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A B S T R A C T   

Accurately detecting the insect damage caused in plants might reduce losses in crop yields. Hyperspectral data is 
a well-accepted data source to attend this issue. However, due to their high dimensional, both robust and 
intelligent methods are required to extract information from these datasets. Therefore, we explore the processing 
of hyperspectral data with artificial intelligence methods joined with clustering techniques to detect insect 
herbivory damage in maize plants. We measured the leaf spectral response from three different groups of maize 
plants: control (undamaged plants); damaged by Spodoptera frugiperda herbivory, and damaged by Dichelops 
meiacanthus. Data were collected with a FieldSpec 3.0 Spectroradiometer from 350 to 2500 nm for eight 
consecutive days. We adjusted eight machine learning methods. We also determined the most contributive 
wavelengths to differentiate undamaged from damaged plants by insect herbivore attack using clustering 
strategy. For that, we applied the clusterization method based on a self-organizing map (SOM). The Random 
Forest (RF) model is the overall best learner, and up to the 5th day of analysis represents the most adequate day 
to segregate maize undamaged from damaged maize. RF was able to separate the three groups of treatments with 
an F1-measure of up to 96.7% (Recall of 96.7% and Precision of 96.7%). Additionally, we found out that the most 
representative spectral regions are located in the near-infrared range. Our approach consists of an original 
contribution to early differentiate the undamaged plant from the damaged one due to insect-attack, highlighting 
the most contributive wavelengths to map this occurrence.   

1. Introduction 

One of the major factors that impact a country’s economic devel-
opment is its agronomic sector since it is responsible for, among others, 
raw material, employment generation, and both human and animal food 

production. Several issues can impact a crop yield rate, chemical fer-
tilizer overutilization, presence of chemicals in water supply, uneven 
distribution of rainfall, soil fertility differences, and the attack of pests or 
diseases in plants (Singh et al., 2020). Plant diseases are described as 
some of modification that hampers the normal processes in their healthy 
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development (Singh et al., 2020). Not only the disease but also insect- 
damage occurrences significantly endangers agriculture around the 
world (Zhang et al., 2019) being usually associated with huge economic 
losses. To illustrate this scenario, for 12 major maize-growing countries, 
insect-damage costs a total of 1–4 billion dollars in lost crops per year 
(Silver, 2019). 

Maize is a versatile plant, used both to feed human and domestic 
animals, making maize one of the most important sources of income in 
family farms. Brazil is the third-largest producer of maize in the world. 
The last crop season (2019/2020) represents a record production with 
105 million tons approximately, resulting in an increase of 2.6% in 
relation to the previous one (CONAB, 2020). In China, the second-largest 
producer of maize in the world, caterpillars that ravage crops are 
advancing across fields and threatening this nation’s vast supply of 
maize (Silver, 2019). Africa, where the pest arrived in 2016, and 
southern Asia have also reported a recent outbreak of bugs, causing 
maize yield losses surpassing 50% (Silver, 2019). Since maize cultiva-
tion is still a monoculture type of practice in many areas around the 
world, as well as occupying large portions lands, it is often susceptible to 
infestations and diseases. There are more than 40 species of insects 
recorded on maize crop, among them are the maize stalk borer (Busseola 
fusca), spotted stalk borer (Chilo partellus), various termite species 
(Macrotermes and Microtermes spp.), and a more recent invasive spe-
cies, the Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), 
commonly named fall armyworm (FAW) (Assefa and Ayalew, 2019). A 
strategy to minimize both qualitative and quantitative losses in crop 
yield refers to early and accurate detection of insect-damage caused in 
plants (Mahlein, 2016). However, several examples about the traditional 
approaches for monitoring plants in the field is labor-intensive, being 
prone to be subjective, and generally shows low efficiency (Zhang et al., 
2019; Mahlein, 2016). 

One of the main reasons behind insect infestation in farmlands across 
the planet involves disregard for control measures, the presence of va-
rieties which are susceptible to pest attack, lack of crop rotation prac-
tices; imbalanced fertilization, as well as the inappropriate use of 
pesticides and others (Oliveira et al., 2014; Zhang et al., 2019; Tageldin 
et al., 2020). This procedures can result in impacts upon the farmland, 
one of which the uncontrolled presence of pests and insects. As tradi-
tional approaches, mechanical, chemical and biological controls’ prac-
tices employ a series of techniques that aim to maintain the pest density 
at a lower level than that which would occur in the absence of its natural 
enemies around the area. However, such methods although are capable 
of controlling said pests, are often misused and can lead to different 
outcomes (Oliveira et al., 2014; Zhang et al., 2019; El-Ghany et al., 
2020). Some of them are effective at different scales, and some are labor- 
intensive, onerous and costly for most producers. Because of that, novel 
methods that employ a more indirect approach, as well as less aggres-
sive, for detecting the damage, are being prone to use in recent re-
searches in the precision agriculture field. 

Remote sensing is a promising strategy for managing crops because 
they can provide directly non-contact and spatially continuous moni-
toring of diseases and pests efficiently (Osco et al., 2019; Zhang et al., 
2019). The principle of remote sensing is that all targets (e.g. soil, 
vegetation, water, etc.) on the terrestrial surface reflect and emit elec-
tromagnetic energy in specific wavelengths owing to difference in their 
chemical, inner physical, and surface properties (roughness) (Jensen, 
2014). In a hyperspectral context, this means measuring hundreds of 
narrow bands within the electromagnetic spectrum. In this regard, the 
spectroscopy area refers to the method of obtaining the hyperspectral 
characteristics of a target regarding radiation flux intensity emitted or 
reflected by its constituents at different wavelengths to provide a precise 
fingerprint of a target (e.g. a plant) (Jensen, 2014). For the last decades, 
many studies have proved the potential of remote sensing in the preci-
sion agriculture area, mainly for plant disease detection (Asner, 1998; 
Liu et al., 2018; Zhang et al., 2019; El-Ghany et al., 2020; Zhang et al., 
2020). A study (Asner, 1998) demonstrated that various biophysical and 

biochemical factors affect plant canopy reflectance, and show that an 
adequate sampling (spectral, angular, and temporal) of the optical 
(400–2500 nm) spectrum is required. Methods for modeling insect- 
damage caused by plants can be divided into traditional statistical 
analysis to even innovative artificial intelligence approaches like ma-
chine learning and deep learning (Zhang et al., 2019). Artificial intelli-
gence techniques may be an interesting approach mainly because of its 
robustness to evaluate high dimensional data, such as data collected 
from proximal sensing equipment. 

Studies investigated remote sensing and artificial intelligence tech-
niques in the agriculture area (Berger et al., 2020; Osco et al., 2020a; 
Ramos et al., 2020). As examples, (Singh et al., 2009) investigated the 
potential of near-infrared hyperspectral (1000 to 1600 nm) images 
processed by linear discriminant analysis and quadratic discriminant 
analysis for the detection of insect-damaged wheat kernels and pointed 
out that methods correctly classified 85–100% healthy and insect- 
damaged wheat kernels. (Wang et al., 2011) adopted hyperspectral 
(400 to 720 nm) images processed with the stepwise discriminant 
analysis for the detection of external insect damage in jujube fruits, and 
the overall classification accuracy was about 97.0%. (Liu et al., 2018) 
measured the hyperspectral reflectance (350 to 2,500 nm) of symp-
tomatic and asymptomatic rice leaves infected by four different diseases. 
Based on probabilistic neural network classifiers, it was concluded, with 
the mean overall accuracy upper to 91%, that symptomatic and 
asymptomatic rice leaves can be discriminated using hyperspectral 
reflectance measurements only. 

An investigation (Kandpal et al., 2015), applying the partial least 
squares discriminant analysis in hyperspectral (1100 to 1700 nm) im-
ages of the short-wave infrared region, was able to demonstrate, with an 
accuracy upper to 96%, aflatoxin contamination on corn kernels. 
(Abdulridha et al., 2019) applied two machine learning algorithms, 
radial basis function (RBF) and K-nearest neighbor (KNN), in hyper-
spectral (400 to 1,000 nm) images for the detection of citrus canker in 
several disease development stages (i.e., asymptomatic, early, and late 
symptoms) on Sugar Belle leaves and immature (green) fruit, and the 
overall classification accuracy of both methods was higher than 94%. 
(Nyabako et al., 2020) developed decision-tree algorithms to predict the 
level of P. truncatus infestation and associated damage of maize grain in 
smallholder farmer stores. P. truncatus population size prediction, the 
model performance was weak (r = 0.43) because of the complicated 
sampling and detection of the pest and eight-week long period between 
sampling events. To grain damage prediction, the model had a stronger 
correlation coefficient (r = 0.93) being considered a good estimator of 
damages in grain caused by insects. (Tageldin et al., 2020) investigated 
several learning algorithms to predict the cotton leafworm (Spodoptera 
littoralis) plant infestation in the greenhouses and found that the 
XGBoost algorithm was the most effective algorithm achieving a pre-
diction accuracy of 84%. 

As mentioned, hyperspectral datasets provide high-dimensional data 
merged into a data vector, and occasionally require the application of 
techniques for datasets reduction or clustering. A clustering method like 
the Self-Organizing Map (SOM) is a promissory alternative. SOM can 
dimensionally organize complex data into clusters according to their 
relationships, being a highly appropriate method to solve difficult high- 
dimensional and nonlinear problems, such as feature extraction and 
image classification (Li et al., 2019). A main feature of the SOM is to 
compose a nonlinear mapping of a high-dimensional input space to a 
typically 2-D grid of artificial neural units (Kohonen, 1982; Kohonen, 
2001). For that, SOM is based on an artificial neural network trained 
based on unsupervised learning, consisting of a two-layer, an input layer 
and an output layer known as the Kohonen layer (Kohonen, 1982; 
Kohonen, 2001). The literature review presents many studies using the 
SOM architecture in different applications, including remote sensing 
and agriculture-related problems (Li et al., 2019; Rivas-Tabares et al., 
2020). Although the main concept behind it may be appropriate to 
different intakes in the hyperspectral data domain, here we discuss its 
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implications in plant monitoring, more specifically maize, due to its 
necessity in providing methods to infer insect damage. This is important 
since precision agriculture practices involves identifying the most 
expressed wavelengths to a given problem. Maize are susceptible to 
some plagues, and its monitoring is a necessity in most farmlands, 
specially for tropical and sub-tropical zones. 

The SOM method is in widespread use across several disciplines. 
However, its potential for clustering the more adequate spectral regions 
to detect insect attacks in crops like maize, based on hyperspectral 
datasets analysis is still unexplored. Adopting robust methods to deal 
with the high-dimensional characteristics of HSI data when the ranking 
and SOM approach are combined refers to an original and important 
contribution that might be assist agricultural management in a rapid and 
in situ manner. The ranking approach has been adopted, for example, to 
identify the individual contribution of each spectral information, 
collected by remote sensing, included in a learning model to solve pre-
cision agriculture problems (Osco et al., 2020a; Ramos et al., 2020). The 
ranking method calculates the increased or decreased difference in the 
performance of the algorithm against the performance of a baseline 
method concerning a given variable, and this returns a metric score for 
the individual input variables, thus indicating the contribution of each 
index into the model. Therefore, we propose an approach based on 
artificial intelligence techniques (machine learning and deep learning) 
to predict whether the plant is attacked or not by insects using HSI 
dataset. The results obtained showed that the reflectance measures 
differentiate the herbivore-type of damage, i.e, differentiate the her-
bivory provoked by larvae of Spodoptera frugiperda, a chewing insect, 
from the herbivory provoked by the stink bug Dichelops melacanthus, a 
sucking feeding insect. In short, here we present:  

1. The performance of different machine learning approaches;  

2. The impact of a day-by-day analysis into the prediction, and; 
3. A framework to identify important spectral regions for this predic-

tion using the ranking and SOM approach. 

2. Materials and method 

The method (Fig. 1) was divided into the following main phases: 1) 
proximal sensing data acquisition; collected from different maize plants 
during different days in-field conditions; 2) data process and organiza-
tion; separated into multiple datasets to be evaluated by the models; 3) 
machine and deep learning evaluation; used to indicate the more 
appropriate to predict the insect-damage in this type of data; 4) temporal 
analysis comparison; implemented to determine the impact on an indi-
vidual analysis of the overall best, predefined in the previous step; 5) 
ranking and clustering with SOM of the contribution of wavelengths to 
the models’ performance; proposed to the appropriate spectral regions 
to separate insect-damage from undamaged plants and to differentiate 
the insect-type damage in maize plants. 

2.1. Insects and plants 

Spodoptera frugiperda were maintained in separate environmental 
rooms at 27 ± 1 ◦C, with 65 ± 10% relative humidity and a 14 h 
photoperiod. S. frugiperda larvae were obtained from a laboratory col-
ony maintained at Embrapa Genetic Resources and Biotechnology in 
Brasília, DF, Brazil. The larvae were reared in plastic containers on an 
artificial diet based on beans (Phaseolus vulgaris). Second instar larvae 
(Schmidt et al., 2009) were used in experiments and starved for 24 h 
before the experiment. Dichelops melacanthus individuals were ob-
tained from a laboratory colony started from adults collected in soybean 
fields near Embrapa Genetic Resources and Biotechnology, Brasília, 

Fig. 1. The summarized steps of the framework developed in this study.  
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Brazil (15◦47J0JJS, 47◦55J0JJW). 
Stink bugs were reared in 8 L plastic containers on a diet of soybean 

seeds (cv Conquista), sunflower seeds (Helianthus annuus), raw peanuts 
(Arachis hypogaea), fresh green beans (Phaseolus vulgaris), and water. 
The food supply was renewed twice a week. To provide an oviposition 
substrate and shelter for the bugs, a 15 cm2 piece of nylon mesh screen 
was placed inside the cage. They were kept in a controlled environment 
room at L14: D10 photoperiod, 26 ± 0.3 ◦C and 70 ± 10% r.h. 

Maize seeds were obtained from Germplasm Bank of Embrapa Maize 
and Sorghum in Sete Lagoas, MG, Brazil (19◦27J57JJS and 44◦14J48JJW) 
and germinated on damp paper. After 4 days, the seeds were trans-
planted to pots with a mixture of soil and organic substrate (in a pro-
portion of 1:1 w/w) and kept in a greenhouse (14 h photoperiod). The 
plants used in the experiments were grown for 9–10 days after emer-
gence and had three fully expanded leaves. 

2.2. Experimental area and data acquisition 

The semifield experiments were conducted in an external area of our 
laboratory in Brasilia with natural light. The plants of maize received 
one of the following treatments: 1) undamaged plants (UDP) (did not 
receive the treatment), 2) two (2) 2nd instar larvae of S. frugiperda 
herbivory damaged plants (Sf-HDP) (N = X for each treatment) and 3) 
two (2) adult females of Dichelops melcanthus herbivory damaged 
plants (Dm-HDP). Reflectance data from plants under these three 
treatments were collected from 09 to 15 h. The data was acquired over 8 
days, except for day 3 and 7, which were collected outside the 09 to 15 h 
interval, thus, not used in this study. The combined measurements from 
all eight days resulted in 1,429 samples (instances) for the models. 

The spectral reflectance from the plants was collected with a 
compact, field-portable, and precision instrument with a spectral range 
of 350–2,500 nm, FieldSpec 3.0 ASD spectroradiometer, at daylight 
conditions, in a rapid data collection time of 0.1 s per spectrum. The 
sampling interval is 1.4 nm for the spectral region 350–1,000 nm and 2 
nm for the spectral region 1,000–2,500 nm. We used a small size of the 
pistol grip and 8 grades for optics around 50 cm far from the samples and 
material with approximately 100% reflectance across the entire spec-
trum as a white reference panel or white reference standard. 

We connected the apparatus to a portable microcomputer, where 
data was stored. The reflectance spectrum (ρ) was calculated with the 
division of the radiance from the target (LT) (in this case, the plant) by 
the amount of radiance reflected from a reference sample (Lr). This was 
multiplied by a correction factor (K), which corresponds with the ratio 
between the solar irradiance to a reference plate exitance (Jensen, 
2014). This process can be summarized by the Eq. (1) below: 

ρT =
LT

Lr
x K (1) 

At each time of acquisition the reflectance was calibrated with the 
white standard. Since the wavelengths are interpolated at 1 nm, the final 
product of the spectral reading is a high-dimensionality dataset with 
2,150 bands. We then identified low signal-to-noise spectral regions, 
both from the beginning of the equipment, at the 350 and 390 nm, and 
others mostly related to atmospheric conditions and equipment inter-
ference, from 1,350 to 1,410 nm, 1,820 to 1,940 nm, and 2,460 to 2,500 
nm. This resulted in 1,694 bands to be incorporated into the analysis as 
input variables. The processed data, in reflectance value, was organized 
into separated subsets. 

Before the analysis, we reordered the spectral wavelengths into 
columns, to be used separately by the models. The training and testing 
samples were separated according to the measured plant. We previously 
labeled every measure plant and, since multiple leaves from the same 
plant were measured, the training and testing samples were divided 
according to a label previously given to each leaf, indicating its 
respective plant. This was necessary because a random division could 
potentially result in the spectral reading of different leaves from the 

same plant being in both training and testing subsets. In this sense, from 
the 1,429 samples collected, a total of 1,001 leaves were used for 
training, while the remaining 408 leaves were used for the testing set. 

2.3. Insect herbivory damage classification 

To determine the overall learner to model the spectral configuration- 
sets, we choose 8 algorithms based upon their theoretical characteristics 
and state-of-the-art usage. The algorithms were: ExtraTree (ExT); k- 
Nearest Neighbour (kNN); Logistic Regression (LoR); Multi-Layer Per-
ceptron (MLP); Naive Bayes (NB); Random Forest (RF); Support Vector 
Machine (SVM) and; Extreme Gradient Boost (XGB). We also used a deep 
neural network (DNN) method to evaluate the ability of a deep learning 
model to classify this data. In an experimental initial phase, we evalu-
ated the individual performance of the algorithms to determine whether 
a fine-tuning of its parameters was necessary. Upon comparisons of fine- 
tuning methods with the algorithm’s baseline, we verified that no 
improvement was obtained in relation to the processing time needed to 
perform the classifications. 

While DNNs are, traditionally, similar to ANNs, they are considered 
more robust than a common ANN specially because of its complexity, 
being defined as a learning method with multiple levels of representa-
tion (Lecun, 2015; Osco et al., 2021). In our experiment, the default 
values of the implemented libraries were adopted. The MLP was con-
structed with one hidden layer, in a feed-forward manner, with a 
learning rate of 0.05, momentum of 0.1, using the Adam solver and a 
sigmoid function as its activation function. As for the DNN, we used the 
Adam optimizer and adopted an adaptive learning rate with a sparse 
categorical cross-entropy loss function. For the hidden-layers, we used 
two layers with 128 neurons and two layers with 32 neurons, adopting a 
dropout of 20% on each one. All hidden layers were assigned a ReLu 
activation function. A dense final layer was added with the softmax 
function with 3 units. A total of 800 epochs were evaluated and the 
deviance criteria were used to determine the necessary amount of 
epochs. 

The machine learning models were applied through the open-source 
software Weka 3.9.4, using integrated libraries from the R, XGBoost and 
Scikit-Learn packages. The deep learning model was created with the 
Tensorflow package, in Python 3.9. The computational analysis was 
conducted in two different phases: In the first phase, we determine the 
overall best learner to model the spectral data, and investigated the 
impact of different daily measurements on this; in the second phase, we 
modeled the damage according to its origin type (S. frugiperda or D. 
melacanthus). The datasets are summarized in Table 1. The “Herbivory 

Table 1 
Configuration-sets used to predict insect damage and separate insect damage 
types. MAC = Multiple Algorithm Comparison; SAC = Single Algorithm Anal-
ysis; and RSOM = Ranking and Self-Organizing Map.  

Dataset UDP 
(n) 

Herbivory 
damaged (n) 

Total 
(n) 

Sf- 
HDP 
(n) 

Dm- 
HDP 
(n) 

Experiment 

Total 
Analysis 

464 855 1319 505 350 MAC 

Day 1 104 180 284 100 80 SAC 
Day 2 150 265 415 185 80 SAC 
Day 4 50 120 170 70 50 SAC 
Day 5 60 90 150 50 40 SAC 
Day 6 50 100 150 50 50 SAC 
Day 8 50 100 150 50 50 SAC 

UDP vs Sf- 
HDP 

60 50 110 50 0 RSOM 

UDP vs 
Dm- 
HDP 

60 40 100 0 40 RSOM 

Sf-HDP vs 
Dm- 
HDP 

0 90 90 50 40 RSOM  
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Damaged” group corresponds to the sum of observations of larvae 
(Spodoptera frugiperd) and stink-bugs (Dichelops melacanthus) groups. 
The Total Analysis group is the sum from Day 1 to 8 groups. 

The comparison with multiple machine learning algorithms was 
performed using all reflectance measurements acquired during 8 days of 
analysis. For this, the 8 algorithms were compared after 100 validation 
results. The same data subsets were considered for every classification. 
The classification metrics evaluated in this study were Precision, Recall, 
and F-measure. We also used the True-Positive and False-Positive Rates 
and the Receiver Operating Characteristic (ROC) curve for each classi-
fier. After defining the overall best learner, a daily comparison with data 
collected from the beginning to the end of the experiment (days 1 
through 8) was used as separated inputs for the classification task. The 
strategy described in the previous step, for processing and evaluating the 
performance of the algorithm, was also adopted. This helped define the 
impact of the continuous attack of the insets into the analysis of the 
spectral behavior of the maize plants. With that, it was possible to 
indicate the most discrepant days of analysis since the beginning of the 
infestation. 

2.4. Ranking and clustering of spectral data 

To calculate the potential of every wavelength used as input for the 
overall best classifier, we adopted a ranking approach. This ranking 
approach consists of a direct comparison between the used classifiers’ 
accuracy, obtained with a specific input variable (i.e., the individual 
wavelength), against the performance obtained at the same conditions 
with a baseline algorithm. The baseline algorithm used for this com-
parison was the ZeroR learner, which calculates the average value of the 
measured variables and uses it as a prediction. This algorithm is 
considered the baseline for the Weka library of machine learning clas-
sifiers. A Metric score, related to this difference in performance between 

algorithms is obtained from this approach. In this regard, this score can 
be positive or negative, and even return a number above 1 (since the 
increase may exceed 100%). 

We used the Metric score to indicate the most contributive spectral 
wavelengths for the prediction. The intention behind it is to provide 
information related to the importance of these variables in separating 
undamaged plants from different insect-type damaged plants, evaluated 
in our dataset. To help ascertain the most contributive spectral regions 
instead of only the individual contribution of our data, we implemented 
a clustering algorithm, based on an unsupervised artificial neural 
network, known as the Self-Organizing Map (SOM). The SOM applies a 
competitive learning approach using a neighborhood function. This 
helps to preserve the topological properties of the input variables, and it 
is useful for evaluating as it creates a low-dimensional visualization of 
high-dimensional data. The SOM was executed with 1000 and 2000 
epochs in, respectively, the ordering and convergence phases. A height 
of lattice equal to 2, a learning rate of 1.0, and the normalization of the 
attributes were also used in this task. With that, we plotted the feature 
maps of the Metric score and identified the highest contributive spectral 
regions used by the machine learning algorithm to model it. 

3. Results 

The initial dataset was composed of all measure variables within the 
days of analysis and separated into two classes: Undamaged plants 
(UDP) and herbivory-damaged plants (with S. frugiperda larvae and D. 
melacanthus). The prediction using the described dataset was executed 
with 8 machine learning algorithms, and the results indicated a signif-
icant overall better performance with the Random Forest (RF) learner 
(Fig. 2 and Table 2). Here, we compared both the Precision, Recall, and 
F-Measures among the algorithms, and adopted Scott-Knott test to 
indicate the differences between the mean values of each prediction. 

Fig. 2. Models’ performance comparison considering undamaged and insect-damaged maize plants with 8 consecutive days of insect-damage.  
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Since F-Measure is a harmonic mean between Precision and Recall (Han 
and Kamber, 2006), we considered it the most important parameter to 
compare the models. The ROC area for the RF was the highest of all 
models, indicating that the algorithm returned high true-positives and 
low false-positives values with more consistency than the others. 

We used the RF algorithm, with the same preset configurations from 
the previous analysis, to evaluate its prediction capability in a day-to- 
day approach. In this regard, the RF learner was capable of achieving 
higher accuracy (F-Measure) than when considering all of the datasets, 
and this is a piece of evidence that the spectral response of maize plants 
under insect attacks changed significantly over the days. Still, the clas-
sification achieved satisfactory performance since day 1, which is an 
indication of how robust hyperspectral data and machine learning 
analysis are. To ensure this comparison and highlight some of these 
aspects, we evaluated both the multiple validation sets returned by our 
consecutive runs during the training phase, as well as the F-measure 
returned at the testing phase of the algorithm (Fig. 3). 

Since RF returned the overall best predictions on the 5th day of 
analysis, we chose this configuration set to evaluate the capability of the 
combination between spectral behavior and learning approach to 
separate different types of insect damage. We evaluated the spectral 
average of the individually measured wavelengths, and for the entire 

optical region (400 nm to 2500 nm), the near-infrared refers to the most 
contributive spectral region to segregate undamaged maize plants from 
damaged ones due to insects’ attacks like S. frugiperda larvae or D. 
melacanthus (Fig. 4). 

In a “one-against-all” type of approach, the RF algorithm was able to 
separate with high accuracies the three treatments (undamaged plants, 
Sf-HDP and Dm-HDP). The undamaged plants returned better metrics 
overall, followed by the Sf-GDP and, later, Dm-HDP (Table 3), and this 
quantitative finding is corroborated with the visual analysis of wave-
lengths behavior for each treatment (Fig. 4). This was important to 
indicate that, even considering similarities between the spectral curves, 
the model was able to overcome most of it and indicate the correct 
group. 

To determine the individual performance of the RF learner when 
confronting the different classes in a pairwise manner, we used different 
subsets with a two-class approach, as indicated in Table 1. This approach 
demonstrated that it is easier for the algorithm to separate undamaged 
maize plants from Dm-HDP, and this can be explained by analyzing the 
spectral difference presented by these two classes (UDP and Dm-HDP) 
mainly inside the near-infrared region (750 nm to 1200 nm) (Fig. 4). 
RF was also capable of differentiating between maize plants from 
caterpillar (Spodoptera frugiperda) to bug (Dichelops melacanthus) 
attack, much like when grouping the three classes (Table 3). The testing 
metrics also indicated interesting information for the different scenarios 
considered (Table 4). Both qualitative and quantitative analysis shows 
that as the classes (for example Dm-HDP and Sf-HDP) present lesser 
spectral differences (Fig. 4) more difficulties the algorithm found to 
segregate them (Table 3). 

Since the RF learner performs multiple combinations of the wave-
lengths used, it is difficult to evaluate its predictions pattern. In this 
sense, the ranking approach combined with the Self-Organizing Map 
(SOM) method was chosen to ascertain its relationship with the input 
variables. Here, this framework was implemented with the subsets 
separated into the pairwise comparison manner (Fig. 5).The highlighted 
areas in yellowish-circles indicate the most contributive regions, with 
less interference from other clusters. 

The addition of the SOM method helped to indicate which regions 

Table 2 
Algorithms comparison considering undamaged and insect-damaged maize 
plants at all days of analysis. Metric values followed by different letters indicate 
a significant difference between each algorithm at the training dataset by the 
Scott-Knott test at 5% probability.  

Algorithm Precision Recall F-Measure ROC Area 

ExT 69.8% e 69.8% c 69.8% d 68.6% e 
kNN 74.8% c 74.6% a 74.7% b 74.1% c 
LogR 63.7% f 64.7% d 62.8% e 71.5% d 
MLP 61.7% g 61.9% f 61.8% f 67.0% f 
NB 56.8% h 47.3% g 43.4% h 53.3% g 
RF 78.5% a 78.7% a 78.3% a 85.4% a 

SVM 77.1% b 63.0% e 51.5% g 53.9% g 
XGB 72.4% d 72.8% b 72.2% c 79.2% b 
DNN 44.2% i 39.2% h 42.1% i 48.5% h  

Fig. 3. Random Forest (RF) performance metric comparison between days of analysis considering undamaged and insect-damaged maize plants. Letters positioned 
above the metric value indicate the differences between each day’s prediction. The value highlighted inside the box-plot regions corresponds with the F-measure 
returned at the testing phase. 

D.E. Garcia Furuya et al.                                                                                                                                                                                                                     



International Journal of Applied Earth Observation and Geoinformation 105 (2021) 102608

7

should be isolated by considering the cluster constructed with the 
highest Metric values (cluster 3 in Fig. 5). These regions can be defined 
by their higher contribution to the RF models prediction, and also with 
lesser interference from the wavelengths grouped into inferior clusters 
(clusters 2, 1, and 0). To summarize the metric values related to the 
defined regions with the help of the SOM method, we calculate a 
descriptive analysis of the spectral regions (Table 5). 

Here, the highest average metric values were obtained, interestingly 
enough, for the comparison between control and caterpillar groups 
instead of control and bug groups comparison. The graphical (Fig. 5) and 
descriptive (Table 5) analysis shows that the visible region (400 nm to 
650 nm) can not segregate damaged maize plants by Sf-HDP and Dm- 
HDP. It occurs since damaged plants have their biophysical and bio-
logical parameters altered like chlorophyll production (Jensen, 2014; 
Asner, 1998) compared to undamaged ones, which is reflected in the 
spectral response of plants for blue and red regions mainly. 

4. Discussion 

When individually evaluating the performance of each algorithm, 
the kNN and XGB returned high accuracies, and the Recall mean value 
obtained with the kNN was higher than RFs’. However, since the Pre-
cision values of RF were higher, the harmonic measure (F) was higher 
for this classifier. SVM and NB returned the worst results, and although 
SVM presented a Precision equal to 1 in all of the validations’ set (Fig. 2), 
which is due to an overestimate of one of the classes (damage group) 
above the other (control group), this scenario resulted in the lowest 
Recall possible. In the testing phase (Table 2) the SVM method presented 
a more leveled classification. Regardless, it returned one of the worst 
possible outcomes. Additionally, in the testing phase, the DNN model 
was significantly worse than the remaining models, which indicated an 
overfitting during the training and validation phase (Fig. 2). Regardless, 
there is potential for deep learning models in spectra data, and future 
investigations should require different takes on this issue. In our case, 
while the DNN did not resulted in a satisfactory result, other algorithms 
like RF were better to our data characteristics. 

The comparison between shallow and deeper approaches is an 
important task when investigating different algorithms, and although 
deep models are recognized as more powerful and robust methods than 
shallow learners (Osco et al., 2021), there are characteristics in the 
dataset that dictates how well these models can perform. In this case, our 
hypothesis for the DNN performing worse than the machine learning 
methods was not only related to the sample size used (n = 1,429), but 
how redundant some of the spectral wavelengths may be within the 
dataset. Besides, another possible explanation relates to the high 
dimensionality of the data (1,934 attributes, from different waves be-
tween 350 and 2,500 nm), also described as the curse of dimensionality 
(known as Hughes phenomenon) (Miyoshi et al., 2020). The RF algo-
rithm is considered one of the most powerful algorithms in use, and its 
capability of learning from multiple input variables is something that is 
benefited from a highly-dimensional dataset such as this one (Breiman, 
2001). 

In other study related to spectral readings and agronomic-related 
predictions with machine learning methods, RF was able to infer both 

Fig. 4. Spectral wavelengths for the three classes (undamaged plants - UDP, Sf-HDP, and Dm-HDP) measured on day 5 of the analysis.  

Table 3 
Evaluation metrics returned by the Random Forest algorithm for separating all 
the classes on day 5.  

Group Precision Recall F-Measure ROC Area 

UDP 96.7% 96.7% 96.7% 98.9% 
Sf-HDP 95.7% 88.0% 91.7% 97.0% 

Dm-HDP 84.1% 92.5% 88.1% 97.0%  

Table 4 
Testing metrics (averaged values) of each classification for separating UDP 
(undamaged maize plants), Sf-HDP and Dm-HDP.  

Treatments TP Rate FP Rate Precision Recall F-Measure 

UDP vs Sf-HDP 96.4% 04.0% 96.4% 96.4% 96.4% 
UDP vs Dm-HDP 96.0% 04.3% 96.0% 96.0% 96.0% 

Sf-HDP vs Dm-HDP 84.4% 14.9% 84.9% 84.4% 84.5%  
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Fig. 5. Ranking metric and SOM clustering method indicating the importance of wavelengths for the three maize plant experiments.  
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macro and micronutrients in hyperspectral readings with satisfactory 
performances (Osco et al., 2020b). The algorithm was also used in the 
hyperspectral imagery-domain to predict weed presence in maize-crops 
(Gao et al., 2018) and vegetable crop biomass with Unmanned Aerial 
Vehicle (UAV) type of data (Astor et al., 2020). Regarding insect-damage 
detection in crops, the accuracy achieved here was approximate from 
the values obtained by the other methods (Wang et al., 2011; Liu et al., 
2018; Tageldin et al., 2020). Although from day 4 and beyond the RF 
model already returned high values, the analysis on day 5 achieved the 
overall best prediction, with some outliers below 0.80. The testing re-
sults indicated, from the 2nd day of the insect-attack, it is possible to 
achieve high prediction values with RF to separate undamaged from 
insect-damaged maize plants. This information is interesting since it is 
an indication of how the reflectance measurements from proximal 
sensing, alongside the robustness of the RF algorithm, are sensitive to 
the effects of the insect-attack in maize plants. 

The pattern returned by the conducted analyses indicates that it is 
easier for the algorithm to separate bug (Dichelops melacanthus) attacks 
than caterpillar (Spodoptera frugiperda) attacks from undamaged maize 
plants. And although it is possible to achieve high accuracies in sepa-
rating the insect-type of attack by comparing the bug group against the 
Spodoptera frugiperda group, it is, as expected, more difficult than when 
in comparison with undamaged plants. This is probably related to how 
both spectral curves (Fig. 4) behave for the different types of classes. The 
Dichelops melacanthus and control averaged curves are far apart from 
each other, while the averaged curve from caterpillar attacked maize 
plants is in between them, with a high standard deviation. 

In some regions (Fig. 4), the averaged spectral curves of bug and 
caterpillar groups are almost near each other. In general, lepidopteran 
larvae can induce higher levels of injury in plant tissues when compared 
to stink bugs, which are sucking insects. Studies have shown that maize 
plants can have their direct defense response suppressed by S. frugiperda 
larvae (Wouters et al., 2016). S. frugiperda can manipulate the plant 
defense in its favor (Glauser et al., 2011) minimizing the production of 
toxic compounds. On the other hand, herbivory injury of D. melacanthus 
herbivory in maize plants induces direct plant defense during the first 
24 h of herbivory. Similar results were observed by (Glauser et al., 2011) 
when S. frugiperda larvae at the fourth instar feed on maize plants. The 
higher changes in the chemical profile of direct defense in maize plants 
injury by herbivory of the stink bug compared to larvae of S. frugiperda 
support the better separation obtained by the algorithm. 

As for the individual contribution of the wavelengths, the ranking 
approach combined with the Self-Organizing Map (SOM) method is, in 
the presented sense, a newly developed approach that can help with the 
analysis to indicate the most important wavelengths and spectral regions 
used for the classification performed by the machine learning algorithm. 
This highlights the importance of the input data (wavelengths) and how 
well they respond to the algorithms’ modeling. The ranking approach in 
the machine learning context is normally used as a pre-processing step to 
reduce the number of input variables to the models by selecting only the 
most important data. In agricultural related problems, we implemented 
this type of approach with the RF and other learners (Ramos et al., 2020; 

Osco et al., 2020a), and it returned important data to monitor maize- 
yield, canopy nitrogen content in citrus and leaf nitrogen concentra-
tion and plant height in maize plants too. Also in this aspect, when 
implementing this type of approach for proximal sensing, a different 
concept with the Relief-F method (Osco et al., 2020a) was considered for 
mapping both macro and micronutrients in citrus-trees. Yet, by adopting 
the Metric score calculation after the algorithms’ classification, it is 
possible to measure how well each wavelength relates to the perfor-
mance of the algorithm. 

The identification of isolated spectral regions is an important feature 
to be incorporated into studies that aim to evaluate different types of 
behavior in plants. The main idea behind it is to propose more direct and 
clear spectral bands to be associated with the respective problem. Our 
model focused on insect-damage in maize plants, however, the proposed 
framework should be possible to be implemented in related research. It 
could also be considered into novel studies that aim to develop simpler 
and direct methods to estimate these variables, such as spectral vege-
tation indices, or even sensors and equipment that focus on these 
particular spectral regions. 

Although it may be related to the model predictor (being this case, 
the RF learner), we intend to perform further investigations to compare 
more traditional methods with the machine learning algorithm to better 
ascertain the impact related to this reduction in data-dimensionality. 
Another possibility is that the information presented, obtained with 
proximal measurements at wavelength scale, can be implemented in 
other projects that aim to evaluate the impact of the spectral regions on 
detecting insect-damage in imagery sensors embedded in UAV plat-
forms. These platforms are capable of embedding hyperspectral sensors 
and achieve high-spatial resolutions, providing spectral information at 
plant level. Novel research that intends to apply and improve this 
framework, must consider the challenges in which the differences be-
tween proximal sensing and aerial sensing impose. Regardless, when 
calculating image data at reflectance values, a similar conduct can be 
investigated to separate undamaged plants from others attacked by such 
insects. 

5. Conclusions 

The main contribution of this study was to present an approach with 
machine and deep learning based models to detect and separate insect- 
damaged plants from undamaged maize plants using only the reflec-
tance measurements obtained with a proximal hyperspectral sensing 
approach. We indicated which learner was more efficient to evaluate the 
impact of a day-by-day analysis. Lastly, we proposed a novel framework 
to identify important spectral regions from visible to short-wave infrared 
bands (from 350 to 2500 nm) using a combination of ranking and self- 
organizing map (SOM) approaches. Our results indicated that the RF 
algorithm is the overall best learner to deal with. After the 5th day of 
analysis, the accuracy of the RF algorithm improved substantially. It 
separated the control, caterpillar (Spodoptera frugiperda), and bug 
(Dichelops melacanthus) groups with an F1-measure equal to 96.7%, 
91.7%, and 88.1%, respectively. Our approach also reveals that the most 
contributive spectral regions are situated in the near-infrared domain 
and, on a small scale, in red, green, and blue, in this respective order. We 
conclude that the approach with machine learning methods is adequate 
to monitor insect-damage in maize plants, differentiating the types of 
insect attack early on. We demonstrate that indicating the most 
contributive wavelengths is suitable to highlight spectral regions of in-
terest. We hope that future research adopts the proposal presented 
herein for other types of cultivars and cultures. 
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