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Abstract—Point cloud filtering is a preliminary and essential
step in various applications of airborne LiDAR (light detection
and ranging) data, with progressive triangulated irregular net-
work (TIN) densification (PTD) being one of the classic methods
for filtering LiDAR point clouds. The PTD algorithm densifies
ground points through iteration operation based on initial ground
seed points. However, the poor performance in steeply sloped
areas and time-consuming processing are serious drawbacks for
PTD algorithms. In this paper, we propose a fast progressive TIN
densification (FPTD) filtering algorithm for airborne LiDAR data
using adjacent surface information. After carefully establishing
parameters and removing outliers, our improved FPTD uses a
sliding window to obtain significantly more initial ground seed
points. And we modified some iterative determination criterion ,
including the definition of maximum relative elevation thresh-
old and the introduction of signed computation, to eliminate
avoidable non-ground points. Then adjacent surface information
was utilized to iterate each point cloud block, which is the
smallest unit that point cloud can be segmented. Additionally, the
algorithm is easily run in a multi-threaded environment, further
accelerating the filtering process to some extent. Experiments
show that our proposed FPTD filtering algorithm is fast and
robust. Compared to the PTD, the FPTD algorithm yields better
error rates and kappa coefficients in 1/12 of the time required
by the PTD.

Index Terms—point cloud, sliding window, progressive TIN
densification, adjacent surface information, fast filtering

I. INTRODUCTION

LiDAR (light detection and ranging) has become a popular
remote sensing observation technique [1]. LiDAR systems
fall into three main categories based on the data acquisi-
tion platform [2]: terrestrial laser scanning (TLS), mobile
laser scanning (MLS), and airborne laser scanning (ALS). Of
these, ALS use has grown significantly due to its ability to
capture dense and accurate topographic data at high speed
[3]. ALS has been widely employed in various fields [4],
including digital terrain model (DTM) generation [5], [6],
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forest ecosystem investigation [7]–[9], 3D building modeling
[10]–[12], and geological disaster surveys [13]–[15]. In most
LiDAR applications, separating point clouds into ground and
object points is a preliminary but essential step for subsequent
processing [16], with various filtering methods proposed for
automatically extracting bare earth surface points. These filters
fall into seven broad categories according to the underlying
technique of mathematical morphology, iterative interpolation,
TIN (triangular irregular network), CS (cloth simulation),
slope, segmentation, or machine learning.

Several comparisons of filtering algorithms [17]–[19] have
shown that TIN-based filters, primarily those using PTD
(progressive triangulated irregular network densification) al-
gorithms, offer strong and stable abilities when acquiring
bare ground points. Many researchers have improved the PTD
algorithm in three large ways. The first improvement concerns
the initial ground seed points, for it is widely accepted that the
more initial ground seed points, the better filtering results. To
identify more initial ground seed points, Zhang and Lin [20]
improved the PTD algorithm using a point cloud segmenta-
tion method called segmentation using smoothness constraint
(SUSC). Specifically, after selecting the lowest points in each
grid cell as initial ground seed points, SUSC expands the
set of ground seed points as much as possible. Similarly, Xu
and Yue [21] firstly segmented point cloud data into several
clusters based on plane fitting, then, followed by a coarse
spatial clustering process using dual distances to obtain a set
of initial ground seed points. Zhao et al. [22] first acquired
potential ground seed points using a morphological method,
and then used a translation plane fitting method to identify
and remove non-ground points from the potential points. By
assuming measurements that collide with cloth particles are
ground points, the cloth simulation filtering [23] acquired
initial ground seed points [4] and subsequently generated a
high-quality initial provisional digital terrain model (DTM).
These research results show that plentiful and accurate initial
ground seed points influence the filtering results to a large
extent.

The second PTD improvement concerns the iterative de-
termination criterion. Lin and Zhang [24] modified the PTD
algorithm by processing a segment unit rather than a single
point. If the number of ground measurements is larger than
the number of object measurements in a single segment,
all of the points within the current segment are labeled as
ground measurements. This segment-based filtering method
preserves discontinuities in landscapes and removes the lower
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parts of large objects attached on the ground surface. To
reduce the probability of incorrectly classifying non-ground
points on the lower objects as ground points, only one point
(the potential ground point with the shortest distance to the
corresponding TIN facet) is selected as the ground point.
The experimental results show that the revised PTD approach
performs better than the PTD method in removing non-ground
points, which are from low-to-the-ground objects [25]. And
Shi et al. [26] proposed a parameter-free progressive TIN
densification filtering algorithm based on the slope estimation.

The third improvement to the PTD is to shorten the pro-
cessing time. Kang et al. [27] used state-of-the-art multi-core
computing facilities to speed up the computationally intensive
task by encapsulating the PTD filter into independent com-
puting units with clearly faster results. However, this research
ignores filtering accuracy. Other incremental improvements to
the PTD were also made in [28], [29].

Most of the above studies point out that the performance
of PTD algorithms is poor in steeply sloped areas. Because
PTD algorithms rely on two thresholds (maximum angle and
maximum distance [20]) and initial ground seed points to a
large extent. Complex terrain will prevent PTD algorithms
from extracting ground points through these fixed thresholds
if there are not enough evenly-distributed initial ground seed
points. Additionally, we find the PTD algorithm is very time-
consuming [27]for locating the corresponding triangle facet
of a iterative point is time consuming, especially while the
amount of ground points increase, causing a large number
of triangle networks. However, most triangles are far away
the iterative point, and can not help extract ground points
but only increase time consumption. Therefore, we propose a
fast progressive TIN densification filtering algorithm (FPTD)
for airborne LiDAR data using adjacent surface information.
In this method, we first use the sliding window algorithm
to select large numbers of evenly-distributed initial ground
seed points. Next, the point cloud divider breaks the data into
a series of minimal processing blocks equal in size to the
sliding window. Then, we iterate unclassified points in each
block based on adjacent surface information, which greatly
accelerates the filtering process. What’s more, the improved
algorithm is easily run in a multi-threaded environment, which
can accelerate the TIN densification process still further. This
method notably avoids reductions in filtering accuracy and
actually increases it with most datasets. There are three main
contributions of our paper: (1) A large number of evenly-
distributed initial ground seed points can be readily obtained
using the sliding window algorithm. (2) A new filtering
strategy based on adjacent surface information is proposed,
which can greatly shorten the processing time and improve
the filtering accuracy. (3) A method to optimize the threshold
selection of PTD filtering algorithms by classifying datasets
according to the terrain complexity is proposed.

We organize our paper as follows. We present our improved
PTD algorithm in detail in Section II. Section III presents
the results and discussion. Finally, Section IV gives our
conclusions.

II. METHOD

Our proposed method contains five key steps: (1) specifying
parameters, (2) removing outliers, (3) obtaining initial ground
seed points, (4) segmenting the point cloud into blocks, and
(5) iterating all unclassified points and densifying the TIN.
The detailed procedure of the proposed FPTD algorithm is
illustrated in Fig.1. The following subsections provide full
details of each step.

A. Specifying parameters

Our proposed algorithm requires seven parameters to be
preset:

(1) Radius threshold for outlier removal, r. This parameter
eliminates outliers below the ground and retains sparse ground
points in some areas. r should be appropriately big.

(2) Point number threshold for outlier removal, n. Similar
to r, this parameter should be appropriately small.

(3) Maximum relative elevation threshold, e. Different from
maximum distance [20], e is the relative elevation threshold
from an unclassified point to the highest vertex in the cor-
responding triangle (seen in Fig. 2). If the elevation of an
unclassified point minus that of the highest vertex is larger
than e, the point will be labeled as the object point. Otherwise
it will be labeled as a potential ground point.

(4) Maximum angle threshold, a. a is the angle threshold
between the triangle plane and the line connecting an unclas-
sified point to its corresponding closest triangle vertex [20]
(seen in Fig. 2). If the angle is smaller than a, the point will
be labeled as a potential ground point. Otherwise, it will be
labeled as an object point.

(5) Sliding window size, w. w depends on the size of max-
imum artificial object (buildings, cars and so on). Specifically,
to ensure the initial ground seed points are not obtained from
building rooftops or other objects, w must be bigger than the
maximum size of artificial objects in the point cloud dataset. .
If w is smaller than the size of the biggest artificial objects in
the point cloud, the lowest point in a sliding window may be
from the objects, not the ground, causing false initial ground
seed points. Therefore, to obtain more initial ground points,
w should be as small as possible once it is greater than the
biggest artificial object. Further, block size is always both
equal to w for convenience in this paper.

(6) Sliding stride, s. s is a distance between two adjacent
windows. It makes the window slide according to the stride
distance.

(7) Neighborhood radius to the center point of a block
point cloud, d. The value of d depends on the block size.
It determines the initial ground seed points for a block point
cloud, with d = 1.5

√
2w providing a sufficient number in most

cases. The sufficient initial ground seed points means that a
block of data should contain the initial ground seed points
along with those of its 8 neighborhood blocks.

B. Removing outliers

The PTD filtering algorithm performs well, relying on the
hypothesis that there are no outliers with a lower height
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Fig. 1. Flow chart of our improved filtering method.

Fig. 2. The definition of the threshold parameter.

than the ground. If there are, the radius outlier removal
algorithm can be used to eliminate these low outliers. The
radius outlier removal algorithm iterates every point in point
cloud, find the points (outliers) whose amount of points in
a radius threshold (r) is less than the point number threshold
(n), and remove these points out. After using the radius outlier
removal algorithm, it is a good idea to check the data again

and remove the low outliers manually if any outliers remain.

C. Obtaining initial ground seed points

One of the most critical steps for PTD algorithms is
obtaining accurate and appropriate initial ground seed points.
We employ a new and simple strategy, the sliding window
algorithm, to extract initial ground seed points (Fig. 3) with the
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Fig. 3. Sliding window algorithm to obtain initial ground seed points.

following steps. First, choose a square window of size w and
set the sliding stride s. Second, calculate the minimum values
of x and y directions to obtain the rectangular boundary of
the point cloud, with the origin at the lower left corner. Third,
slide the window from left to right within the rectangular
boundary using the slide stride increment while finding the
lowest point in each window. The point with the lowest
elevation in the window is regarded as initial ground seed
point. Fourth, slide the window up along the y direction while
repeating the third step. Fifth, repeat the previous step until
the window has covered the entire point cloud. Compared
to most improved PTD algorithms [4], [20]–[22], the sliding
window algorithm is much easier to implement, and more
importantly, the obtained initial ground seed points are more
evenly-distributed.

Note that (1) the coordinates of datasets have been projected
before extracting initial ground seed points. (2) If the size of
the last evaluated section of the point cloud in the x or y
direction is smaller than the slide stride, that last section will
be added to the prior window, meaning that the last window
size may be bigger than others.

D. Segmenting point cloud into blocks

The PTD algorithm extracts ground points well, but the
time it requires to do so is a serious drawback. To reduce
the processing time, we segment unclassified point clouds into
a series of blocks with overlapping regions (shown in Fig. 4)
and use each block as a minimal processing unit. The minimal
processing unit means the block can not be segmented again,
which can accelerate the filtering process to the greatest extent.
Concretely, the block size is equal to that of sliding window
w, with the width of overlap equal to a multiple of the sliding
stride. In data segmentation, if the width of the last part of the
point cloud in the x or y direction is smaller than block size,
it will be added to the previous block.

Next, the initial ground seed points (described in Section
II-C) within a certain neighborhood distance (d) from the
center of a block should be assigned to the corresponding
block. These initial ground seed point are the initial block seed
points in the next part. Notably, the value of d is extremely
important, and its value must make sure the block to be
processed is surrounded by adequate initial ground seed points.

So, d is equal to d = 1.5
√
2w, which means the initial ground

seed points assigned to the block are from its corresponding
8 adjacent blocks. In this way, sufficient adjacent surface
information can be utilized. To ensure that all of the points
in each block will be located in the TIN constructed by the
initial block seed points, simulated ground seed points (points
highlighted in red in Fig. 4) are created for the block on the
edge of the rectangle boundary before assigning initial ground
seed points to blocks. The elevation of simulated ground seed
points is the same as that of its nearest initial ground seed
point. Afterwards, these simulated ground seed points are
added to the initial ground seed point set, and then the new
initial ground seed points are assigned to each block using the
criteria above. Once a block and its corresponding initial block
seed points are determined, we can employ multiple threads
to process a large block point cloud.

E. Iterating unclassified points and densifying the TIN

In the PTD algorithm, all of the unclassified points are
traversed based on the whole initial ground seed points in
the densification process. However, each unclassified point
only belongs to one corresponding triangle. Most triangles
far from the iterative point have no effect on filtering results
but consume a lot of processing time. And the more the
ground points extracted, the more prominent this phenomenon
becomes. Unlike the PTD, we only iterate the unclassified
points in a block based on its corresponding initial block
seed points. In this way, we preserve the adjacent surface
information of points while reducing unnecessary processing.

The iteration process has five steps: (1) Within a single
block, select the unclassified points having an elevation lower
than the sum of the highest point in the initial block seed
points and the maximum relative threshold. These are called
the iterative unclassified points set, or the iterative set for
short. (2) Choose an unclassified point in the iterative set and
locate its corresponding triangle facet. (3) Calculate the plane
equation (Equation (1)) according to the triangular vertices.
(4) Calculate the two variables to be compared, which refer to
the relative elevation from the unclassified point to the highest
vertex of corresponding triangle, and the angle between the
triangle facet and the line connecting the unclassified point and
the closest triangle vertex, as seen in Equations (2) and (3).
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Fig. 4. Segmenting the point cloud data into blocks.

In this step, the two variables are slight different from those
in the PTD. They are both signed. If their values are negative,
it means the point is below the triangle facet and the point
can also be identified as a ground point. In this way, it easily
solves the problem mentioned in Section 2.3.1 of [25]. (4)
Label the unclassified point. If the relative elevation and angle
are both smaller than the corresponding threshold, the point
will be labeled as a ground point. (5) Iterate all unclassified
points in the iterative set and then update the elevation of the
simulated ground seed points and the TIN according to the new
ground points. Because the initial elevation of the simulated
ground seed points are estimated from the corresponding
nearest initial ground seed points, the estimated elevation may
deviate far from the true adjacent ground surface with more
and more ground points being extracted, resulting in that the
ground points near the simulated ground seed points may not
be extracted efficiently. Steps (1)–(5) are repeated until no
unclassified points can be added to the ground point set.

By confining each iteration to a single block of the point
cloud, multi-threaded techniques can be utilized to process
multiple partitioned datasets simultaneously, shortening the
processing time further to some extent.

A ∗ x+B ∗ y + C ∗ z +D = 0 (1)

v = zu − zm (2)

θ = arcsin(d/l) (3)

d =
A ∗ xu +B ∗ yu + C ∗ zu +D√

A2 +B2 + C2

l =
√

(xu − x0)2 + (yu − y0)2 + (zu − z0)2

In these equations, A, B, C, and D are the parameters of the
plane equation of a facet. v is the relative elevation between
an unclassified point (xu, yu, zu) and the highest vertex in the
corresponding triangle. θ is the angle between a triangle facet

and the line connecting an unclassified point and its closest
triangle vertex (x0, y0, z0) in the corresponding triangle. zm
is the elevation of the highest vertex in the corresponding
facet. d is the signed distance from an unclassified point to
its corresponding facet, meaning that the point is under the
facet if d is less than zero, and above the facet otherwise. l
is the distance between an unclassified point and its closest
triangle vertex.

III. RESULTS AND DISCUSSION

To analyze the performance of our proposed algorithm, we
used benchmark datasets provided by ISPRS Working Group
III/3, including 8 unlabeled datasets from different terrains (4
urban sites and 4 rural sites) with 15 labeled samples from
these sites. The eight datasets are named: CSite1, CSite2,
CSite3, CSite4, FSite5, FSite6, FSite7, and FSite8. The 15
labeled samples are: s11, s12, s21, s22, s23, s24, s31, s41,
s42, s51, s52, s53, s54, s61, and s71. Because these datasets
contain different terrains, it is difficult to determine the optimal
thresholds of PTD algorithms. Therefore, as shown in Table
I, we tentatively classified these data into four categories
according to the terrain complexity (mainly the degree of
slope change): flat (D1), flat with gentle slopes (D2), flat with
scarp (D3), and steep (D4). For labeled samples, we calculated
four indicators to evaluate the filtering results quantitatively as
shown in Table II. We implemented our process on a desktop
computer with an Intel Core i5-10400F CPU and 16 GB of
RAM using Python under the Windows 10 operating system.
We used eight threads for the iterative densification process.

A. Parameter analysis

All of the parameters (Section II-A) have different effects
on the filtering results, but the maximum relative elevation
threshold and maximum angle threshold matter the most.
Thus, we paid particular attention to these two parameters.
Referring to other experiments [20], [24], [25], we varied
the maximum angle threshold range from 2 to 42 degree
in 4 degree increments and the maximum relative elevation
threshold from 0.6 to 2.0 m in 0.2 m increments. To evaluate
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TABLE I
FOUR TERRAIN CATEGORIES AND THE CORRESPONDING THRESHOLDS ACCORDING TO THE TERRAIN COMPLEXITY

Abbreviation Category Data a e

D1 flat s12/s21/s31/s42/s54/CSite2/CSite3/CSite4/FSite7 18 1.0
D2 flat with gentle slope s11/s22/s51/s61/s71/CSite1/FSite6/FSite8 22 1.2
D3 flat with scarp s23/s24/s41 30 0.8
D4 steep s52/s53/FSite5 38 1.4

TABLE II
CALCULATION OF TYPE I ERROR (TI ), TYPE II ERROR (TII ), TOTAL ERROR (TE) AND KAPPA COEFFICIENT (K): a AND b ARE THE NUMBERS OF
GROUND POINTS CLASSIFIED CORRECTLY AND INCORRECTLY, RESPECTIVELY; d AND c ARE THE NUMBERS OF NON-GROUND POINTS CLASSIFIED

CORRECTLY AND INCORRECTLY, RESPECTIVELY

Filtering

Ground Object Metrics of Quantitative Evaluations

Reference
Ground a b f = (a+ b)/e TI = b/(a+ b) Po = (a+ d)/e

Object c d g = (c+ d)/e TII = c/(c+ d) Pe = f ∗ h+ g ∗ i

h = (a+ c)/e i = (b+ d)/e e = a+ b+ c+ d TE = (b+ c)/e K = (Po − Pe)/(1− Pe)

Fig. 5. Optimal maximum angle threshold analyses of different terrains: (a) for flat terrain (D1); (b) for flat with gentle slope (D2); (c) for flat with scarp
(D3); and (d) for steep terrain (D4).

the filtering results using different parameters, we chose sub-
regions with fewer points as the experimental data for each
terrain category: s54 of D1, s71 of D2, s24 of D3, and s52 of
D4. We set other parameters based on our experience: r = 5,
n = 10, w = 60, and s = 10.

For the first stage, we analyzed the maximum angle thresh-
old while holding the maximum relative elevation threshold at
1.4. As seen in Fig. 5, although the trends in Fig. 5(c) and (d)

are not particularly obvious, the kappa coefficient generally
increased first and then decreased as the angle threshold
increased, and the total error changed in the opposite direction.
Additionally, the larger the maximum angle threshold, the
smaller the type I error and the larger the type II error,
indicating that more ground points were extracted correctly but
more object points were misidentified at the same time. The
optimal maximum angle thresholds were 18, 22, 30, and 38
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Fig. 6. Optimal maximum relative elevation threshold analyses of different terrains: (a) for flat terrain (D1); (b) for flat with gentle slope (D2); (c) for flat
with scarp (D3); and (d) for steep terrain (D4).

for D1, D2, D3, and D4, respectively. From these thresholds, a
conclusion can be drawn: the more complicated the terrain, the
larger the optimal corresponding maximum angle threshold.

For the second stage, we examined the maximum relative
elevation threshold in light of the optimal maximum angle
threshold. The kappa coefficient in Fig. 6 fluctuated slightly
less than that in Fig. 5, indicating that the FPTD filtering
algorithm was more sensitive to the maximum angle threshold.
Nonetheless, we were able to determine experimentally the
optimal maximum relative elevation thresholds for different
terrains: 1.0 for D1, 1.2 for D2, 0.8 for D3, and 1.4 for
D4. Except for D3, the maximum relative elevation thresh-
old increased with the terrain complexity. Both the optimal
maximum angle and relative elevation thresholds of different
terrains are listed in Table I. Our subsequent experiments were
based on the these optimal thresholds.

B. Results

After specifying the optimal thresholds, we applied these
values to all of the unlabeled datasets and obtained the filtering
results shown in Table III. Although the number of extracted
ground points did not show much useful information, the
time cost was significantly reduced by the improved filtering
algorithm. We have provided a number-time diagram (Fig. 7)
to show the relationship between the total number of points
and the processing time, using a linear function to fit these two

variables. The processing time varied linearly with the number
of points, indicating the high and robust processing efficiency.

High efficiency is usually accompanied by poor extraction
results. Thus, to evaluate the performance of our algorithm,
we selected the filtering results for FSite5, a relatively com-
plex terrain, for visualization. Fig. 8 shows the overall high
performance in our experiments. The buildings in the left area
were eliminated robustly, and the vegetation in the lower right
corner was also noticeably filtered out. In Fig. 8, (a-1) and (b-
1) are vertical cross-sections of (a) and (b) in red highlight. In
the same figure, (a-2) and (b-2) are horizontal cross-sections
of (a) and (b), respectively, showing more specifically that the
filtering results are consistent with the actual terrain.

C. Performance evaluation between the classic and improved
PTD methods

We have worked to improve the PTD algorithm in three
aspects: (1) the method of selecting initial ground seed points,
(2) the iterative judgement criterion, and (3) the processing
time. The filtering results in Section III-B indicate the im-
proved PTD algorithm was effective and efficient. However,
the differences in the results from the PTD and our improved
PTD methods were obscure, so we tested the filtering perfor-
mance of these two methods on labeled samples. The PTD was
implemented according to [20]. Four different criteria were
calculated, as given in Table IV. The data in the table shows
that the improved PTD filter earned a lower TI score, but a
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TABLE III
FILTERING RESULTS OF THE EIGHT UNLABELED DATASETS

Dataset CSite1 CSite2 CSite3 CSite4 FSite5 FSite6 FSite7 FSite8

Total number of points (points) 1366408 486800 377028 518060 628576 551698 393264 345966
Number of ground points (points) 689324 254277 193514 262193 525191 460188 347944 294724
Time cost (s) 104.80 27.68 17.52 23.54 31.48 26.10 21.17 18.11

Fig. 7. The relationship between the total number of points and the corresponding time cost.

Fig. 8. The filtering results for FSite5 using the optimal thresholds of D4: (a) original data rendered by elevation with (a-1) and (a-2) as the corresponding
cross-sections; (b) filtering result using the FPTD rendered by elevation with (b-1) and (b-2) as the corresponding cross-sections. The black area is the
background.

higher TII score than the PTD, indicating that our method extracted the ground points more reliably but generated more
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TABLE IV
QUANTITATIVE EVALUATION OF THE FILTERING RESULTS USING THE TWO ALGORITHMS

Terrain Dataset Method Total number1 TI (%) TII (%) TE (%) K (%) Time cost (s)

D1

s12
FPTD 52119 9.86 4.01 7.01 86 3.70
PTD 52119 10.25 2.06 6.26 87.5 55

s21
FPTD 12960 0.91 3.97 1.59 95.38 1.81
PTD 12960 2.6 3.9 2.89 91.79 3.46

s31
FPTD 28862 0.7 3.28 1.89 96.19 2.13
PTD 28862 1.5 2.73 2.06 95.84 16.50

s42
FPTD 42470 1.45 1.44 1.44 96.54 2.15
PTD 42470 4.62 1.37 2.32 94.37 64.07

s54* FPTD 8608 3.21 6.94 5.22 89.54 1.62
PTD 8608 16.75 3.35 9.55 80.62 6.66

D2

s11
FPTD 38010 10.87 15.46 12.83 73.75 7.68
PTD 38010 25.46 8.74 18.32 63.73 75.58

s22
FPTD 32706 10.89 5.77 9.29 79.38 3.14
PTD 32706 9.83 6.9 8.92 80.03 28.38

s51
FPTD 17845 0.06 24.31 5.35 82.83 2.01
PTD 17845 7.29 13.53 8.65 75.75 32.6

s61
FPTD 35060 2.84 8.79 3.05 65.84 3.23
PTD 35060 4.26 3.9 4.25 58.94 44.24

s71* FPTD 15645 0.66 11.92 1.94 90.06 1.96
PTD 15645 1.12 7.51 1.85 90.85 9.23

D3

s23
FPTD 25095 12.74 5.3 9.22 81.59 2.48
PTD 25095 23.78 3.65 14.25 71.74 75.06

s24* FPTD 7492 21.79 6.95 17.71 61.59 2.31
PTD 7492 41.3 5.15 31.37 40.49 7.98

s41
FPTD 11231 3.84 2.4 3.12 93.77 1.69
PTD 11231 58.69 0.64 29.6 40.72 4.82

D4
s52* FPTD 22474 2.98 36.07 6.46 63.96 2.98

PTD 22474 9.62 26.29 11.37 51.46 25.22

s53
FPTD 34378 3.99 46.87 5.72 39.99 3.41
PTD 34378 16.35 27.14 16.79 20.7 52.11

All Average
FPTD 25664 5.79 12.23 6.12 79.76 2.82
PTD 25664 15.56 7.79 11.23 69.63 33.39

1 Total number: Total number of points in dataset (points)
* These datasets were used to analyse the optimal parameters

object points at the same time. Therefore, it is difficult to
determine which filtering algorithm was better in terms of TI
and TII . From the overall indicators TE and K, our improved
algorithm performed better in most cases. More specifically,
there were 12 datasets where the filtering results using the
proposed algorithm were better than those using the PTD,
while three datasets (s12, s22, and s71) showed slightly worse
performance from our improved algorithm. The average total
error of our FPTD was 6.12, while that of the PTD is nearly
2 times higher. The average kappa coefficient of the FPTD
was almost 10% higher than that of the PTD. It is also worth
mentioning the much shorter processing time required by our
algorithm. For all of the labeled samples, the processing time is
significantly reduced. In addition, the average processing time
is nearly shortened by 12 times, and even nearly 30 times in
some datasets (s42, s23).

Although the performance of our proposed algorithm was
generally robust and efficient, there were some areas with
poor filtering results. To explore the limitations in our method,

we selected s12, s61, s24, and s53 for detailed analysis. The
filtering results for these four regions were poorer than others,
and each comes from a different type of terrain: s12 from D1,
s61 from D2, s24 from D3, and s53 from D4. As shown in
Figs. 9(b), 10(b), 11(b), and 12(b), the initial ground seed
points obtained by two methods were markedly different.
There were more initial ground seed points using our FPTD
algorithm than the PTD. Most of the initial ground seed points
acquired by the PTD were included as points acquired by the
FPTD, apart from several simulated ground seed points. Thus,
the FPTD readily obtained more dense initial ground seed
points.

For s12 (Fig. 9), both the PTD and the FPTD performed
terribly, especially in the white highlighted area. We classified
this dataset into D1 because most areas of it are flat. However,
there is a noticeable change in the topography (highlighted
in white) that caused the optimal threshold to be unsuitable
for the area. We tested this area using the optimal thresholds
from D3, a more complex terrain, and obtained much better
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Fig. 9. The filtering results for s12 using two methods: (a) the reference data; (b) the initial ground seed points obtained by two methods (the PTD obtained
26; the FPTD obtained 140); (c) the results using the PTD; and (d) the results using the FPTD.

Fig. 10. The filtering results for s61 using two methods: (a) the reference data; (b) the initial ground seed points obtained by two methods (the PTD obtained
81; the FTPD obtained 820); (c) the results using the PTD; and (d) the results using the FPTD.

Fig. 11. The filtering results for s24 using two methods: (a) the reference data, with elevation (area A) ¡ elevation (area B) ¡ elevation (area C); (b) the initial
ground seed points obtained by the two methods (the PTD obtained 8; the FTPD obtained 18); (c) the results using the PTD; and (d) the results using the
FPTD.

filtering results. The scores of TI , TII , TE, and K using our
proposed algorithm were 1.58%, 5.67%, 3.58%, and 92.83%,
respectively. K was 6.83% higher than the original one.
Notably, it is not that the larger the thresholds, the better
the results. The scores of TI , TII , TE and K using the
optimal thresholds from D4 were 0.61%, 12.44%, 6.38%, and
87.2%, indicating a drop in accuracy. For region s61 (Fig.
10), the same phenomenon occurred and the scores of TI ,
TII , TE, and K using the optimal thresholds of D4 were
0.96%, 29.02%, 1.93%, and 70.73%, respectively, indicating
a better result. From these two datasets, we conclude that the
datasets for mixed terrains should be classified based on the
most complex area.

As shown in Fig. 11, most points in the right side (high-
lighted in white) of the dataset were filtered out using both
the PTD and the FPTD, causing a high value of TI . There
are two reasons for this. The first is that the dataset was too
small, with a 121 m by 72 m rectangular boundary, resulting in
incomplete continuity of the terrain and very few initial ground
seed points. The block-wise operation magnified the problem.
The second is that this dataset has noticeably abrupt changes
in terrain. According to elevation, this dataset could be divided
into three parts (Fig. 11(a)): the lower left corner (area A), the
top part (area B), and the right part (area C). The elevation
of area C is the highest, but the initial ground seed points are
concentrated in area A, making it hard to identify the ground
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Fig. 12. The filtering results for s53 using two methods: (a) the reference data; (b) the initial ground seed points obtained by two methods (the PTD obtained
77; the FPTD obtained 841); (c) the results using the PTD; and (d) the results using the FPTD.

points in areas B and C. However, the FPTD produced results
that were still superior to the PTD’s due to the larger number
of initial ground seed points.

An example of datasets with steep terrain is shown in Fig.
12. To some extent, both the PTD and the FPTD algorithms
failed to extract ground points in steep areas, and this draw-
back is common to most PTD-based algorithms. However, our
proposed filtering performed much better than the PTD due to
the larger number of initial ground seed points (Fig. 12 (b)).

In addition, because the sum of the maximum terrain angle
[20] plus maximum angle [20] was greater than 90 degrees,
some object points with high elevation were identified as
ground points using the PTD. The use of the maximum relative
elevation threshold can help solve this problem.

IV. CONCLUSION

Due to the poor performance in steeply sloped areas and the
time-consuming processing of classic PTD, we improved the
PTD algorithm in three perspectives: the method of selecting
initial ground seed points, the iterative judgement criterion,
and the processing time. Experiments show our proposed
FPTD filtering algorithm is fast and robust. Its average pro-
cessing time was 1/12 of the PTD, and its average kappa
coefficient of the FPTD was almost 10% higher than that of
the PTD. Additionally, we draw three additional conclusions:

(1) Using the sliding window algorithm, we can readily
obtains a large number of evenly-distributed initial ground
seed points. Decreasing the window size and stride size
produces more initial ground seed points.

(2) Segmenting datasets into blocks and assigning the ini-
tial ground seed points in a certain neighborhood to blocks
guarantees the surface spatial relationship between blocks and
greatly shortens the processing time.

(3) The classification of datasets according to the terrain
complexity is very helpful for determining the thresholds of
PTD filtering algorithms.
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