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ABSTRACT 

 

Similarity measure of cross-domain descriptors (2D 

descriptors and 3D descriptors) between 2D image patches 

and 3D point cloud volumes provides stable retrieval 

performance and establishes the spatial relationship between 

2D and 3D space, which plays the potential applications in 

geospatial space, such as 2D and 3D interaction of remote 

sensing, Augmented Reality (AR) and robot navigation. 

However, the mature handcrafted descriptors of 2D image 

patches and 3D point cloud volumes are extremely different, 

resulting in the huge challenge for 2D image patch and 3D 

point cloud volume matching. In this paper, we propose a 

novel network which combines both unified descriptor 

training and descriptor comparison function training for 2D 

image patch and 3D point cloud volume matching. First, two 

feature extraction networks are applied for jointly learning 

the local descriptors for 2D image patches and 3D point cloud 

volumes, respectively. Second, a fully connected network is 

introduced to compute the similarity between 2D descriptors 

and 3D descriptors. Motivated by the successful indicator 

system on evaluating 2D patch feature representation, we use 

the false positive rate at 95% recall (FPR95) and precision 

based on cross-domain descriptors as the measured metric. 

The experimental results show that our proposed network 

achieve state-of-the-art performance in the matching of 2D 

image patches and 3D point cloud volumes. 

 

Index Terms— cross-domain, 2D and 3D matching, 

metric learning, image patch, point cloud volume 

 

1. INTRODUCTION 

 

2D image patch matching and 3D point cloud volume 

matching are widely used in computer vision and robotics. 

2D image patch matching can be used for visual depth 

estimation, image-based multi-view reconstruction, robot 

pose estimation, visual retrieval, etc. 3D volume matching of 

point clouds can be used for point cloud map construction, 

3D point clouds reconstruction, etc. Especially, the 

combination of 2D image patch and 3D point cloud volume 

matching is a solution to establish the spatial relationship 

between 2D and 3D space, which plays the potential widely 

applications in geospatial space, such as 2D and 3D 

interaction of remote sensing and AR [1-2]. 

Benefit from the development of sensors, multi-sensor 

systems integrate the strengths of sensors, so that the machine 

obtains better sensing capabilities. Cross-domain data, such 

as 2D images and 3D point clouds, means the difference in 

data structure, data expression ability and data information 

caused by the data characteristics from different sensors. If 

the cross-domain descriptors collectively express the 

relationship between the 2D image patches and 3D point 

cloud volumes, then the spatial relationship between 2D and 

3D space will be established. In this paper, we aim to extract 

the local cross-domain descriptor of 2D image and 3D point 

cloud for metric learning.  

The traditional manually designed 2D descriptors [3] (e.g. 

SIFT, SURF, ORB, DAISY, etc.) are extremely different 

from 3D descriptors [4] (e.g. PFH, FPFH, ROPS, SHOT, etc.). 

2D descriptors focus on the relationship between the pixels 

of the target grid or the pixels of the adjacent grid. While the 

3D descriptor is extracted from the point structure 

information. Thus, using manually designed descriptors 

cannot complete the cross-domain matching task. Recently, 

several neural networks are designed for matching 2D image 

patches and 3D point cloud volumes, e.g. 2D3D-MatchNet 

[5], Siam2D3D-Net [6] and LCD [7], which simply use the 

Euclidean distance to measure the descriptor similarities. 

However, the above learned feature descriptors are not robust 

enough, making the low accuracy of the 2D image patches 

and 3D point cloud volumes matching. In comparison, we 

embed a fully connected network to measure the similarity 

between cross-domain descriptors, obtaining a similarity 

model index that works better than the Euclidean distance. 

In this paper, for 2D image patch and 3D point cloud 

volume matching task, we propose a deep learning 

architecture which combines feature learning and metric 
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learning. The proposed network guarantees the feature 

expression ability and robust feature comparison of cross-

domain descriptors. Unlike traditional matching network, 

two branches of the proposed network with different network 

structure are respectively set for 2D image patch inputs and 

3D point cloud volume inputs. Two branches output 2D 

descriptors and 3D descriptors, which are contacted and fed 

into a fully connected network to compute the similarity. In 

detail, the two-tower structure is named 2D-3D feature 

network, and the fully connected network for metric learning 

is named metric network, as shown in Fig. 1. 

The contributions of this paper include: 1) We introduce a 

novel network for 2D image patch and 3D point cloud volume 

matching by an embedding metric network. 2) We first 

propose to use the false positive rate at 95% recall as the 

measurement for the learned cross-domain descriptors of 2D 

image patches and 3D point cloud volumes. 3) Experiment 

shows cross-domain descriptors achieve state-of-the-art 

performance in matching of 2D image patches and 3D point 

cloud volumes. 

 
Fig. 1. The proposed network framework, which contains 

with the 2D-3D feature network and the metric network. 

 

2. NETWORK ARCHITECTURE 

 

In this paper, a deep learning network architecture, which 

contains with 2D-3D feature network and the metric network, 

is proposed to jointly learn the cross-domain descriptors to 

achieve 2D image patch and 3D point cloud volume matching. 

In detail, the 2D-3D feature network uses Siamese network 

as framework, but different from traditional Siamese network, 

2D-3D feature network obtains two different branches to 

extract features from the image patch and point cloud  volume 

respectively. The metric network is a fully connected network, 

receiving both 2D patch descriptors and 3D volume 

descriptors to compute a similarity. In this section, we 

introduce the details of the proposed network architecture. 

2.1. 2D-3D feature network 

 

Two-tower structure is applied to 2D-3D feature network 

with two different branches. 2D-3D feature network inputs 

paired 2D image patches and 3D point cloud volumes and 

outputs cross-domain descriptors, as shown in Fig. 1. In detail, 

one branch (image branch) introduces Convolutional Neural 

Networks (CNNs) architecture to learn descriptors of 2D 

image patches. The other branch (point cloud branch) uses 

PointNet [8] as feature extraction, which receives raw point 

cloud and outputs global 3D descriptors. 

For the image branch with CNNs architecture, colored 

image patches, which are sampled in indoor scene with size 

64643, are fed into the network. The outputs of image 

branch are D-dimensional vectors. In detail, the image branch 

contains five convolution layers. Except the last layer, Batch 

Normalization and Tanh activate function are set after each 

convolution layer. The detailed structure of each layer is set 

as Table 1. The shorthand notation of PS means the size of 

convolution kernel, and S means the padding for one 

operation. D is the embedding size of network, that is the 

same as the embedding size of 3D volume descriptor.  

For the point cloud branch that embed PointNet, raw point 

clouds are down-sampled to 1024 points which are equipped 

with coordinate and RGB information. The size of last fully 

connected network of PointNet are set as D, so that the 

outputs of point cloud branch are D-dimensional vectors. 

 

Table 1. The details of 2D-3D feature network and metric 

network. 

Name Type Output Dim PS S 

Conv0 C 32 4 x 4 2 

Conv1 C 64 4 x 4 2 

Conv2 C 128 4 x 4 2 

Conv3 C 256 4 x 4 2 

Conv4 C D 4 x 4 4 

FC0 FC 256 - - 

FC1 FC 128 - - 

FC2 FC 64 - - 

FC3 FC 32 - - 

FC4 FC 2 - - 

 

2.2. Metric network 

 

The metric network is consisted with fully connected layers, 

which is used to compute the similarity between cross-

domain descriptors. In detail, metric network receives the 

concatenation of a pair of descriptors and output two-

dimensional vector with value in [0, 1]. The vector expresses 

the probability that the pair of descriptors is matching or not. 

The non-linear activate function of metric network is ReLU. 

In addition, to avoid model failure due to excessive weights 

in local dimensions, Dropout is applied after each layer. The 

detailed parameters of metric network are shown in Table 1.  

 

2.3. The preprocessing layers 
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For the 2D-3D feature network, there are preprocessing 

layers before the image branch and point cloud branch, as 

shown in Fig. 1. In detail, the 2D patches are resized as 

64643 and the RGB values r, g, b of each pixel are 

normalized to r/255, g/255, b/255.  The 3D volumes are 

sampled to 1024 points and the RGB values r, g, b of each 

point is normalized to r/255, g/255, b/255. 

 

3. TRAINING AND PREDICTION 

 

Our proposed network system jointly learns both 2D-3D 

feature network and metric network. In this section, we 

introduce the cross-entropy loss function that is used to 

optimize our proposed network parameters and compute the 

similarity of cross-domain descriptors. In addition, we 

constructed as many positive samples and negative samples 

to ensure the proposed network judge performance. 

 

 
Fig. 2. Negative samples of one mini-batch are generated 

during training process.  

 

3.1. Data preparation 

 

Paired correspondences of 2D image patches and 3D point 

cloud volumes are sampled from 3DMatch [9] dataset. The 

point cloud is reconstructed from the depth maps and contains 

the corresponding color information. Especially, to construct 

enough negative samples (non-matching 2D image patches 

and 3D point cloud volumes) for training, for each mini-batch, 

2D image patches randomly sample the same number of non-

matching 3D volumes in the training set. Then, these 

constructed pairs are regard as negative samples. The positive 

and negative samples are disrupted in this mini-batch, then 

they are fed into 2D-3D feature network. In the whole 

training process, the same number of positive samples and 

negative samples are used for training, which ensures the 

balance of the training process and avoids over-fitting error, 

as show in Fig. 2. 

 

3.2. Loss function 

 

The 2D-3D feature network and metric network are trained at 

the same time, so that we use a unified loss function to 

optimize both 2D-3D feature network and metric network at 

the same time. The proposed network tries to minimize the 

cross-entropy loss function: 

E = −
1

n
∑[yi log(ŷi) + (1 − yi) log(1 − ŷi)]

n

i=1

 

In training step, n pairs of 2D image patches and 3D point 

cloud volumes are fed into network in one batch. yi is the 0/1 

labels indicate whether input pair x𝑖  is matching or not, 1 

label denotes match and 0 label denotes not match. ŷi is the 

output of network and Softmax activate function is set in last 

network layer, as follow:  

ŷi =
ⅇf1(xi)

ⅇf0(xi) + ⅇf1(xi)
 

Finally, for input x𝑖 , two-dimensional vector  (
f0(xi)

f1(xi)
) is 

computed as similarity of input pair x𝑖. 

 

4. EXPERIMENTS 

 

In this section, we first describe the dataset used in this paper. 

Second, we demonstrate state-of-the-art performance of our 

proposed network on 2D image patch and 3D point cloud 

volume matching.  

In detail, the matching results of the proposed network is 

evaluated by the precision and the false positive rate at 95% 

recall (FPR95). For the training and testing of the proposed 

network, the dataset is divided into three subsets, Subset1, 

Subset2, Subset3, which do not intersect each other.  Then, 

the proposed network is trained on one subset and 

respectively tested on the other two subsets. In addition, the 

embedding size of the learned descriptors are set as 64, 128, 

256 to explore the effect of descriptor dimension, which 

denoted as Desc64, Desc128, Desc256.  

The training stopped after 250 epochs. The training used 

Nvidia 3090 with 48GB memory. Batch size set as 64. 

Desc64, Desc 128, Desc 256 took 851 minutes, 997 minutes, 

and 1221 minutes, respectively. 

 

 
Fig. 3. 2D patches and 3D volumes are collected from Images 

and point clouds. 
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Table 2. 2D-3D retrieve performance under precision 

 Desc64 Desc128 Desc256 

Subset1 Subset2 98.502 98.532 98.532 

Subset3 98.573 98.541 98.815 

Subset2 Subset1 98.420 98.600 98.789 

Subset3 98.430 98.600 98.754 

Subset3 Subset1 98.487 98.694 98.801 

Subset2 98.471 98.677 98.815 

 

Table 3. Metric learning performance under FPR95 

 Desc64 Desc128 Desc256 

Subset1 Subset2 0.7506 0.7304 0.6021 

Subset3 0.7071 0.7226 0.6094 

Subset2 Subset1 0.8025 0.7434 0.6230 

Subset3 0.7880 0.7029 0.6281 

Subset3 Subset1 0.7537 0.6691 0.5969 

Subset2 0.7672 0.6738 0.5917 

 

4.1. Dataset 

The matching 2D image patches and 3D point cloud volumes 

used in the experiments are generated from 3DMatch dataset 

[10], which is about 600,000 paired 2D-3D correspondences. 

The point clouds are generated from RGB-D scans, and the 

correspondences of 2D image patches and 3D point cloud 

volumes are collected from images and point clouds, as 

shown in Fig. 3. The Subset1, Subset2, Subset3, contain 

about 200,000 2D-3D correspondences, are collected from 

the 600,000 2D-3D correspondences. 

 

4.2. Evaluation under precision 

 

To evaluate the proposed network with precision, one subset 

contains about 200,000 paired 2D-3D correspondences is 

used as a training set, and the testing is done on the other two 

subsets with 2D-3D paired 200,000 correspondences. In 

training and testing process, we sample 200,000 paired 

negative samples and mess up with the positive samples. 

After that, 40,000 paired 2D-3D correspondences are 

obtained for each subset. The evaluation results are shown in 

Table 2. The experiments show that the precision achieves up 

to 98% on other subsets when the proposed network trained 

on each subset. In addition, the high dimensionality gives 

improved performance. 

 

4.3. Evaluation under FPR95 

 

The FPR95 is used to evaluate the performance of 2D image 

patch and 3D point cloud volume matching.  In usual image 

patch matching task, the common methods use several 

subsets to test the performance of image patch matching. 

Specifically, the smaller the value of FPR95, the better the 

performance of the network in image patch matching. In this 

section, we borrow methods in image patches matching and 

calculate FPR95 on cross-domain descriptor matching task. 

After data preparation, each subset has 40,000 pairs of 2D 

image patches and 3D point cloud volumes. In detail, training 

on one subset and respectively testing on the other two subset, 

evaluation results under FPR95 have been shown in Table 3. 

The FPR95 experimental results are below 1%, which prove 

the state-of-art performance of the proposed network. 

 

5. CONCLUSION 

 

In this paper, we propose a novel network, combining 2D-3D 

feature learning and metric learning, for 2D image patch and 

3D point cloud volume matching. The proposed network 

system jointly learns cross-domain descriptors as well as a 

function to compute similarity of descriptors. In addition, we 

use the metric learning replaces the artificially designed loss 

function based on Euclidean distance to achieve non-linear 

similarity calculation function. Experimental results show 

that the learned cross-domain descriptors achieve state-of-

the-art precision performance and FPR95 performance on 2D 

image patch and 3D point cloud volume matching. In the 

future work, we plane to learn robust local cross-domain 

descriptors of 2D image and 3D point cloud which can be 

used to retrieve. 
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