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Abstract— Mobile Laser Scanning (MLS) system can provide
high-density and accurate 3D point clouds that enable rapid
pavement crack detection for road maintenance tasks. Supervised
learning-based algorithms have been proved pretty effective for
handling such a large amount of inhomogeneous and unstruc-
tured point clouds. However, these algorithms often rely on a lot
of annotated data, which is labor-intensive and time-consuming.
This paper presents a semi-supervised point-level approach to
overcome this challenge. We propose a graph-widen module to
construct a reasonable graph structure for point clouds, increas-
ing the detection performance of graph convolutional networks
(GCN). The constructed graph characterizes the local features
from a small amount of annotated data, avoiding information
loss and dramatically reduces the dependence on annotated
data. The MLS point clouds acquired by a commercial RIEGL
VMX-450 system are used in this study. The experimental results
demonstrate that our method outperforms the state-of-the-art
point-level methods in terms of recall, F1 score, and efficiency
while achieving comparable accuracy.

Index Terms— Pavement crack detection, MLS point clouds,
semi-supervised, deep learning, GCN.

I. INTRODUCTION

AS THE most common damage for pavements, the crack
may arise due to natural and human factors such as

climate changes and increased traffic, getting worse depending
on its severity. Road distress adversely affects the roadway’s
regular use and results in traffic accidents and substantial
financial losses. At the same time, pavement crack is the
essential and standard indicator for evaluating road distress.
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Fig. 1. Examples of pavement cracks.

By quantifying the location, size, shape and depth of pavement
cracks, the severity of road distress can be quickly and effec-
tively evaluated, and corresponding maintenance strategies can
be formulated in time. Therefore, proper road maintenance and
ongoing visual inspections of pavement infrastructures have
been the keys to ensure road safety. Fig. 1 shows several
examples of pavement cracks.

Traditional manual inspection methods of pavement cracks
based on in-situ measurements are generally time-consuming,
labor-intensive, hazardous, and unsteadiness since the mea-
surement results rely on the inspector’s subjective experi-
ence [1]. Current methods for pavement inspection are often
based on image processing and computer vision techniques [2].
Image capturing is safer and more effective than manual
methods. However, the accuracy depends on image quality
which can be affected by light, shadow, and stains, mak-
ing crack detection challenging [3]. Compared with images,
LiDAR data provides more reliable 3D information indepen-
dent of adverse conditions suffered by images. LiDAR data
provides a more reasonable description of the object’s features,
helping to achieve more accurate detection results. More-
over, LiDAR data can provide position information, enable
point-based methods to locate the detected cracks accurately.
Nowadays, supervised learning-based methods have achieved
high-accuracy detection results on 3D point clouds [4]–[6].
However, these methods have two significant shortcomings:

(1) Most learning-based methods adopt dimensionality
reduction strategies, converting 3D point clouds into 2D
images to reduce the processing difficulty, leading to informa-
tion loss and false detection. Results derived from these meth-
ods are biased and not conducive to accurate road evaluation
and refined management. These dimension reduction-based
methods have two problems: discard the elevation information
of point clouds and reduce the resolution of point clouds
due to projecting multiple points into a pixel. These methods
regard point clouds as a discrete and unrelated point set
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and ignore the elevation difference between crack and non-
crack points. Cracks are generally distributed continuously
on the road, existing continuous elevation difference between
adjacent crack points and surrounding pavement points. Our
method uses graph representation to construct point clouds
into a graph, utilizing these continuous elevation differences
and the adjacency relationship to characterize the local feature
of different points.

(2) These data-driven learning-based methods need to train
a significant number of parameters, and the computational
intensity increases as the network depth grow. Besides, their
performance heavily relies on the annotated training data, and
their models only work in limited scenarios. To deal with
large-scale and more complex point clouds, these methods
put forward higher requirements on the quantity, quality, and
diversity of annotated training data. However, annotated data
acquisition is time-consuming, high-cost, and labor-intensive.
These highly data-dependent methods are insufficient to handle
the increasing data processing demands in large-scale and
complex point cloud scenarios. Semi-supervised learning is
a promising approach to alleviate data pressure. However,
the existing semi-supervised detection methods mainly focus
on 2D image tasks rather than 3D point cloud processing.

To handle the above problems, we propose a semi-
supervised learning-based method, leverages GCN and pro-
poses a graph-widen module. The main contributions of our
work are as follows:

(1) To the best of our knowledge, this is the first work
that combines GCN and point-level pavement crack detection.
We represent point clouds with the graph structure, avoiding
information loss and characterizing the local features of points
through their neighborhood.

(2) The proposed semi-supervised method can learn features
from a small amount of annotated data and a large amount of
unannotated data, which can significantly reduce the annotated
data dependency of our method.

(3) We propose a graph-widen module to expand the graph
structure by constructing a reasonable adjacency relationship
and new features for point clouds, which enlarges the receptive
field of GCN and improves its representation capability to
boost the accuracy and efficiency of crack detection.

(4) The experimental results show that our method can
achieve satisfactory and even better performance in terms of
recall, F1-score, and efficiency than supervised-based methods.

II. RELATED WORK

A. Image-Based Methods

Various traditional image-based approaches, including
threshold detection [7]–[9], edge detection [10]–[12], and
region growing [13], [14], have been proposed to overcome
the limitations of pavement crack detection. In recent years,
image-based learning approaches have greatly improved the
accuracy of pavement inspection. The models based on con-
volutional neural networks (CNN) have been widely used to
recognize various cracks. Cha et al. propose a vision-based
method using a deep CNN to detect concrete cracks [15]. The
fully convolutional network (FCN) is utilized for the pavement

crack detection in [16]. An autonomous surveying scheme [17]
is used to collect, analyze and map the image-based distress
data in real time. Riid et al. automatically detect pavement
defects based on a deep CNN model [18]. A feature pyra-
mid and hierarchical boosting network for pavement crack
detection is proposed in [19]. A nondestructive testing tech-
nique using ground-penetrating radar and network in networks
is adopted in [20] to detect pavement distress. Although
these image-based learning methods have achieved impressive
results in crack detection, the precision is still limited. Their
performances heavily dependent on external light conditions,
and their high sensitivity to shadow, illumination noise, and
oil stains on pavement can cause adverse effects on detection.

B. Traditional Point Cloud-Based Methods

With the development of 3D sensors, many crack detec-
tion studies have been conducted using 3D point cloud
data [21]–[25]. A planar triangulation modeling method is
used in [21] to construct a triangular irregular network dataset
and extract cracks based on the inverse distance weight-
ing rasterization method from wall points. The inverse dis-
tance weighting interpolation algorithm, the maximum entropy
threshold algorithm, and tensor voting are used in [22], [23]
to distinguish the crack curves. An Otsu threshold-based
method [24] extracts intensity information from MLS point
clouds to identify crack skeletons. The maximum gradient of
signal-noise ratio distribution for Gaussian filtering is adopted
in [25] to identify cracks from the point clouds measurement
and optimize the accuracy of the crack analysis efficiently.
However, these methods are difficult to extract fine and
low-connectivity cracks and are less automated.

C. Data-Driven Point Cloud-Based Methods

With the remarkable achievement of deep learning on image
processing, deep learning has been introduced into 3D data
processing. CrackNet [4] is a deep learning-based method that
detects cracks based on 3D asphalt surface data, which has no
pooling layers that downsize the original data and outputs the
predicted class scores for all individual pixels and achieves
a high-level of pixel-wise accuracy. However, the learning
capability is limited by its fixed and non-learnable feature
generator. And the processing speed of CrackNet is slow due to
the huge number of parameters and large data depth at hidden
layers [5]. Several works have been developed to improve
CrackNet for enhanced learning capability and faster perfor-
mance. CrackNet II [6] abandons the feature generator and
constructs a deeper architecture. CrackNet-V [5] uses small
filter to reduce number of parameters and achieves efficient
feature, and proposes a new activation unit for shallow cracks.
Both CrackNet II and CrackNet-V achieves better performance
in efficiency and accuracy than CrackNet. However, their
improvements have limitations, and they heavily dependent on
annotated data. Since these CrackNet-like methods are pixel-
level methods, they still cannot take full advantage of 3D
information and accurately locate the position of detected
cracks.
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Fig. 2. Workflow of our method. The input point clouds are first subsampled. And then the subsampled point clouds are processed through the graph-
widen module, which comprises the adjacency construction module and feature construction module, separated by blue and green dashed boxes. Finally,
the constructed adjacency matrix and feature matrix are fed into GCN in the semi-supervised module to train the network and output each point’s label.

III. METHOD

This paper presents a novel semi-supervised approach based
on GCN for rapid point-level pavement crack detection. Fig. 2
illustrates the framework of our method. Each point of the
input point clouds comprises four channels, i.e., the three-
dimensional coordinates (X, Y, Z) and the reflection intensity
I . The input point clouds are preprocessed by subsampling
and then processed by three modules: adjacency construction,
feature construction, and semi-supervised network. The first
two form the graph-widen module.

Preprocessing: We subsample the input point clouds to
reduce the computational complexity of subsequent process-
ing and change the point arrangement structure, making the
structure more general while maintaining the original shape
characteristics. A threshold distance sd is used for subsam-
pling, ensuring the distance between any two points in the
subsampled point clouds greater than sd . The subsampled
point clouds belong to a subset of the original point clouds.

A. Adjacency Construction

1) Space Mapping: The crack points have lower reflection
intensity and generally distribute in irregular crossed strip-
like shapes. In comparison, the non-crack points have higher
reflection intensity (pavement points and road marking points)
and scattered distribution (pavement texture points). However,
road surfaces are usually located in a planar. The elevation
differences among different points are tiny. The intensity
differences are disturbed by the pavement texture. As a result,
these differences being too weak to serve as classification
criteria. Therefore, we propose a space mapping strategy to
amplify the reflection intensity distinction and distribution
structure difference between crack and non-crack points.

For the subsampled point clouds P = {p1, p2, . . . , pn|pi =
(xi , yi , zi , Ii )}, where n is the number of points. For pi ∈ P ,
Ci = (xi , yi , zi ) denotes the three-dimensional coordinates
and Ii the reflection intensity. We define the main feature (MF)
M(Ii ) of pi , as follow:

M(Ii ) = csc (
1

1 + e−α×Ii
), (1)

where csc (·) indicates the cosecant function, α is a changeable
coefficient.

We design MF to make the distances of inter-class points
increase much faster than that of intra-class points. We con-
struct a new space, named main feature distance distribution
space (MFDDS), based on MF. Its coordinate system is defined
by (X, Y, M F). For pi ∈ P , we perform Eq. (1) to trans-
form pi into p′

i = (xi , yi , zi ,M(Ii )). Then, we switch the
positions of zi and M(Ii ), obtaining the mapping point qi =
(xi , yi ,M(Ii ), zi ). For ∀pi ∈ P , we perform the above oper-
ation to map P into MFDDS to get Q = {q1, q2, . . . , qn|qi =
(xi , yi ,M(Ii ), zi )}. For qi ∈ Q, Ci

m = (xi , yi ,M(Ii ))
denotes the spatial coordinates, zi is the elevation feature.

2) Adjacency Matrix: For ∀qi , q j ∈ Q, we define the main
feature distance (MFD) FM F D(qi , q j ) as follow:

FM F D(qi , q j ) = ‖Ci
m − C j

m‖2, (2)

where ‖·‖2 denotes the L2 norm.
We utilize the nearest neighbors search (NNS) method to

identify the neighborhood for each point of Q. For the reason
that the k nearest neighbors (k-NN) algorithm always selects a
fixed number of points around the center point as its neighbors,
ignoring the difference in the distribution structure amplified
for different points in the MFDDS construction process. The
fr-NN algorithm is used in our method since it treats all the
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Fig. 3. Illustration of the relationship of the search radius r of fr-NN, radius
scale T and the threshold distance sd of subsampling, r = T × sd × √

3.

points in a self-centered sphere with a fixed radius as neighbors
of the center point, characterizes the different distribution
structures for different points in MFDDS. We construct the
adjacency matrix An×n = (A1,A2, . . . ,An) of Q based
on MFD. The adjacency vector of qi is defined as Ai =
(ai1, ai2, . . . , ain)′, ai j ( j ∈ [1, n]) is calculated as follow:

ai j =
{

1, FM F D(qi , q j ) ≤ r

0, else,
(3)

where r = sd × T × √
3 is the search radius of fr-NN, and

T denotes the radius scale. T also indicates the maximum
hop from the center to the points on the sphere’s surface. The
relationship of r , T and sd is illustrated in Fig. 3. If ai j = 1,
then q j is a neighbor of qi . The neighborhood of qi is referred
to as Nqi . We perform the operation on every point in Q to
obtain the adjacency matrix An×n .

B. Feature Construction

In this section, we design four new features for the reor-
ganized point clouds in MFDDS. These new features help
construct a more compact feature space, increasing the GCN’s
receptive field. The well-designed features including main fea-
ture spatial density (MFSD), elevation context feature (ECF),
intensity context feature (ICF), and local distribution feature
(LDF). Their details are described below.

1) Main Feature Spatial Density: In road point clouds,
the number of crack points is far less than that of non-
crack points, and the non-crack points distribute densely while
most of the crack points arrange in irregular strip-like shapes.
Therefore, in MFDDS, the density of crack points would
be much smaller than that of pavement points while bigger
than textured pavement points. We design MFSD to describe
this character of the reconstructed point clouds. The value of
MFSD can be obtained by calculating the number of neighbors
of each point. The MFSD of qi is referred to as FM F S D(qi),
can be calculated as follow:

FM F S D(qi ) = norm(

n∑
j=1

ai j , range(0, 1)), (4)

where norm(·, range(0, 1)) normalizes the input value to a
range between 0 and 1.

2) Elevation Context Feature: The elevation differences
between crack and non-crack points in the road are very small,
easily interfered with by pavement texture points. Therefore,
we design ECF to obtain contextual information of the ele-
vation in the neighborhood of each point. Taking advantage
of the amplified local distribution structure in MFDDS to
strengthen the local feature of points near the crack edge. For
qi ∈ Q, the local elevation set of qi is called N Z

qi
, which

consists of the elevation information of all points in Nqi . The
ECF of qi is referred to as Zi

loc, describing the local elevation
distribution in the neighborhood of qi , calculated as follow:

Zi
loc = (max(N Z

qi
), min(N Z

qi
), mean(N Z

qi
), var(N Z

qi
)), (5)

where max(·), min(·), mean(·) and var(·) calculate the maxi-
mum, minimum, mean and variance of the input, respectively.

For point qi , the categories of its neighbors can be
inferred from the intra-relationship of its ECF. For example,
if max(N Z

qi
) ≈ mean(N Z

qi
) 	 min(N Z

qi
), then it can be

inferred that most neighbors of qi are non-crack points. If
max(N Z

qi
) ≈ mean(N Z

qi
) ≈ min(N Z

qi
), then most neighbors

of qi belong to a same class.
3) Intensity Context Feature: In section III-A1, the reflec-

tion intensity is transformed into MF to construct MFDDS.
Although the transformation amplifies the reflection intensity
distinction between crack and non-crack points, informa-
tion loss is inevitable. To compensate the information loss,
we design ICF to make further use of the reflection intensity.
The local reflection intensity set of qi is referred to as N I

qi
,

consists of the intensity of all the points in Nqi . We refer to
the ICF of qi as Ii

loc, which can be calculated as follow:
Ii

loc = (max(N I
qi

), min(N I
qi

), mean(N I
qi

), var(N I
qi

)). (6)

4) Local Distribution Feature: The MFD set of qi is
referred to as N D

qi
= FM F D(qi ,Nqi ), consists of the MFD

between qi and all the points in its neighborhood Nqi .
We design LDF to utilize the MFD and the connection between
each point and its constructed local feature in MFDDS. LDF
of qi is referred to as Di

loc, which can be calculated as follow:
Di

loc = (max(N D
qi

), min(N D
qi

), mean(N D
qi

), var(N D
qi

)). (7)

Finally, all the features are concatenated in parallel to
construct the final feature of qi , which is referred to as
Fqi = (xi , yi ,M(Ii ),FM F S D(qi ), Zi

loc, Ii
loc, Di

loc). And
the feature matrix of Q can be obtained as Fn×16 =
(F(q1),F(q2), . . . ,F(qn))

′.

C. Semi-Supervised Network

ChebyNet [26] uses a Chebyshev polynomial to approxi-
mate kernels in graph signal processing and the evaluation
complexity of the kernel is linear. ChebyNet avoids the
Fourier basis and reduces the convolutional kernel size and
the computational complexity. The proposed spectral kernels
are strictly localized in a ball of K hops from the central
vertex. And ChebyNet adopts a multilevel clustering algo-
rithm that produces coarser graphs corresponding to the data
domain seen at different resolution. Through the expression
of the convolution kernel and the adjacent relationship of the
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graphs, ChebyNet strictly represents the localize feature of the
convolution kernel. The vertices are rearranged as a binary
tree structure and turned to be a 1D signals utilizing the
coarser graphs. Then the proposed efficient pooling strategy
is operated at the 1D signals.

To efficiently achieve point-level pavement crack detection,
we utilize a 2-layer ChebyNet to serve as the classifier,
which takes the adjacency matrix An×n , the feature matrix
Fn×16, and a small number of labels as input. With ran-
domly initialized weights of ChebyNet, we train it in a semi-
supervised manner. Our method only inputs part of the labels
into ChebyNet and predicts the labels of the remaining nodes.
However, the adjacency relations and features of the points
with and without a label are known during the training. For
qa, qb, qc ∈ Q, qa and qb belong to the neighborhood of qc.
In the adjacency construction module, qa and qb take part in
the adjacency construction of qc. In the feature construction
module, the features of qa and qb contribute to constructing the
features of qc. Although the labels of qa and qb are unknown,
they can still play roles during ChebyNet training through their
relationship with qc.

IV. EXPERIMENT AND DISCUSSION

In this section, we first introduce the benchmark dataset,
implementation details, and parameters setting. Then, we ana-
lyze the crack detection results and compare them with state-
of-the-art methods. Finally, a series of ablation studies are
explained.

A. Data Description

As far as we know, there is no public benchmark or dataset
designed for point-level pavement crack detection on point
clouds. Therefore, we build our dataset with the road point
clouds recorded by the RIEGL VMX-450 scanning system
in Qinghai-Tibet Highway in September 2015. The high-
way starts from Xining, Qinghai Province, China (longitude
36.6171 N, latitude 101.7782 E), ends at Lhasa, Tibet, China
(longitude 29.6525 N, latitude 91.1721 E). It is the highest
and longest asphalt road in the world. The average elevation
is 4,000 meters, the length is up to 1937 km, the mean width
of the roadbed is 10 meters, and the slope is less than 7%.
Fig. 4 shows the information of the Qinghai-Tibet Highway
in Google Earth, and the red line represents the main road.

The RIEGL VMX-450 scanning system integrates two
RIEGL VQ-450 laser scanners, four digital cameras, and
inertial navigation devices. The scanning system has a high
measurement speed of up to 1,100,000 points per second, a
high scanning speed of 400 lines per second, and an effective
range of up to 800 meters. The maximum scanning precision
of the mobile laser scanning system can reach 5mm. Moreover,
the average driving speed during travel on Qinghai-Tibet High-
way is about 80km/h. These scanning parameters and settings
guarantee the millimeter level resolution of the obtained point
cloud data.

We segmented 115 pieces of road point clouds from the
Qinghai-Tibet Highway point cloud data to build our dataset,
of which size is 809 MB in total. Fig. 5 shows the details

Fig. 4. The detail information of the Qinghai-Tibet Highway in Google
Earth. The red line in the map represents the main road of the Qinghai-Tibet
Highway, and the line chart below the map illustrates the elevation variance.

Fig. 5. Road point clouds. (a) (d): samples with RGB information.
(b) (e): samples with reflection intensity, and points with lower intensity are
rendered in darker color. (c) (f): the corresponding manually annotated ground
truth, where black/white points denote non-crack/crack areas.

of road point clouds in our dataset. In the acquired road point
clouds, points are densely arranged in scan lines, while almost
no points arrange between them. Therefore, it is necessary
to conduct subsampling on the original road point clouds to
obtain evenly arranged point clouds, facilitating the following
operations and reducing the computational complexity.

B. Ground Truth and Samples

We train and test our method with our dataset to evaluate the
performance. To obtain the ground truth, we manually selected
the crack points in each road point clouds and annotated them
as “crack”, the rest were annotated as “non-crack”. Based on
which we calculate the evaluation metrics. Figs. 5c and 5f
show the examples of the manual labelled ground truth of the
road point clouds.

For each piece of point clouds in our dataset, the width
and length are approximate 10 meters and contain an average
of 200,000 points. Since public urban roads are regularly
maintained, there are usually few cracks on these roads. It is
difficult to ensure regular and comprehensive maintenance
due to the long-distance, diverse geographic, and changeable
climate environment of the Qinghai-Tibet Highway. Thus,
the cracks will inevitably be much more than ordinary roads.
We subjectively selected road segments with more cracks since
they are urgent to be maintained. We calculated the crack to
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TABLE I

PARAMETER SETTINGS OF GCN

the non-crack ratio for each road segment and select segments
with a ratio of roughly 2:8 to construct our dataset.

The dataset is divided into two parts: dataset-1 consists
of 80 pieces of road point clouds and dataset-2 consists
of 35 pieces. Each piece of dataset-2 is sorted in increasing
order of the X and Y coordinates, then the sorted points are
divided into three parts according to the index order. Specifi-
cally, for each point clouds in dataset-2, the part 1 consists of
the first 10% of the whole points, the part 2 consist of the last
60% of that, and the part 3 consists of the remained points.

C. Implementation Details

The proposed method is implemented in python 3.7, tensor-
flow 1.15.2, Ubuntu 16.04, Intel(R) Xeon(R) CPU E5-2698 v4
@ 2.20GHz, Nvidia Tesla V100 and 64GB memory. The
following parameters are involved in the proposed method: α,
sd , T and r . Below, we describe how to set these parameters.

As described in Section III-A1, α is a coefficient that
decides the transformation degree from reflection intensity to
main feature, which is set as α = 1. The distance between
adjacent parallel scanning lines on the road is around 0.1 m,
calculated according to the scanning speed and driving speed.
Therefore, the threshold distance is set as sd = 0.05 m, ensur-
ing the distance between any two points after subsampling is
greater than 0.05 m. Unless otherwise specified, the radius
scale is set as T = 3. The search radius of fr-NN can be
calculated as r = 0.05m × 3 × √

3. The parameters setting
of the 2-layer ChebyNet are shown in Table I.

For each point clouds in dataset-2, we build a graph struc-
ture based on all points and construct the adjacency matrix and
feature matrix. ChebyNet is trained with the adjacency matrix,
feature matrix, and the labels of points in the corresponding
part 1(10%) and predicts points in part 2(60%).

D. Quantitative Assessment Measures

We calculate the evaluation metrics based on each piece of
road point clouds, where the precision (PRE), recall (REC),
F1-score (F1), and accuracy (ACC) are defined as follows:

P RE = NT P

NT P + NF P
, (8)

REC = NT P

NT P + NF N
, (9)

F1-score = 2 × P RE × REC

P RE + REC
, (10)

ACC = NT P + NT N

NT P + NT N + NF P + NF N
, (11)

Fig. 6. Crack detection results of a 30-meter point cloud scene. (a) Reflection
intensity of the road point clouds. (b) Detection result of our method, black
points represent the non-crack points and white for the crack points.

where NT P is the number of true positive points; NT N is the
number of true negative points; NF P is the number of false
positive points; NF N is the number of false negative points.

E. Comparative Experiments

1) Crack Detection Result: As shown in Fig. 6, the experi-
mental results demonstrate the effectiveness of our algorithm.
The detection results of a 30-meter road segment with complex
cracks are shown in Fig. 6b. The continuous structure of
the complex cracks in different types, shapes, widths, and
lengths is correctly detected through our method. Which
takes advantage of the powerful local representation capability
of graph representation and performs satisfactory point-level
crack detection result in large road scene.

2) Comparative Analysis: To the best of our knowledge, our
method is the first work that focuses on point-level pavement
crack detection from point clouds in a semi-supervised manner.
To evaluate the feasibility and performance, we compare our
method with pixel-level methods [27], [28] and point-level
methods [24], [29], [30].

a) Pixel-level methods: We project dataset-1 and
dataset-2 into intensity images, and train U-Net and AU-Net
with the corresponding intensity images of dataset-1. Test them
on the corresponding intensity images of part 2 of dataset-2,
and calculate the average pixel-wise assessment measures.
During training, all the hyperparameters are set as default.

b) Point-level methods: 3DSkeleton [24] is a traditional
point-level method, comprises the Otsu thresholding algo-
rithm, spatial density filter, Euclidean distance clustering and
L1 medial skeleton detection method. We apply the Otsu
thresholding algorithm and spatial density filter to extract
crack points. The spatial density filter with a local radius
rd = 0.2m and a density threshold ds = 1.2 are used
to remove outliers. PointNet [29] and DGCNN [30] are
point-level supervised detection methods. We train them with
dataset-1. During training, all the hyperparameters are set
as default. For our method, we train it with the part 1 of
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TABLE II

COMPARISON RESULTS(%) OF DIFFERENT METHODS

Fig. 7. The point-level crack detection results of comparison methods
and ground truth. The first column is the ground truth of the different
road point cloud scenes. The last four columns are the detection results
of 3DSkeleton [24], DGCNN [30], PointNet [29] and our method, respectively.

dataset-2 from piece to piece. Specifically, for a piece of point
clouds D belong to dataset-2, the input adjacency matrix and
feature matrix are constructed based on D. The input label
belongs to points in part 1 of D. We test all the point-level
methods on part 2 of dataset-2 and calculate the average point-
wise assessment.

The performance of our method is analyzed according to the
assessment measures type. The quantitative results are shown
in Table II. Pixel-wise measures could obtain a higher assess-
ment value than point-wise due to the information loss caused
by dimensionality reduction. Considering that our approach
costs much less training data and the training time than U-Net
and AU-Net, our approach has achieved satisfactory results
than these pixel-level supervised learning-based methods. Our
method achieves a recall of 73.9%, compared with 71.7%
of 3DSkeleton, 63.1% of PointNet and 67.0% of DGCNN.
As for F1, our method achieves a score of 71.9%, which is
25.2% higher than 3DSkeleton, 5.8% than PointNet and 1.8%
than DGCNN. The results show that our method achieves
significant performance improvement from the traditional and

Fig. 8. Training/validation loss on four different scenes.

TABLE III

RESULTS(%) OF DIFFERENT NNS METHODS AND TRAIN/TEST SPLIT

supervised learning-based point-level approaches in recall and
F1, mainly due to the powerful local feature representation
capability generated by the constructed adjacency relationship
and strictly designed features. And the visualization results
in Fig. 7 show that our method has great advantages when
the cracks have obviously local structure and can detect more
complete and continuous cracks. However, our method causes
a small number of failure cases when dealing with line-shaped
cracks with narrow widths. And when the proportion of crack
points are too small in the point clouds, due to the data
imbalance, the network can easily converge to a state that all
points are regarded as non-crack points while still achieve a
good loss.

3) Efficience Analysis: When achieving the
above-mentioned performance on the same test data,
the training data and training time consumed by our method
is much less than PointNet and DGCNN. Specifically, our
method only consumes 30% of the time consumed by
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Fig. 9. The comparative experimental results of different combinations of features. y-axis: accuracy; x-axis: the value of radius scale T . The crack detection
accuracy generally increases with the addition of features.

TABLE IV

ACCURACY(%) OF DIFFERENT RADIUS SCALE VS. FEATURE COMBINATION

PointNet and 17% of the time consumed by DGCNN. As a
semi-supervised method, our method can be trained with
much less data while achieving satisfactory or even better
performance than supervised methods. The demands of
training data of PointNet and DGCNN is more than 2.3 times
of test data, while the training data of our semi-supervised
method is less than 0.17 times the same test data. These results
validate the high efficiency and low data dependency of our
method. Moreover, as shown in Fig. 8, in the early stage of
training, the training loss dropped rapidly and then stabilized
near 0.3 and 0.2, indicating that the model tends to converge.
Furthermore, the validation loss has the same trend as training
loss. These results show that the proposed method can
converge and has excellent performance on the validation set.

F. Ablation Experiments

We conducted a series of ablation studies to investigate the
importance of different components of our method. We per-
form some experiments to compare the effectiveness of differ-
ent NNS methods and the influence of different training and
test data split. The experimental results are shown in Table III.
The first two rows show that when (X, Y, Z) serve as the
coordinates to perform NNS, neither k-NN nor fr-NN can
accurately segment crack points from the road point clouds.
When (X, Y, M F) serve as the coordinate to calculate the
neighbors for each point, the k-NN still cannot conduct any
accurate prediction, while the fr-NN achieves the best recall
with the train/test split equal to 1:6. The precision of detection

improving with the increase in the proportion of training data,
but the recall and F1-measure have dropped to a certain extent.
Note that, in the other experiments, our method uniformly the
train/test split to 1: 6.

We conduct a series of experiments to investigate the
importance of the designed features in Section III-B. Fr-NN
is used to conduct the adjacency matrix for all experiments.
The experimental results are shown in Table IV. For the first
two rows, (X, Y, Z) represents coordinates, and (X, Y, M F)
for the others. The value of radius scale T varies from 1 to
10 to change the radius r , leading to a different neighborhood
for each point and resulting in a different adjacency matrix.

As shown in the first row of Table IV, the accuracy remains
unchanged. Since all points are predicted as non-crack points
due to the serious data imbalance of crack and non-crack
points. While in other rows, accuracy gradually increased
with the additional input of features. Our method achieves
the best average performance with all features, which demon-
strates that each designed feature has its contribution. The
visualization results shown in Figs. 9 and 10 also verify the
above observation. Fig. 9 shows that the accuracy increased
with the addition of features. For T ∈ [1, 10], all the
best accuracy occurs with all features. Overall, our method
achieves best performance when T ∈ [3, 4] and inputting
all features. This is because the neighbor points located in
the range when T ∈ [3, 4] contribute most to the local
feature representation of each point. And Fig. 10 shows that
each designed feature can significantly increase the detection
accuracy.
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Fig. 10. The comparative experimental results that illustrate the effect and
necessity of the designed features. y-axis: accuracy; x-axis: the value of radius
scale T . (a), (b), (c), and (d) show the effectiveness of MFSD, LDF, ECF,
and ICF, respectively.

V. CONCLUSION

This paper presents a novel semi-supervised 3D pavement
crack detection algorithm, increasing the detection reliability
and efficiency. Our method is successfully applied to the
3D MLS dataset. Evaluations demonstrate that our method
achieves a satisfactory performance and illustrate our method’s
high efficiency and low data dependency. Our method achieves
73.9% in recall and 71.9% in F1 in the Qinghai-Tibet Highway
dataset. Compared with the state-of-the-art point-level meth-
ods, our method outperforms recall, F1 score, and efficiency
while achieving comparable accuracy, which benefits from the
reasonably constructed adjacency relationship and the strictly
designed features based on the cracks’ characteristics. Conse-
quently, we provide a feasible and promising semi-supervised
solution, which boosts the performance of pavement cracks
detection from point clouds. Future extensions of this work
will be oriented to explore the internal connections and mutual
influences of different features and propose a loss function
with adaptive weight to relieve the sample imbalance problem
of object detection in large-scale point cloud scenes.
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