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Abstract: A multispectral light detection and ranging (LiDAR) system, which simultaneously col-
lects spatial geometric data and multi-wavelength intensity information, opens the door to three-
dimensional (3-D) point cloud classification and object recognition. Because of the irregular distri-
bution property of point clouds and the massive data volume, point cloud classification directly
from multispectral LiDAR data is still challengeable and questionable. In this paper, a point-wise
multispectral LiDAR point cloud classification architecture termed as SE-PointNet++ is proposed via
integrating a Squeeze-and-Excitation (SE) block with an improved PointNet++ semantic segmenta-
tion network. PointNet++ extracts local features from unevenly sampled points and represents local
geometrical relationships among the points through multi-scale grouping. The SE block is embedded
into PointNet++ to strengthen important channels to increase feature saliency for better point cloud
classification. Our SE-PointNet++ architecture has been evaluated on the Titan multispectral LiDAR
test datasets and achieved an overall accuracy, a mean Intersection over Union (mIoU), an F1-score,
and a Kappa coefficient of 91.16%, 60.15%, 73.14%, and 0.86, respectively. Comparative studies
with five established deep learning models confirmed that our proposed SE-PointNet++ achieves
promising performance in multispectral LiDAR point cloud classification tasks.

Keywords: PointNet++; squeeze and excitation; point cloud classification; multispectral LiDAR

1. Introduction

Airborne single-channel light detection and ranging (LiDAR) has been widely used
in many applications, such as topographic mapping, urban planning, forest inventory,
environmental monitoring, due to its abilities of quickly acquiring large-scale and high-
precision information of the Earth’s surface [1,2]. Based on the highly-accurate three-
dimensional (3-D) height information and single-wavelength infrared intensity information,
point cloud classification has become an active research direction in the fields of photogram-
metry and remote sensing and computer science [3–5]. However, only the LiDAR data
themselves achieve unsatisfactory fine-grained point cloud classification results due to the
lack of rich spectral information. Therefore, LiDAR data are commonly combined with
optical images to better understand the Earth surface mechanics, and monitor the ground
objects and their changes [6–8]. Some competitions and special issues were organized
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to promote data fusion of LiDAR with multiple other data sources (e.g., hyperspectral
images, and ultra-high-resolution images) for urban observation and surveillance, forest
inventory, etc [9,10]. Although the integration of LiDAR data with image data improves
the point cloud classification accuracy, some issues, such as geometric registration and
object occlusions, have not been effectively and satisfactorily addressed.

Several multispectral LiDAR prototypes, which can simultaneously collect point
clouds with multi-wavelength intensities, have been launched in recent years. For ex-
ample, Wuhan University in China also developed a multispectral LiDAR system with
four wavelengths of 556 nm, 670 nm, 700 nm, and 780 nm in 2015 [11]. The intensities
of multiple wavelengths are independent of illumination conditions (e.g., shading and
secondary scatter effect), effectively reducing shadow occlusions. In December 2014, the
first commercial multispectral LiDAR system, which contains three wavelengths of 532 nm,
1064 nm, and 1550 nm, has been released by Teledyne Optech (Toronto, ON, Canada).
Multispectral LiDAR data have been used in many fields, such as topographic mapping,
land-cover classification, environmental modeling, natural resource management, and
disaster response [12–15].

A multispectral LiDAR system acquires multi-wavelength spectral data simultane-
ously in addition to 3-D spatial data, providing multiple attribute features to the targets of
interest. Studies have demonstrated that multispectral LiDAR point clouds achieved better
classification at finer details [10,16]. Recently, multispectral point cloud data have been in-
creasingly applied to carry out classification studies. These methods can be categorized into
groups in terms of processed data type: (1) two-dimensional (2-D) multispectral feature image-
based methods [17–25] and (2) 3-D multispectral point clouds based methods [22,26–30]. The
former first rasterized multispectral LiDAR point clouds into multispectral feature im-
ages with a given raster size according to the height and intensity information of multi-
wavelength point clouds, and then explored a variety of established image processing
methods for point cloud classification and object recognition. Zou et al. [17] and Matikainen
et al. [18] performed an objected-based classification method to investigate the feasibility of
Optech Titan Multispectral LiDAR data on land-cover classification. Bakuła et al. [19] car-
ried out a maximum likelihood land-cover classification task by fusing textural, elevation,
and intensity information of multispectral LiDAR data. Fernandez-Diaz et al. [20] proven
that multispectral LiDAR data achieved promising performance on land-cover classifica-
tion, canopy characterization, and bathymetric mapping. To improve multispectral LiDAR
point cloud classification accuracies, Huo et al. [21] explored a morphological profiles (MP)
feature and proposed a novel hierarchical morphological feature (HMP) function by taking
full advantage of the normalized digital surface model (nDSM) data of the multispectral
LiDAR data. More recently, Matikainen et al. [22], by combining with single photon Li-
DAR (SPL) data, investigated the capabilities of multi-channel intensity data in land-cover
classification of a suburban area. However, most of the state-of-the-art studies just used
low-level hand-crafted features, such as intensity and height features directly provided
by the multispectral LiDAR data, geometric features (e.g., planarity and linearity), and
simple feature indices (e.g., vegetation index and water index), in point cloud classification
tasks. So far, few classification studies have focused on high-level semantic features directly
learned from the multispectral LiDAR data. Deep learning, which learns high-level and
representative features from a plenty of representative training samples, has attracted
increasing attentions in a variety of applications, such as medical diagnosis [23] and com-
puter vision [24]. Pan et al. [25] compared a representative deep learning method, Deep
Boltzmann machine (DBM), with two widely-used machine learning methods, principal
component analysis (PCA), and random forest (RF) in multispectral LiDAR classification,
and found that the features learned by the DBM improved an overall accuracy (OA) by
8.5% and 19.2%, respectively. Yu et al. [26] performed multispectral LiDAR land-cover
classification by a hybrid capsule network, which fused local and global features to obtain
better classification accuracies. Although the aforementioned deep learning-based methods
achieved promising point cloud classification performance, these methods were performed
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on 2-D multispectral feature images converted from 3-D multispectral LiDAR data [25,26].
Although rasterizing 3-D multispectral LiDAR point clouds into 2-D multispectral feature
images greatly reduces the computational cost when processing point cloud classification
of large areas, such conversion, which brings conversion errors and spatial information
loss of some objects (e.g., powerline and fence), leads to incomplete and possibly unreliable
point cloud classification results.

The 3-D multispectral point clouds based methods directly perform point-wise classi-
fication tasks without data conversion. Wichmann et al. [27] first performed data fusion
through a nearest neighbor approach, and then analyzed spectral patterns of several land
covers to perform point cloud classification. Morsy et al. [28] separated land-water from
vegetation-built-up by using three normalized difference feature indices derived from
three Titan multispectral LiDAR wavelengths. Sun et al. [29] performed 3-D point cloud
classification on a small test scene by integrating the PCA-derived spatial features along
with the laser return intensity at different wavelengths. Ekhtari et al. [30,31] proved that
multispectral LiDAR data have good feature recognition abilities by directly classifying the
data into ten land ground objects (i.e., building 1, building 2, asphalt 1, asphalt 2, asphalt 3,
soil 1, soil 2, tree, grass, and concrete) via a support vector machine (SVM) method. Ekhtari
et al. [31] performed an eleven-class classification task and achieved an OA of 79.7%. In
addition, some multispectral point clouds classification studies have demonstrated that
3-D multispectral LiDAR point cloud based methods were superior to 2-D multispectral
feature image based methods by an OA improvement of 10% in [32], and 3.8% in [33].
Recently, Wang et al. [34] extracted the geometric-and-spectral features from multispectral
LiDAR point clouds by a tensor representation. Compared with a vector-based feature
representation, a tensor preserves more information for point cloud classification due to
its high-order data structure. Although most aforementioned methods achieved better
point cloud classification performance in most cases, even on correctly identifying some
very-long-and-narrow objects (e.g., powerlines and fences) [2] or some ground objects in
complex environments (e.g., roads occluded by tree canopies) [1]. These methods classified
objects from multispectral LiDAR data according to the spectral, geometrical, and height-
derived features of the data. Feature extraction and selection plays an important part in
point cloud classification, but there is no simple way to determine the optimal number of
features and the most appropriate features in advance to ensure robust point cloud classi-
fication accuracy. Therefore, to further improve point cloud classification accuracy, deep
learning methods will be explored for point cloud classification by directly performing on
3-D multispectral LiDAR point clouds.

To effectively process unstructured, irregularly-distributed point clouds, a set of net-
works/models have been proposed, such as PointNet [35], PointNet++ [36], DGCNN [37],
GACNet [38], and RSCNN [39]. Specifically, PointNet [35] used a simple symmetric func-
tion and a multi-layer perceptron (MLP) to handle unordered points and permutation
invariance of a point cloud. However, PointNet neglected points-to-points spatial neighbor-
ing relations, which contained fine-grained structural information for object segmentation.
DGCNN [37], via EdgeConv, constructed local neighborhood graphs to capture the local
domain information and global shape features of a point cloud effectively. To avoid fea-
ture pollution between objects, GACNet [38] used a novel graph attention convolution
(GAC) with learnable kernel shapes to dynamically adapt to the structures of the objects
to be concerned. To obtain an inductive local representation, RSCNN [39] encoded the
geometric relationship between points by applying weighted sum of neighboring point
features, which resulted in much shape awareness and robustness. However, GACNet
and RSCNN have a high cost of data structuring, which limits their abilities to generalize
complex scenarios. PointNet++ [36], a hierarchical structure of PointNet, is capable of both
extracting local features and dealing with unevenly sampled points through multi-scale
grouping (MSG), thereby improving the robustness of the model. Chen et al. [40], based on
the PointNet++ network, performed a LiDAR point cloud classification by considering both
the point-level and global features of centroid point, and achieved a good classification
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performance for airborne LiDAR point clouds with variable densities at different areas,
especially that for the powerline category.

Due to the simplicity and robustness of PointNet++, in this paper, we select it as
our backbone for point-wise multispectral LiDAR point cloud classification. The features
learned by the PointNet++ contain some ineffective channels, which cost heavy computa-
tion resources and result in a decrease of classification accuracy. Therefore, to emphasize
important channels and suppress the channels unconducive to prediction, a Squeeze-and-
Excitation block (SE-block) [41] is integrated into the PointNet++, termed as SE-PointNet++.
The proposed SE-PointNet++ architecture is applied to the Titan multispectral LiDAR data
collected in 2014. We select 13 representative regions and label them manually with six
categories by taking into account ground objects distributions in the study areas and the
geometrical and spectral properties of the Titan multispectral LiDAR data. The main
contributions of the study include the following:

(1) A novel end-to-end SE-PointNet++ is proposed for the point-wise multispectral Li-
DAR point cloud classification task. Specifically, to improve point cloud classification
performance, a Squeeze-and-Excitation block (SE-block), which emphasizes important
channels and suppresses the channels unconducive to prediction, is embedded into
the PointNet++ network.

(2) We investigate by comprehensive comparisons the feasibility of multispectral LiDAR
data and the superiority of the proposed architecture for point cloud classification tasks,
as well as the influence of the sampling strategy on point cloud classification accuracy.

2. Materials and Methods
2.1. Multispectral LiDAR Test Data

As the first commercial system available to scientific research and topographical
mapping, a Titan multispectral airborne LiDAR system contains three active laser wave-
lengths of 1550 nm, 1064 nm, and 532 nm, respectively. Capable of capturing discrete
and full-waveform data from all three wavelengths, the Titan system has a combined
ground sampling rate up to 1 MHz. Table 1 lists the detailed specifications of the sys-
tem. The scan angle varied between ± 20◦ across track from the nadir, and the Titan
system acquired points at around 1075 m altitude with 300 kHz Pulse Repetition Frequency
(PRF) per wavelength, and 40 Hz scan frequency. All recorded points were stored in LAS
files [28]. Therefore, the Titan multispectral LiDAR system provided three independent
LiDAR point clouds corresponding to the three wavelengths, contributing to 3-D point
cloud classification tasks.

Table 1. Specifications of the Titan system.

Channel C 1 C 2 C 3

Wavelength(nm) 1550 1064 532
Waveband SWIR NIR GREEN

Look angle(degree) 3.5◦ 0◦ 7◦

Pulse repletion frequency(kHz) 300 300 300
Flying height(m) ~1000 ~1000 ~1000

Point density(points/m2) 3.6 3.6 3.6

The study area is located at a small town (the center of latitude 43◦58′00”, longitude
79◦15′00”) in Whitchurch-Stouffville (ON, Canada). As shown in Figure 1, we selected
thirteen representative regions containing rich object types, such as asphalt roads, forest
and individual trees, open soil and grass, one- and two-story gable roof buildings, indus-
trial buildings, and powerlines. There were nineteen flying strips (ten strips vertically
intersecting nine strips), covering an area of about 25 km2. Note that, in this study, due to
no metadata (such as system parameters and trajectories) provided with the nineteen flying
strips, absolute intensity calibration was not performed. The nineteen strips were roughly
registered by an iterative closest points (ICP) method. Similarly, because control/reference
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points were unavailable, the geometric alignment quality was not statistically reported. In
this study, as seen in Figure 1, the thirteen study areas (red rectangles for model training and
blue rectangles for model testing) were selected for assessing our SE-PointNet++ architecture.
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To generate the required input to our SE-PointNet++ architecture, a two-step data
preprocessing (i.e., data fusion and data annotation) is proposed, as shown in Figure 2. Data
fusion aims to merge the three individual point clouds of wavelengths (532 nm, 1024 nm,
and 1550 nm) into a single point cloud, in which each point contains its coordinates and
three-wavelength intensity values. Data annotation aims to manually label the selected
thirteen Titan multispectral point cloud regions into several categories of interest and
obtain a training dataset for our proposed architecture.
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2.2.1. Data Fusion

The Titan multispectral LiDAR data consist of three independent point clouds, cor-
responding to three laser wavelengths of 1550 nm, 1064 nm, and 532 nm. The three laser
beams were titled by +3.5◦, 0◦, and +7◦ from the nadir direction. To fully use the reflectance
characteristics of the three wavelengths and improve the point density of the point clouds,
the three independent point clouds are first merged into a single, high-density multispectral
point cloud, each point of which contains its own intensity and two other assigned intensi-
ties from the other wavelengths. In this study, we adopt a 3-D spatial join technique [27] to
merge the three independent point clouds. Specifically, among the three point clouds, each
single-wavelength point cloud is taken as the reference in turn. Each point of the reference
point cloud is processed to find its neighbors in the other two wavelengths of point clouds
by a nearest neighbor searching algorithm and then obtains the intensities calculated
from the neighbors by a bilinear interpolation method. The search radius is determined
according to the point density. For example, as seen in Table 1, for each wavelength, the
average point density is about 3.6 points/m2, thus, the maximum search distance is set to
be 1.0 m to prevent grouping points located on different objects. Note that, for a point in
the reference point cloud, if no neighbors are found in one of the other two wavelengths,
the intensity value of this wavelength is set to be zero. Finally, the single multispectral
point cloud data are preprocessed, each point of which contains its coordinates ([x, y, z])
and its three-wavelength laser intensity (LRI) values

[
LRIλ1550 , LRIλ1064 , LRIλ532

]
.

2.2.2. Data Annotation

In this study, we select thirteen representative test areas from the collected Titan
multispectral point cloud dataset, including six categories (i.e., road, building, grass, tree,
soil, and powerline). The total number of points is 8.52 million for the thirteen test areas. By
means of the CloudCompare software, six categories were manually labeled point by point.
Table 2 shows the number of points of each category in each test area. Each of the selected
areas is saved in a separate file, where each point contains seven attributes—coordinates
(x, y, z), three wavelengths (LRIλ1550 , LRIλ1064 , LRIλ532 ), and the category label.

Table 2. Specifications of the Titan system (# represents the number of the points).

Road (#) Building (#) Grass (#) Tree (#) Soil (#) Powerline (#) Total (#)

area_1 37,956 19,821 207,394 428,525 4549 0 689,245
area_2 24,594 10,408 130,884 259,930 4761 809 431,386
area_3 71,175 78,587 308,337 480,545 13,713 0 952,357
area_4 32,601 45,556 79,891 254,723 7070 493 420,334
area_5 75,710 46,571 347,264 79,966 7189 0 556,700
area_6 32,557 22,786 71,229 207,817 1703 591 336,683
area_7 63,879 39,436 224,173 274,159 1268 2626 605,541
area_8 70,757 25,794 254,340 342,594 6344 4561 704,390
area_9 72,570 33,754 355,467 155,838 9465 2153 629,247

area_10 60,764 61,764 395,228 96,810 31,589 0 655,155
area_11 91,407 41,390 261,218 455,500 16,968 2533 869,016
area_12 94,965 40,941 367,039 252,181 6181 2859 764,166
area_13 117,994 65,040 478,454 198,248 46,380 3075 909,191

2.3. SE-PointNet++ Framewwork

Usually, some of the features learned by deep learning methods, such as PointNet++,
might be ineffective for point cloud classification tasks, resulting in high computational
costs and a decrease of classification accuracy. Therefore, to emphasize important channels
and suppress the channels unconducive to prediction, an improved PointNet++ architec-
ture, termed as SE-PointNet++, is proposed by embedding a Squeeze-and-Excitation block
into the PointNet++ architecture. Figure 3 illustrates the SE-PointNet++ framework. As
seen in Figure 3, the SE-PointNet++ takes a multispectral LiDAR point cloud (N is the
number of points) as the input and outputs an identical-spatial-size point cloud, where
each point is labelled with a specific category in an end-to-end manner. The SE-PointNet++
architecture involves an encoder network, a decoder network, and a set of skip link concate-
nations. The encoder network consists of four set abstraction modules, which recursively



Remote Sens. 2021, 13, 2516 7 of 19

extract multi-scale features. The decoder network is operated by four feature propagation
modules. The feature propagation modules aim to gradually recover a semantically-strong
feature representation to accurately classify the point cloud. The skip link concatenations,
to enhance the capability of feature representation, integrate the features selected from the
set abstraction modules with the features having the same size in the feature propagation
modules. The following subsections first detail the Squeeze-and-Excitation block, followed
by a description of the SE-PointNet++.
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2.3.1. Squeeze-and-Excitation Block (SE-Block)

The SE-block aims to improve the expressive ability of the network by explicitly
modelling the interdependencies among the channels of its convolutional features of the
network without introducing a new spatial dimension for the fusion of the feature channels.
Figure 4 illustrates the SE-block structure. Denote Ftr as a traditional convolution structure.
The SE-block is a computational unit built on a transformation Ftr, which maps an input
X =

[
x1, x2, . . . , xC′] (X ∈ RH′×W′×C′ , where H′, W ′, and C′ are, respectively, the height,

width, and channel number of X) to feature map U ∈ RH×W×C (where H, W and C are,
respectively, the height, width, and channel number of U). The Ftr transformation is defined
as follows:

uc = vc ∗ X =
C′

∑
s=1

vs
c ∗ xs (1)

where ∗ denotes the convolution operation. vc =
[
v1

c , v2
c , . . . , vC′

c

]
refers to the parameters

of the c-th filter. xs is the s-th input of X. vs
c is a 2-D spatial kernel which acts on the

corresponding channel of X and represents a single channel of vc . uc ∈ RH×W refers to the
c-th 2-D matrix in U. Here, there are two processes—squeeze and excitation.

• Squeeze: Global Information Embedding. The squeeze process Fsq(uc) is designed to
compress the spatial information of the feature map by performing a global average
pooling for each channel of the feature graph, thereby only channel information is
retained. To reduce channel dependencies, the global spatial information is squeezed
into a channel descriptor. To this end, a global average pooling is used to generate
channel-wise statistics. Formally, a statistic z ∈RC is generated by shrinking U through
its spatial dimensions, H ×W. The c-th element of z is calculated by:

zc = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j) (2)
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Excitation: Adaptive Recalibration. The excitation process Fex(z, W) aims to assign a
weight to each element of the 1× 1× C channel descriptor generated by the squeeze
process through two fully connected layers. In this module, a simple gating mecha-
nism is employed with a sigmoid activation to fully capture channel-wise dependen-
cies, which similar to a gating mechanism in recurrent neural network. Specifically,
Fex(z, W) exploits the channel-wise interdependencies in a non-mutually exclusive
manner by appending two fully connected layers after the squeeze process Fsq(uc).
The outputs of the two fully connected layers are activated using the Rectified Linear
Unit (ReLU) and the sigmoid functions, respectively. In this way, the output of the
second fully connected layer constitutes a channel-wise attention descriptor, denoted
as s. The attention descriptor s acts as a weight function to recalibrate the input
feature map to highlight the contributions of the informative channels. The attention
descriptor s is defined as follows:

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (3)

where δ refers to the ReLU function, W1∈R
C
r ×C and W2∈RC× C

r , r is a reduction ratio
in the dimensionality-reduction layer. σ refers to the sigmoid function, which limits
the importance of each channel to the range of [0, 1], and is multiplied to U in a
channel-wise manner to form the input of the next level. The final output of the block
is obtained by rescaling U with the activations s:

x̃c = Fscale(uc, sc) = scuc (4)

where
~
X = [x̃1, x̃2, . . . , x̃C] refers to the final output of the block, sc is the c-th element

of s. Fscale(uc, sc) refers to channel-wise multiplication between scalar sc and feature
map uc ∈ RH×W .
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2.3.2. Training Sample Generation

In the collected airborne Titan multispectral LiDAR point clouds, different categories
demonstrate different spatial attributes, such as point density due to a top-down data acqui-
sition means. That is, the features learned in the dense sampling areas may not be extended
to the sparse sampling areas, and the model trained with the sparse points may not be able
to identify fine-grained local structures. Therefore, to address the density inconsistency
and sparsity issues of point clouds, a density consistent method is proposed for processing
the scenarios with different point densities. The input of the proposed density consistent
method is defined as a point set S = {p1, . . . , pn | pi = (x, y, z, f )} where x, y, z are the
coordinates of the point, and f is the feature vector, such as color and surface normal. We
first normalize S to the range of [−1, 1] and output a new point set Ŝ. Considering the
limited GPU capacity, it is impossible to feed an entire training point set directly into the
network. We, according to the processed test areas and multispectral LiDAR points, grid
the normalized training set (Ŝ) into a set of blocks using a block size of 0.12× 0.12 m2
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without overlapping, each of which contains a different number of points. To obtain a
fixed number of samples for each point block, a farthest point sampling (FPS) algorithm
is used to down-sample it with a given number sample size, N. Note that, for each point
block, the higher the number of the training samples, the more the information learned
by the proposed architecture. However, computational performance should be taken
into account when the number of samples is defined. Due to point density inconsistency,
some point blocks might contain few points with the number of sampling points smaller
than N. Therefore, data interpolation is required to obtain the defined number size of
sampling points.

2.3.3. SE-PointNet++

After the generation of the training samples, the N multispectral LiDAR points with six
attributes (coordinates (x, y, z) and three-wavelength intensities (LRIλ1550 , LRIλ1064 , LRIλ532 ))
are directly input into our SE-PointNet++ architecture, which involves an encoder network,
a decoder network, and a set of skip link concatenations. The encoder network consists
of four set abstraction modules to recursively extract multi-scale features at the scale of
{1/4, 1/16, 1/64, 1/256} with regard to the input point cloud with the point number of N.
Figure 5 shows the first set abstraction module. Specifically, a set abstraction module takes
an N × 6 matrix as the input and outputs an N/4× 64 matrix of N/4 subsampled points
with 64− dimensional feature vectors summarizing the local contextual information. As
seen in Figure 5, the set abstraction module in the encoder network consists of a Sampling
layer, a Grouping layer, and a Channel Feature Attention layer. Firstly, the sampling layer
defines the N/4 centroids of local regions by selecting a set of points through an iterative
FPS algorithm. Given the input points {x1, x2, . . . , xn}, the FPS selects a subset of points{

xi1 , xi2 , . . . , xim
}

, such that xij is the fastest distant point from the remaining point set{
xi1 , xi2 , . . . , xij−1

}
. The centroids of the sampling layer are 1/4 times of the input points

each time. Afterwards, a grouping layer is used to construct the corresponding local
regions by searching for the neighboring points around the N/4 centroids by a ball query
algorithm. For each centroid, via the ball query algorithm, all neighboring points are found
within a given radius, from which K points are randomly selected to construct a local
region (K is set to 32 in this study). After the implementation of the sampling and grouping
layers, the multispectral LiDAR points are then sampled into N/4 point sets, each of which
contains 32 points with their 6 attributes. The output involves a group of point sets with the
size of N/4× 32× 6. Subsequently, we encode these local regions into feature vectors via
our Channel Feature Attention layer. For each point, we extract its features by multi-layer
perceptrons (MLPs), and emphasize its important features and suppress its unimportant
channels by the SE block. Specifically, in the SE block, each channel of the N/4 points is
squeezed via a max-pooling, and then its weight value is calculated and normalized to the
range of [0, 1] by the two MLP layers and sigmoid function. The higher the weight value,
the more important the channel. Finally, the important channels with higher weight values
are then excited. To avoid the situation of missing features when the weight is close to
zero, a short connection is used to connect the features before and after the channel feature
attention layer. Because there exist different dimensions of the learned features before and
after the channel feature attention layer, convolution operation is performed to match their
dimensions in the shortcut connection.

The decoder network includes four feature propagation modules, which gradually
recover a semantically-strong feature representation to produce a high-quality classified
point cloud. Figure 6 shows an example of the feature propagation module. As illustrated
in Figure 6, the output data size of the encoder is N/256× 512 (where, 512 is the dimension
of features), which contains more useful channel feature information. To propagate the
learned features from the sampled points to the original points, interpolation is first
employed through an inverse distance weighting within the feature propagation module.
The point features are propagated from N/256× 512 points to N/64 points, where N/64
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and N/256 are the point sets of the input and the output of the fourth set abstraction
module.
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To enhance the capability of the feature representation, the interpolated features on
the N/64 points are then concatenated with the skip linked point features from the set
abstraction modules via the skip link concatenations. Then, to capture features from the
coarse-level information, the concatenated features are passed through a “unit pointnet”,
similar to 1×1 convolution in CNNs. A few shared fully connected and ReLU layers
update the feature vector of each point. The process is repeated until the features have
been propagated to the original point set.

3. Results

To assess the performance of the SE-PointNet++ on multispectral point cloud classifica-
tion, we conducted several groups of experiments on the Titan multispectral LiDAR Data.

3.1. Experimental Setting

We implemented all tests in the framework of Pytorch1.5.0 and trained them with GTX
1080Ti GPU. Each point of the Titain multispectral LiDAR data contained its coordinates
([x, y, z]), three-wavelength intensity values

[
LRIλ1550 , LRIλ1064 , LRIλ532

]
and the category
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label. The number of sampling points, N, was set to be 4096 points. The number of
neighbors, K, was set to be 32 when calculating low-dimensional prior Gϕ. Parameters,
i.e., learning rate, batch size, decay rate, optimizer, and max epoch, were set to be 0.001,
8, 10−4, Adam, and 200, respectively. Among the selected thirteen test areas, the first ten
areas (area_1 to area_10, about 70% of the data) were used as the training sets, and the
remaining (area_11 to area_13, about 30% of the data) as the test sets.

3.2. Evaluation Metrics

The following evaluation metrics were used to quantitatively compare and analyze
the multispectral LiDAR point cloud classification results. These metrics include overall ac-
curacy (OA) [42], mean intersection over union (mIoU) [43], Kappa coefficient (Kappa) [44],
and F1-score [45]. The metrics are presented as follows:

OA =
tp + tn

tp + tn + f p + f n
(5)

mIoU =
tp

tp + f p + f n
(6)

Kappa =
OA− pe

1− pe
(7)

pe =
(tp + tn)× (tp + f p)

(tp + tn + f p + f n)2 +
(tn + f p)× (tn + f n)

(tp + tn + f p + f n)2 (8)

F1 − score = 2× precision× recall
precision + recall

(9)

precision =
tp

tp + f p
(10)

recall =
tp

tp + f n
(11)

where tp is the number of true positives, tn is the number of true negatives, f p is the
number of false positives, and f n is the number of false negatives.

3.3. Overall Performance

To evaluate the point cloud classification performance of the SE-PointNet++, we ap-
plied it to the Titan multispectral LiDAR data. Figure 7 shows the point cloud classification
results of our SE-PointNet++ architecture. Visual inspection demonstrates that most cat-
egories (see Figure 7a–c)) were correctly classified, compared with the ground truth (see
Figure 7d–f). Specifically, the road, grass, tree, and building points in the three areas were
all clearly classified. However, some soil points were misclassified as the grass points. The
reason behind this phenomenon might be the similar topological features and geographical
distributions of these two categories. In addition, some powerline points were misclassified
as the tree points, which may also be caused by the mixing and lack of obvious boundaries
between the two categories.
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To statistically assess the point cloud classification performance of our network, the
classification confusion matrix was calculated and listed in Table 3. As seen in this table,
our proposed architecture obtained the OA higher than 70% for five categories, i.e., road,
building, grass, tree, and powerline. Particularly, the grass and tree categories achieved
higher classification accuracies with an OA of 94.70% and 97.09%, respectively. One of the
facts is that, in the Titan multispectral LiDAR system, three channels, i.e., 532 nm, 1024 nm,
and 1550 nm, provide rich vegetation information. In feature engineering-based methods,
some vegetation indices can be derived from the three channels, improving the classification
accuracies of grass and tree. Our architecture achieved a modest classification performance
on soil with an OA of 52.45%. Most soil points were misclassified as grass ones.

Table 3. The point cloud classification confusion matrix of the SE-PointNet++, (# represents the
number of the points).

Categories Road (#) Building (#) Grass (#) Tree (#) Soil (#) Powerline (#)

road 166,311 532 57,035 165 12,460 0
building 367 93,747 561 14,684 0 110

grass 14,297 274 842,690 3429 29,195 0
tree 247 12,998 5208 670,476 227 1415
soil 8810 324 9581 80 20,733 0

powerline 0 752 0 1714 0 5850

OA (%) 70.32 85.64 94.70 97.09 52.45 70.35

The reason behind this phenomenon might be the similarities of the spatial distri-
butions and topological characteristics between soil and grass. Comparatively, although
the study area contains few points of powerline, our presented SE-PointNet++ correctly
recognized the powerline points from the data due to the geometrical and distribution
characteristics of powerline. Due to the use of LiDAR elevation information, objects at
different elevations can be easily differentiated, for example, only 697 road points (account
for 0.3% of all points) were misclassified as other high-rise categories, such as building,
tree, and powerline. Specifically, 928 building points (0.85%) were misclassified as road
and grass points; 404 soil points (1%) were misclassified as building and tree points.

3.4. Comparative Experiments

To fairly demonstrate the robustness and effectiveness of our architecture, we com-
pared it with other representative point-based deep learning models, including Point-
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Net [35], PointNet++ [36], DGCNN [37], GACNet [38], and RSCNN [39]. Although these
models have achieved excellent performance on point cloud classification and semantic
segmentation, they have not been tested on large-scale multispectral LiDAR data con-
taining complex urban geographical features. A quantitative comparison between the
SE-PointNet++ and the other five models are listed in Table 4.

Table 4. A comparative point cloud classification results of our SE-PointNet++ with other five
established deep learning modules under three test areas (11–13). bold represents the number of
the points.

Model OA (%) mIoU (%) F1-Score (%) Kappa

PointNet [35] 83.79 44.28 46.68 0.73
PointNet++ [36] 90.09 58.60 70.13 0.84

DGCNN [37] 91.36 51.04 66.17 0.86
GACNet [38] 89.91 55.14 69.64 0.84
RSCNN [39] 90.99 56.10 70.23 0.86

SE-PointNet++ 91.16 60.15 73.14 0.86

As shown in Table 4, in terms of the point cloud classification accuracy, the PointNet
achieved the worst point cloud classification with an OA of 83.79%. The reason behind
this phenomenon is that the PointNet neglected the points-to-points spatial neighboring
relations, which contained fine-grained structural information for segmentation. The
GACNet behaved modestly with an OA of 89.91 %. Due to the integration of an attention
scheme with graph attention convolution, the GACNet was capable of adapting kernel
shapes to dynamically adapt to the structures of the objects, thereby improving the quality
of feature representation for accurate point cloud classification. The PointNet++, DGCNN,
RSCNN, and our SE-PointNet++ outperformed the aforementioned two methods with
the OA of over 90.0%. For the DGCNN, benefiting from the local neighborhood graphs
constructed by EdgeConv, similar local shapes can be easily captured, which contributed
to the improvement of feature representation. RSCNN, via relation-shape convolutions,
produced geometric relationships of points to obtain discriminative shape awareness,
thereby achieving a good point cloud classification performance. However, these methods
performed ineffectively with a high cost of data structuring, which limits their abilities
to generalize complex scenarios. PointNet++ used a hierarchical structure to extract the
local information of points, thereby achieving a better point cloud classification result.
As seen from the other evaluation metrics, the SE-PointNet++ achieved the best scores
of mIoU (62.15%), F1-score (73.14%) and Kappa coefficient (0.86). The introduction of
the SE-blocks that fused local and global features of points contributed to fine-grained
information acquisition. As a result, the SE-PointNet++ achieved with the mIoU value
increased up to 60.15%. Note that the six categories in the thirteen test areas were unevenly
distributed. As seen in Table 2, the number of points greatly changed from one category to
another, leading to that the categories with sufficient points achieved a good point cloud
classification performance, while the categories with few points achieved a poor point
cloud classification performance.

Figure 8 shows the comparative point cloud classification results of the area_11 test
area. Figure 9 shows a close-up view of the comparative point cloud classification results.
Three oval-shaped regions (i.e., Regions A, B, and C) were highlighted for further com-
parison. Visual inspection of Region A indicates that the DGCNN, RSCNN, and GACNet
models misclassified most bare soil points as grass ones. This is due to their similar topo-
logical features and geographical distributions. The three models heavily relied on the
geometric relationships between points. Specifically, DGCNN used EdgeConv as a feature
extraction layer to leverage neighborhood structures in both point and feature spaces.
RSCNN and GACNet used relation-shape convolution and graph attention convolution to
encode the geometric relationship of points, respectively. Similarly, as seen in Region C,
for the DGCNN , RSCNN and GACNet classification results, some bare soil points were
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misclassified as road and grass points. Although the PointNet++ achieved satisfactory
classification accuracy of the soil category (see Table 4 and Region B in Figure 9), some
road points were misclassified as bare soil ones. However, as seen from Region B, our
SE-PointNet++ model accurately predicted road points. This is due to the SE-block embed-
ded in the feature extraction process to enhance important channels and suppress useless
channels, thereby our architecture achieved better classification accuracies for the soil, road,
and grass categories.
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4. Discussion
4.1. Parameter Analysis

In the proposed SE-PointNet++, there are two parameters, input data and the number
of sampling points, N. We designed the following experiments to investigate (1) the
superiority of the multispectral LiDAR data, and (2) the feasibility of SE-PointNet++ to the
selection of the parameter N.

4.1.1. Input Data

To assess the superiority of the fused multispectral LiDAR data to point cloud classifi-
cation, we input different types of data into the proposed SE-PointNet++ architecture. Five
experiments were conducted to investigate the input data types: (1) only geometrical data
without any intensities (i.e., Case 1-1), (2) 1550 nm LiDAR data (i.e., Case 1-2), (3) 1064 nm
LiDAR data (i.e., Case 1-3), (4) 532 nm LiDAR data (i.e., Case 1-4), and (5) multispectral
LiDAR data (i.e., Case 1-5). In this group of experiments, N was set to be 4096. Table 5
shows the average experimental results for the selected 13 test areas.

Table 5. Point cloud classification results with the different input data under three test areas (11–13).

Exp. No. Input Data Type OA (%) mIoU (%) F1-Score (%) Kappa

Case 1-1 only geometrical data 88.91 52.55 62.41 0.83

Case 1-2 1550nm-wavelength
LiDAR data 82.48 51.50 62.33 0.72

Case 1-3 1064nm-wavelength
LiDAR data 90.47 58.09 68.40 0.85

Case1-4 532nm-wavelength
LiDAR data 84.12 49.53 61.05 0.754

Case1-5 multispectral LiDAR data 91.16 60.15 73.14 0.86

As seen from Table 5, the point cloud classification accuracies of the 532 nm LiDAR
data are very close to those of the 1550 nm LiDAR data. Compared with the other two
single-wavelength data, the 1064nm LiDAR data achieved better point cloud classification
accuracies with an OA of 90.47%, an mIoU of 58.09%, an F1-Score of 68.40%, and a Kappa
coefficient of 0.8503. The multispectral LiDAR data achieved the best point cloud classifica-
tion performance by the OA improvement from 1% to 9%, the mIoU improvement from 1%
to 9%, the F1-score improvement from 5% to 14%, and the Kappa coefficient improvement
from 0.01 to 0.14.

4.1.2. Number of Sampling Points

To investigate the effect of the number of sampling points on point cloud classification
results using the Titan multispectral LiDAR data, we varied N from 4096, 2048, 1024, 512,
128, to 32. Table 6 shows the experimental results of the six categories. As shown in Table 6,
the point cloud classification accuracies dramatically decreased when the number of the
sampling points decreased from 4096 to 32. Our architecture achieved its best performance
when N was set to be 4096. The main reason for this situation is that the less the number of
sampling points, the less the features being represented for each category. Of course, the
larger the number of points, the better the point cloud classification accuracy. However,
due to the computation capacity limitation of the computer being used, the number of
sampling points cannot be set extensively large in this study. As such, in our study, the
better point cloud classification accuracies were obtained when N = 4096.
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Table 6. Poind cloud classification results with different numbers of sampling points (N) under three
test areas (11–13). bold represents the number of the points.

Exp. No. Number of Sampling Points OA (%) mIoU (%) F1-Score (%) Kappa

Case 2-1 4096 91.16 60.15 73.14 0.86
Case 2-2 2048 90.96 60.05 73.15 0.86
Case 2-3 1024 89.08 58.93 69.92 0.83
Case 2-4 512 89.18 57.19 67.88 0.83
Case 2-5 128 87.02 50.88 61.13 0.80
Case 2-6 32 84.41 44.03 52.28 0.76

4.2. Analysis of Imbalanced Data Distribution

As seen in Table 4, although our SE-PointNet++ achieved relatively better perfor-
mances than most of the comparative methods. In particular, DGCNN obtained the compa-
rable performance with the SE-PointNet++, and even outperformed the SE-PointNet++ in
terms of the overall accuracies. We believe that the main reason for this phenomenon is
the distribution imbalance of the categories in the study area. As shown in Table 2, the six
categories are not balanced in distribution. For example, the data set contains 3.48 million
tree points, while twenty thousand powerline points. This imbalanced point distribution
degraded the overall point cloud classification accuracies. To fairly evaluate the perfor-
mance, we balanced the points of all categories to a certain extent by an oversampling and
undersampling method. The experimental results are shown in Table 7.

Table 7. Point cloud classification results obtained by different architectures.

Model OA (%) mIoU (%) F1-Score (%) Kappa

PointNet [35] 68.89 45.08 42.94 0.57
PointNet++ [36] 79.08 55.83 68.96 0.75

DGCNN [37] 84.19 52.53 66.9 0.78
GACNet [38] 80.66 45.32 59.24 0.74
RSCNN [39] 81.21 55.37 68.18 0.75

SE-PointNet++ 85.07 58.17 71.45 0.80

Comparatively, our SE-PointNet++ showed a significant improvement compared with
the other methods with an OA of 85.07%, an mIoU of 58.17%, an F1-score of 71.45%, and a
Kappa coefficient of 0.80. Through the above experiments and discussion, we confirmed
that the SE-PointNet++, that is, the integration of SE-blcok with PointNet++, performed
positively and effectively in improving the quality of the multispectral LiDAR point cloud
classification results.

5. Conclusions

The multispectral LiDAR point cloud data contain both geometrical and multi-wavelength
information, which contributes to identifying different land-cover categories. In this study,
we proposed an improved PointNet++ architecure, named SE-PointNet++, by integrating
an SE attention mechanism into the PointNet++ for the multispectral LiDAR point cloud
classification task. First, data preprocessing was performed for data merging and annota-
tion. A set of samples were obtained by the FPS point sampling method. By embedding
the SE-block into the PointNet++, the SE-PointNet++ is capable of both extracting local
geometrical relationships among points from unevenly sampled data, and strengthening
important feature channels simultaneously, which improves multispectral LiDAR point
cloud classification accuracies.

We have tested the SE-PointNet++ on the Titan airborne multispectral LiDAR data.
The dataset was classified into six land-cover categories: road, building, grass, tree, soil,
and powerline. Quantitative evaluations showed that our SE-PointNet++ achieved a
classification performance with the OA, mIoU, F1-score, and Kappa coefficient of 91.16%,
60.15%, 73.14%, and 0.86 of, respectively. In addition, the comparative studies with five
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established methods also confirmed that the SE-PointNet++ was feasible and effective in
3-D multispectral LiDAR point cloud classification tasks.
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