
M × 3], where M denotes the number of coarse point
clouds. The dense completion module first extracts the local
features of coarse point clouds using a PointNet++ [12]
structure, which consists of shared MLPs of [64, 128, 256]
and neighborhood feature pooling operation. The obtained
local feature vector L is of dimension (M × 256). Then,
L is concatenated with 3-D coordinate information C of coarse
point clouds and the high-dimensional global feature vector G
to get the joint feature, which is tiled 16 times to obtain the
feature {L + C + G}. In order to distinguish duplicate points,
we introduce the 2-D grid data to obtain feature {L + C +
G + 2}, which is put into shared MLPs with structure [512,
512, 3] and merged with the coordinates C of coarse point
clouds to finally generate dense point clouds with the number
of 16 384. The loss function LossE−D is a combination of
chamfer distance (CD) and Earth mover’s distance (EMD) [38]
and is described as follows:

LossE−D = EMD
(

Pcoarse, P ′
gt

) + αCD
(

Pdense, Pgt

)
(1)

where EMD calculates the distance between coarse point
clouds Pcoarse and coarse ground truth P ′

gt . CD measures the
distance between dense point clouds Pdense and dense ground
truth Pgt . α donates the constant coefficient of CD, which is
not greater than 1 during training stage. We train this model
on the training set. With the trained encoder, we can obtain
the high-dimensional global feature vector of point clouds and
then train GAN in that vector space.

B. Structure of GAN

1) Generator: This module uses the high-dimensional
global feature vector (GFV x) obtained by the encoder from
partial point clouds to regenerate a new high-dimensional
global feature vector [GFV G(x)]. The specific structure
of generator is shown in Fig. 2, where double-line arrows
represent fully connected layers. The design of generator
draws on the idea of skip connections of U-Net [18] to realize
information sharing between input and output. Unlike U-Net,
which uses convolutional neural nets in the image space, our
generator applies fully connected layers in the feature vector
space and uses skip connections between different layers to
regenerate new vectors.

First, the high-dimensional global feature vector (GFV x)
obtained from partial point clouds by the trained encoder is
fed to three fully connected layers with output dimensions
of [512, 256, 256] to generate feature vectors V1, V2, and V3,
respectively. Then, the feature vectors V2 and V3 are merged
to obtain the feature vector M1 of dimension 512. With M1

as input, the fully connected layer generates feature vector
V4 of dimension 512. Also, V1 concatenates V4 to obtain
intermediate vector M2. Finally, the high-dimensional global
feature vector [GFV G(x)] is obtained by M2 through a fully
connected layer with an output dimension of 1024, which is
subsequently fed to the trained decoder for dense point cloud
completion.

2) Discriminator: This module is designed to determine
whether the high-dimensional global feature vector comes
from ground truth or generator. The network structure of dis-
criminator is shown in Fig. 3. Since the global feature vector of
point clouds obtained by the encoder has a higher dimension
(1024 dimensions), this article proposes PatchGAN’s idea to
design a discriminator, which is commonly used in the image
domain. Compared with regular discriminators that directly
determine real/fake of the whole image, PatchGAN maps
the image to a probability matrix by a convolutional neural
network, and each value in the matrix corresponds to real/fake
of each N × N region in the original image.

We manually cut the high-dimensional feature vector into
(1 × d) regions and judge them with regular discriminator.
Then, all results are averaged to evaluate the entire input
vector. Specifically, we first divide the 1024-D global fea-
ture vector into each feature vector of dimension d and set
(d = 128) during the experiment. In order to reduce the
calculation cost, each small feature vector does not overlap and
it is divided into [1 : 128, 129 : 256, . . . , 897 : 1024], a total
of eight feature vectors (128 × 8 = 1024). Then, the small
feature vectors are concatenated separately to obtain {Fi |i =
1, 2, . . . , 8}, which is judged by a regular discriminator based
on fully connected layers to obtain {Oi |i = 1, 2, . . . , 8}.
Finally, all results are averaged to obtain the final output,
where the structure of discriminator is fully connected layers
with output dimensions of [128, 64, 1].

C. Loss Function of GAN

The training of generator G and discriminator D is based
on the high-dimensional global feature vector space of point
clouds. Let X represent partial point clouds, x = EncoderC(X)
represent the high-dimensional global feature vector of partial
point clouds, Y represent ground truth, and y = Decoderc(Y )
represent the high-dimensional global feature of ground truth.
The input of G is x , which also changes even when there is no
noise, so noise is no longer added here [39]. First, we introduce
the training of discriminator D. D classifies the one-to-one
corresponding global feature vector pair (x, y) as 1 (real) and
discriminates [x, G(x)] as 0 (fake). At this stage, the weight of
generator G is fixed, and the weight of D is updated iteratively.
The loss function of discriminator LossD is as follows:

LossD = 0.5Lbce (D(x, y), 1) + 0.5Lbce (D(x, G(x)), 0)

(2)
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Lbce(z, t) = −(t log(z) + (1 − t) log(1 − z)) (3)

where x obeys the high-dimensional global feature vector dis-
tribution of partial point clouds, y obeys the high-dimensional
global feature vector distribution of ground truth, Lbce is
binary cross-entropy loss function, z represents the network
prediction output, and t donates the label of 0 or 1.

The training of generator G also needs to fix the parameters
of discriminator D, and the loss function LossG

adv is as follows:
LossG

adv = Lbce(D(x, G(x)), 1). (4)

Minimizing this loss means that generator G will make
discriminator D as “confused” as possible, that is, D cannot
correctly distinguish the source of sample. However, in the
actual training process, only minimizing this loss may lead to
instability. We apply the L1 distance between y and GFV G(x)
generated by G into the loss function. The L1 loss function
LossL1 and the final loss function LossG are given as follows:

LossL1 = ‖y − G(x)‖1 (5)

LossG = αLossG
adv + βLossL1 (6)

where α is the parameter of LossG
adv in the loss function and

β donates the parameter of LossL1. The task of generator G
is not only to “deceive” D but also to be as close to target
high-dimensional global feature vector y as possible.

IV. EXPERIMENT

In this section, we first introduce datasets and metrics
and conduct extensive experiments on the ShapeNet and
KITTI [40] datasets. Extensive experiments illustrate that the
great effectiveness and generality of DPCG-Net outperform
other methods with a large percentage of missing point clouds
and it is equally valid for real point clouds. In addition,
we design an ablation study to explore the design of different
modules of DPCG-Net. Finally, we explore the application
of point cloud completion in classification, where our method
achieves consistent and significant performance improvements.

A. Dataset and Metric

1) Dataset: The ShapeNet dataset comes from PCN, which
contains 30 974 models from eight categories, including air-
plane, cabinet, car, chair, lamp, sofa, table, and vessel. The
complete point clouds contain 16 384 uniformly sampled point
clouds. For each model, we obtain 2.5-D depth images from
eight different random angles and utilize backprojected depth
images to generate partial inputs. We split 100 models as the
validation set, 150 models as the test set, and the rest as the
training set.

The KITTI dataset is also from PCN, which is only used for
the testing phase. A series of real point clouds collected with
professional LiDAR scanning equipment is selected from the
KITTI dataset. For each data frame, the point clouds under the
car labels are extracted, and finally, a total of 2483 scenes of
scanned car data are obtained. The LiDAR scanned car point
clouds are very sparse, with only 440 points on average.

Fig. 4. Comparison of CD and EMD metrics. EMD is more reliable in
distinguishing the visual quality of results.

2) Implementation Detail: The network is trained on a
single NVIDIA GeForce RTX 2080 Ti. The encoder–decoder
model is pretrained for 50 epochs with a batch size of 24.
The value of α in the loss function LossE−D varies with the
number of training steps from 0.01 to 0.1, 0.5, and 1.0 at
10 000, 20 000, and 50 000 steps, respectively. During the
training stage of GAN, it is worth noting that the parameters
of encoder and decoder remain unchanged and the parameters
of generator and discriminator are updated iteratively. To make
the numerical magnitudes of LossG

adv and LossL1 in the loss
function LossG relatively close, this experiment chooses α as
0.1 and β as 20. The Adam optimizer with β1 = 0.5 and
β2 = 0.999 was used for training. The update frequency of the
parameters of discriminator and generator is 5:1. The learning
rate of both generator and discriminator is set to 0.0001, and
the batch size is set to 32 for a total of 120 training epochs.

3) Metric: We provide a detailed comparison of EMD and
CD metrics. The formulas for calculating distance between
two point sets P1 and P2 are described as follows:

EMD(P1, P2) = min
φ:P1→P2

1

|P1|
∑

x∈P1

‖x − φ(x)‖2 (7)

CD(P1, P2) = 1

|P1|
∑

x∈P1

min
y∈P2

‖x − y‖2

+ 1

|P2|
∑

y∈P2

min
x∈P1

‖y − x‖2. (8)

The calculation of EMD is time-consuming, but it can
provide a better representation of density distribution of point
clouds, while CD is relatively simple to calculate but is more
sensitive to outliers [30], [41]. Fig. 4 shows the performance of
two different outputs on the CD and EMD metrics. Results are
similar on the CD metric, but there is a significant difference
between two outputs on the EMD metric, with output 2
(0.0523) outperforming output 1 (0.2241) by a significant
margin. Also, as can be seen from a visualization perspec-
tive, Output 2 performs better, which is consistent with the
conclusions drawn on the EMD metric, indicating that the
EMD metric is more reliable relative to the CD metric in
distinguishing the visual quality of results, in line with the
conclusions of work [30]. Therefore, EMD is used as the main
evaluation metric in this article.

In addition, since the data obtained by KITTI have no
ground truth for reference, it cannot be directly quantified to
indicate the completion and the registration error is used to
measure the result. The rotation error Re and the translation
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TABLE I

EMD ON SHAPENET

error Te are as follows:
Re = 2 cos−1(2

〈
pi , pgt

〉2 − 1) (9)

Te = ∥∥ti − tgt

∥∥
2 (10)

where pi and qgt are rotation computed by registration and
ground truth rotation, respectively, ti is the translation by
registration, and tgt is the ground truth translation.

B. Comparing Result

We compare our network with several state-of-the-art point
cloud completion methods: FC, Folding, Topnet, PCN, and
N-DPC. As the data used in the training phase of this part
are the same as that in PCN, we use trained weights of FC,
Folding, and PCN provided by PCN in Github. We retrain
the weights of Topnet on ShapeNet dataset, set parameter
(L = 8), and modify the output of last layer so that it outputs
16 384 dense point clouds. The weights of our previously
proposed N-DPC have been trained in advance.

1) Test on ShapeNet: As shown in Table I, DPCG-Net out-
performs the other models on the cabinet and sofa categories.
In particular, the EMD error on the cabinet category is 0.611,
which is 5% less than that of N-DPC model (0.646). The
EMD error on the sofa category is 0.597, a 4% reduction from
the error of N-DPC model (0.622). Experimental results on
categories other than cabinet and sofa are comparable to the
optimal N-DPC model, particularly in the airplane and table
categories.

2) Masking Test: The above experiment indicates that the
EMD performance of DPCG-Net in some categories obtained
from backprojected 2.5-D depth images is inferior to the
N-DPC model. In order to test the performance of trained
model under different kinds of input data and further explore
its completion performance, we test the performance of our
model under different missing ratios of 30%, 50%, 60%, and
80% in comparison with other methods.

As shown in Table II, when the missing percentage of
point clouds is 50%, 60%, and 80%, the error of DPCG-Net
model is smaller than that of FC, Folding, Topnet, PCN, and
N-DPC methods. Further analysis of the experimental results
reveals that DPCG-Net gradually dominates as the proportion
of deletions increases. In other words, DPCG-Net is weaker
than N-DPC when 30% of point clouds are missing, and
DPCG-Net leads the second N-DPC model by 2% at 50%
missing rate. When the missing percentage increases to 60%
and 80%, the errors of DPCG-Net compared to N-DPC model

TABLE II

EMD ON MASKING TEST

are reduced by 7% and 10%, respectively. It can be seen that
the superiority of DPCG-Net model becomes more and more
significant as the proportion of point clouds missing increases.

Due to the limitations of article layout and considering
the specific performance of algorithm on different categories
of ShapeNet, we only show the results of different models
when 80% of point clouds are missing, as shown in Table III
and Fig. 5. It can be inferred that DPCG-Net (0.845) has
the smallest average value of EMD, followed by N-DPC
(0.936), and Folding (2.531) has the largest error. In terms
of specific categories, DPCG-Net has the best performance
on all categories, including chairs, cars, and cabinets. Fig. 5
shows the visualization results of different methods when
the missing ratio is 80%, which suggests that DPCG-Net is
closer to ground truth than FC, Folding, Topnet, PCN, and
N-DPC. Taking the chair category as an example, the overall
results of FC and Folding models are rough, and the results
of Topnet, PCN, N-DPC, and DPCG-Net models are more
complete. However, DPCG-Net is more accurate in the details
of armrests and legs of chair.

3) Future Discussion: Two types of data are used in the
model testing phase of this article, as shown in Fig. 6. Fig. 6(a)
shows the partial point clouds obtained by backprojection
of 2.5-D depth images at random angles, with an average
number of 1104 points for all samples. Fig. 6(b) shows the
partial point clouds in different missing proportions. Taking
the missing proportion of 80% as an example, partial point
clouds are obtained by selecting a random point in ground truth
and removing 16 384 × 80% of the proximity of that point
from 16 384 point clouds. The former has a smaller number
of point clouds, but it has a wider distribution of surface point
clouds and contains richer structural information. Conversely,
the latter has a larger number of points, but the distribution is
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TABLE III

COMPLETION RESULTS ON THE EMD WITH A MISSING RATIO OF 80%

Fig. 5. Qualitative completion results at 80% missing on ShapeNet. Each output point clouds consists of 16 384 points.

more concentrated and only gathered in a small spatial area.
The overall key structural information is less, which makes
it relatively difficult to complete. Combined with the above
experimental results, it demonstrates that DPCG-Net has a
better performance in the case where a larger proportion of
point clouds is missing, resulting in a larger overall structural
deficiency in the data.

C. Test on KITTI

This section explores the model’s complementary perfor-
mance in realistic point clouds scenarios, with data from the

KITTI car dataset in PCN. We use DPCG-Net trained on
eight categories, including cars from the ShapeNet dataset to
test the completion performance on the KITTI car dataset,
the results of which are shown in Fig. 7. As scanned data
do not have ground truth, Fig. 7(a) only shows the visual-
ization of car before and after completion. The data after
completion still retain the shape of car and are more infor-
mative, demonstrating the usefulness of DPCG-Net. We fur-
ther investigate the performance of point clouds before and
after completion in terms of registration using ICP. The
results are shown in Fig. 7(b) and Table IV. The rota-
tion and translation errors of point clouds are significantly
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Fig. 6. Comparison of different test input data. (a) Backprojected depth
images and (b) 80% missing of ground truth. The number below the image
indicates the quantity of point clouds.

Fig. 7. Performance of (a) completion and (b) registration on KITTI car.
In (b), RE indicates rotation error and TE donates translation error.

TABLE IV

REGISTRATION RESULTS ON KITTI CAR

reduced after completion, reflecting the effectiveness of
DPCG-Net.

D. Ablation Study

This section explores the influence of L1 distance in the loss
function of generator and the setting of parameter d in discrim-
inator on the experimental results. The loss function design of
generator G in DPCG-Net applies the L1 distance between the
high-dimensional global feature vector [GFV G(x)] generated
by G and the high-dimensional global feature vector (GFV y)
of ground truth. To explore its utility, L1 distance is removed
from the loss function of G, and the experiment in which L2
replaces the L1 distance is also implemented. Under the same
conditions, DPCG-Net is retrained and the results are shown
in Table V. “No” means that the L1 distance is removed from
the loss function, “With-L1” indicates the loss function used
in the previous experiments, and “With-L2” denotes the loss
function where L2 replaces L1. It can be noted that the error
is minimum in the experiment for L1 distance. In particular,
compared with directly removing the L1 distance, “With-L1”
improves the performance of DPCG-Net by 11% on the input

TABLE V

ABLATION RESULT OF DISTANCE METRICS IN THE LOSS FUNCTION

TABLE VI

INFLUENCE OF THE CHANGE OF PARAMETER d

TABLE VII

EXPERIMENTAL RESULTS OF POINT CLOUDS CLASSIFICATION

from backprojected depth images and by 21% under conditions
where 80% of the ground truth is missing.

The discriminator in DPCG-Net divides the 1024-D global
feature vector into small feature vectors of dimension d .
To explore the parameter setting of d , we retrain the model
with d of 64, 128, and 256. Also, the trained models are
tested on different input data. The specific results are shown
in Table VI. When d is 128, the model performs optimally
but not significantly on the input from backprojected depth
images. However, it performs significantly better than the
other parameter settings on input from 80% missing of ground
truth. Therefore, this article chooses d = 128 as the optimal
parameter setting.

E. Application Into Classification

This section researches the application of dense point cloud
completion into classification. A classifier network is designed
into two parts: point feature extraction and point feature
classification. Point features are extracted using shared MLPs
with structure of [64, 128, 256, 1024], and a global feature
vector of (1 × 1024) is obtained by the maxpool operation,
which is then fed into fully connected layers of [512, 256, 8]
for classification. The classifier is trained on the ground truth
of ShapNet dataset.

We apply a trained classifier to test the classification results
of partial point clouds under different missing ratios, as well
as the point clouds completed with FC, Folding, Topnet,
PCN, N-DPC, and DPCG-Net methods. The results are given
in Table VII. In general, Topnet has the highest classification
accuracy at 30% and 50% missing percentages. Nevertheless,
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Fig. 8. Confusion matrix of the point clouds complemented by DPCG-Net
in 80% missing condition.

when 60% and 80% of point clouds are missing, point clouds
after the completion of DPCG-Net model have the best per-
formance. The classification accuracy of DPCG-Net is as high
as 86.5% when 80% of point clouds are missing, which leads
N-DPC by 2%, demonstrating the superiority of our model
under the condition of a large missing point cloud.

In addition, a confusion matrix is used to analyze the perfor-
mance of DPCG-Net in different categories of classification.
As shown in Fig. 8, it is able to achieve over 90% prediction
accuracy on four categories, namely cars, planes, cabinets, and
sofas, especially cars, 85% on lamps, and only about 78% on
vessels, chairs, and tables. Further analysis of the confusion
matrix suggests that 13% of vessels are misclassified as cars
and 8% as lamps; 9% of chairs are mistakenly categorized
as tables and 1% of tables are falsely labeled as chairs,
which usually have a four-legged character and are difficult for
classifier to distinguish; and 12% of tables are misclassified as
cabinets and 4% of cabinets are incorrectly marked as tables,
both of which have similar shape information and are mutually
misclassified.

V. CONCLUSION

In this article, we propose a novel dense point cloud com-
pletion method combined with GAN, called DPCG-Net. Quan-
titative and qualitative evaluations of experiments demonstrate
that our method performs best in the case of large percentage
of missing point clouds resulting in large loss of spatial
structure. KITTI results show that our method is also valid for
real point clouds. In addition, the experimental results of point
clouds classification validate the superiority of DPCG-Net in
the case of large-scale missing point clouds. The model in
this article primarily utilizes fully connected layers to extract
features. Also, in the future, we will consider a combination
of point- and voxel-based approaches for extracting features
to further reduce the number of parameters in the algorithmic
framework.
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