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Abstract: This study presents a novel workflow for automated Digital Terrain Model (DTM) extrac-
tion from Airborne LiDAR point clouds based on a convolutional neural network (CNN), considering
a transfer learning approach. The workflow consists of three parts: feature image generation, transfer
learning using ResNet, and interpolation. First, each point is transformed into a featured image based
on its elevation differences with neighboring points. Then, the feature images are classified into
ground and non-ground using ImageNet pretrained ResNet models. The ground points are extracted
by remapping each feature image to its corresponding points. Last, the extracted ground points
are interpolated to generate a continuous elevation surface. We compared the proposed workflow
with two traditional filters, namely the Progressive Morphological Filter (PMF) and the Progressive
Triangulated Irregular Network Densification (PTD). Our results show that the proposed workflow
establishes an advantageous DTM extraction accuracy with yields of only 0.52%, 4.84%, and 2.43% for
Type I, Type II, and the total error, respectively. In comparison, Type I, Type II, and the total error for
PMF are 7.82%, 11.60%, and 9.48% and for PTD 1.55%, 5.37%, and 3.22%, respectively. The root means
square error (RMSE) for the 1 m resolution interpolated DTM is only 7.3 cm. Moreover, we conducted
a qualitative analysis to investigate the reliability and limitations of the proposed workflow.

Keywords: digital terrain model; LiDAR; point cloud; deep learning; interpolation

1. Introduction

High-quality digital terrain models (DTMs) or digital elevation models (DEMs) are
vital to various applications, such as urban building reconstruction [1], carbon storage
estimation [2], off-ground object detection [3], and land cover mapping [4]. Raw LiDAR
point clouds include both ground and non-ground points. After data geo-referencing,
outlier removal and interpolation, the entire point cloud can be transformed into a digital
surface model (DSM), including the elevation of both ground and non-ground objects. The
creation of DTMs is much more complex due to the need to remove non-ground points.
Off-ground objects, such as trees and buildings, are removed during the creation of DTMs.

In Ontario, Canada, the DEMs generated by digital photogrammetry under the South-
western Ontario Orthophotography Project have low vertical accuracy of 50 cm [5]. In 2018,
Natural Resources Canada released the High-Resolution Digital Elevation Model products,
which are derived from LiDAR [6].

During the past decades, the production of DTMs using airborne LiDAR point clouds
has been extensively studied. High-density LiDAR point clouds can accurately capture
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slight slope variation of the earth surface, making possible the generation of high-quality
DTMs [7]. Various filtering techniques have been proposed for DTM extraction based
on the types of terrain, such as surface adjustment [8], slope operator [9], morphological
filtering [10–12], Triangulated Irregular Networks (TIN)-based refinement (surface-based
methods) [13,14], or a combination of these filters iteratively [15–17]. Despite those meth-
ods having been reported in the literature, accuracy enhancement for DTM extraction
remains a challenge. According to Meng et al. (2010) [18], three types of terrain that are
difficult to filter are (i) slope with discontinuity, (ii) dense forest canopies, and (iii) ground
with low vegetation. Additionally, steep slopes and break lines are often misclassified in
mountainous areas. For areas with mixed terrain types, algorithms using global parameters
do not perform well.

Besides all these difficulties, several promising directions to improve current methods
have been put forward. Chen et al. (2017) [13] suggested combining different models to
achieve optimal results. Since each model has its distinct advantages and disadvantages in
different types of terrain, we can improve the accuracy of DTM generation by combining
each filter’s merits significantly. Since it is challenging to discriminate ground and non-
ground points using only elevation, ancillary information such as intensity or features
extracted from full-waveform LiDAR are often used [7]. Recently, with the advance of
multispectral LiDAR, spectral information is available with the generated point clouds
during the point cloud acquisition process. Such ancillary feature empowers classification
with LiDAR data to achieve high accuracy even when point clouds are the sole input [4].

Moreover, the recent developments in deep learning semantic labeling of point clouds
have shed light on the DTM extraction problem. Since deep neural networks can learn
critical features directly from datasets, the generalization ability of such networks is typi-
cally stronger than that of traditional filters. Studies applying deep neural networks for
DTM extraction problems have achieved high accuracy even in mountainous regions [19].
The main challenge in applying the convolutional neural networks (CNNs) to point cloud
classification is the unorganized and irregular data structure of point clouds. Therefore, the
deep neural networks presented in Qi et al. (2017) [20] were explicitly designed to take raw
point clouds as input. The networks were designed to be permutation-invariant, which
means the order of the input points does not affect the classification results. A CNN-based
model was explicitly developed for DTM filtering [19]. Testing on the International Soci-
ety Photogrammetry and Remote Sensing (ISPRS) benchmark dataset demonstrated the
superiority of this method compared to traditional filtering approaches.

Therefore, given the advantage of LiDAR data in DTM extraction and the superiority
of deep neural networks in point cloud labeling, this study aims to propose a CNN-
based workflow for DTM extraction. Moreover, this study purposes generating DTMs by
removing off-ground points from raw LiDAR point clouds. To avoid confusion, hereafter,
we will use the term DTM to refer to the bare-earth DEM.

The contribution of this study is described as follows. Firstly, we assessed the suitabil-
ity of deep neural networks for the extraction of DTMs and examined the power of CNNs
for DTM generation. Secondly, this study explores the use of transfer learning to deal
with limited training data. Lastly, we compared the proposed workflow with traditional
filtering methods to examine its advantages.

2. Related Work

Traditional DTM filtering algorithms differentiate ground and off-ground points using
constructed geometric features, including surface-based, slope-based, morphology-based,
and segmentation-based methods. Recently, deep learning has shed new light on the task,
which can be viewed as a binary point cloud classification problem.

2.1. Surface-Based Methods

Surface-based methods aim at approximating terrain surface by iteratively selecting
ground points [21]. It typically involves two steps: (1) selecting seed points to form an
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initial sparse surface, (2) iteratively search for candidate ground points that fall within a
certain threshold to the initial surface. A moving window is used to search for ground
points near the initial seed points. TIN and interpolation are often used to define the
searching neighborhood size, which is critical to filtering success. The progressive TIN
densification (PTD) model was proposed to generate DTM by creating a sparse TIN as
the initial terrain model followed by selecting local minima as seed points to densify
the TIN iteratively [22]. Another surface-based filtering method was proposed by Kraus
and Pfeifer (1998) [23] that used linear prediction. The algorithm constructs the initial
surface by averaging the elevation of all points. Then, the weight to each point was
assigned through iteration. Points located below the surface will have negative residuals
and be assigned with higher weights. The iteration continues until the surface becomes
stable or if the maximum iteration number is reached. Such surface-based methods have
achieved satisfactory results in most terrains, but they struggled to preserve details in steep
slope regions. These methods tend to misclassify small non-ground objects as ground
points [23]. Another key challenge about these methods is their accuracy depends on the
initially derived terrain model and how precise the turning parameters are to fit different
terrain surface types [24]. Furthermore, these methods rely on multiple iterations to locate
candidate ground points and require considerable computational time [9].

2.2. Slope-Based Methods

Slope-based filters assume that the slope of the terrain is distinctly different from
the slope of non-terrain objects [7]. This filter aims to create different slope indicators to
describe the vertical and horizontal distance between neighboring points [13,25]. The slope
between nearby points is calculated and compared to a pre-defined threshold.

These methods basically rely on the erosion operator to implement mathematical
morphology. Although computation efficiency and processing time are improved in these
methods, issues such as gradual parameter selection for the morphological filter in different
land covers and poor performance in sparse point clouds are still consistent [26,27].

2.3. Morphology-Based Methods

Morphological filters are based on the idea of mathematical morphology. Erosion
and dilation are the two most fundamental operations in morphological filters. The
morphological opening includes an erosion followed by dilation, which removes points
higher than its neighbors. Morphological closing consists of a dilation operation followed
by erosion, which removes points lower than its neighborhood [28]. Similar to surface-
based filters, morphological filters are sensitive to the operation window size. On the one
hand, a large window size tends to treat ground points as non-ground points and could
result in over-smoothing and loss of information [29]. On the other hand, while a small
window size effectively removes small objects such as trees and cars, large buildings in the
urban environment cannot be removed.

2.4. Segmentation-Based Methods

Segmentation-based methods are similar to object-based classification in photogram-
metry and remote sensing image studies. First, the raw LiDAR data are transformed into
a raster or voxel grid. This step is optional but widely adopted in practice due to the
difficulty in processing the unstructured LiDAR point clouds. Then, the segmentation is
performed based on the height or intensity value. After the segmentation, the classification
is performed according to the geometric characteristics and topographic relationships of
segments [7]. Segments, instead of points, are treated as the basic processing units in the
classification.

2.5. Deep Learning-Based Methods

The filters mentioned above mostly rely on certain assumption of terrain features,
which results in misclassification when the environment is complicated [19]. The model
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does not make assumptions of the terrain; instead, terrain representation features are directly
learned from the training data. These automatically learned features generally work better
than hand-crafted features. A deep learning-based filter was proposed to classify at point
level [19]. First, each point and its neighboring points are transformed into an image. The
image is a positive sample if the central point is a ground point and vice versa. Then,
the images are treated as an input of a CNN-based method. A similar point-to-image
transformation technique was proposed for point cloud semantic labeling [30].

One of the major challenges in deep learning-based filters is the availability of labeled
data. Training data are critical in deep learning. The diversity of training data directly
affects the model performance. However, a large quantity of manually labeled point clouds
is difficult to acquire. The method was proposed to apply a morphological filter and
select candidate ground and non-ground points at first [31]. Then, only the most confident
samples produced by the morphological filter were used to train a Fully Convolutional
Network (FCN). Another work implemented a deep neural network (DNN) to extract
ground points from LiDAR point clouds in non-vegetated mountainous areas [32]. Training
data were manually labeled in this study, and a DNN was designed based on a signal
demonizing strategy to learn the correlations between DTMs and their corresponding
DSMs to generate LiDAR-derived DTMs.

Some networks with different architectures were also used in recent works to solve
multiple classification problems and extract various features from point clouds [33–35].
As an example, a recent work employed a high-level multi-level feature selection strategy
based on the intensity and normalized height features [36]. Although their proposed
method achieved satisfactory results in reducing training time and the number of training
samples, densely structured and deeper CNNs would obtain more accurate classification
results. Previous works also showed that the automated labeling strategy could yield
comparable results to manually labeled samples as training data and eliminate the need
for unwanted pre-processing time and dependency of the results on feature engineering
quality [35–37]. Testing a DNN on several terrain types and complex landscapes is another
concept that has been rarely conducted in previous studies [32].

The DTM filtering problem has been under research for decades. Various filtering
algorithms have been proposed to solve this problem. However, filtering error cannot be com-
pletely eliminated due to data structure, constraints of the model, and the real environment’s
complexity. The irregularly distributed point cloud can be computationally expensive to
process; therefore, most studies choose to transform the point clouds into a grid or voxel before
filtering. However, these transformations are usually accomplished through interpolation and
averaging, resulting in loss of information. Moreover, grid cells whose values are interpolated
from both ground and non-ground points can be a challenge for classification.

The filtering models are designed based on certain assumptions of the terrain surface
morphology, which has its advantage and disadvantage on different types of terrain. To
date, none of the filters can be successfully applied in large areas with complex terrain
features. Normally, artificial objects with a relatively small size closed outline and slope
discontinuity with terrain (e.g., detached house) are easy to remove. Sparse vegetation that
allows LiDAR signal penetration is also easily removed. Hilltops and ridges are higher than
local terrain surfaces and are often misidentified as non-ground objects. Break lines, such
as ridges and cliffs, that cause slope discontinuity in the terrain are often smoothed by the
filter [28]. Seven terrain features that are challenging for most of the filtering methods were
listed in Meng et al., 2010 [18]: shrubs below 1 m, short walls along walkways, bridges,
buildings with various sizes and shapes, cut-off edges, complex mixed coverings, and
regions with both low and high-relief terrain. Break lines are the places where the terrain
elevation changes abruptly, such as mountain ridges, cliffs, and dikes [38]. As mentioned
in Shao and Chen (2008) [28], break lines may cause trouble for slope-based methods.
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3. Datasets and Method
3.1. Study Area and Datasets

The study area is the main campus of the University of Waterloo, Ontario, Canada
(Figure 1). The study area portrays a mixture of urban layout and forest environment,
consisting of large buildings, roads, forests, lawns, parking lots, individual trees, bushes, a
small lake, and a creek. The majority of the study area is flat, with some elevated regions in
the northern part of the scene. The complexity of the ground objects and the mixture of
low and high relief topography make this area suitable for DTM extraction analysis. The
airborne LiDAR point clouds used in this study were a subset from the airborne LiDAR
dataset acquired by the Leading Edge Geomatics team over the City of Waterloo using
a RIEGL Q680i system during 2-3 November 2014. The system specifications are shown
in Table 1. The average flying height was 1200 m above ground, producing LiDAR point
clouds with a horizontal accuracy of approximately 31 cm (RMSE) and vertical accuracy
of 6.1 cm (RMSE). The dataset contains a total of 3,082,000 points, which were inherently
classified into five classes: ground, low vegetation, medium vegetation, high vegetation,
and building. The classes were merged into two categories, ground and off-ground, to suit
the purpose of this study.
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3.2. DTM Extraction

Figure 2 shows the general workflow of our method, which consists of three parts: data
pre-processing, feature image creation and classification, and ground point interpolation.
In pre-processing, the point cloud is clipped to the study area extent. Low outliers are
removed at this stage using a statistical outlier removal (SOR) filter [39]. In the second part,
each point is transformed into a featured image based on the height differences between
neighboring points using the transformation proposed in Hu and Yuan (2016) [19]. Then,
the feature images are classified using pretrained ResNet models. In the third step, the
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extracted ground points are interpolated to form a continuous elevation surface. The
interpolated surfaces are assessed based on their RMSE from the ground truth.

Table 1. Specifications of the RIEGL Q680i system.

Laser Wavelength Near-infrared (1550 nm)

Scan Pattern Parallel scan lines

Scan Speed 10–200 lines/sec

Scan Angle Range ±30◦

Laser Pulse Repetition Rate up to 400,000 Hz

Angle Measurement Resolution 0.001◦
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3.3. Pre-Processing

During the pre-processing, the original airborne LiDAR point clouds were clipped to
the extent of the defined study area. Then, before DTM extraction, the existing outliers in
the raw point clouds need to be removed. Based on elevation, outliers can be categorized
into low outliers and high outliers. Low outliers are the points that have extremely
low elevation compared to their neighboring points. These points are typically caused
by mechanical errors of the scanner or multiple reflections. Since the ground and non-
ground points are mainly distinguishable by their elevation, low outliers are particularly
destructive to the DTM extraction algorithm. Therefore, low outliers need to be removed
during pre-processing. The SOR filter [39] was used for demonizing in CloudCompare. The
filter computes the average distance between each point and its nearest neighbors (n = 6) in
our study. Then, assuming the calculated distance distribution is normal, any point whose
average distance with its 16 nearest neighbors is greater than the global average distance
plus 3 standard deviations is rejected. The demonizing results in 1.88% of the original point
clouds being removed.

3.4. Feature Image Generation

In order to determine whether a point is a ground or non-ground, not only the
elevation of the point itself but also the spatial information of its neighboring points are
needed. Most laser scanners also provide spectral information as auxiliary data, which were
not accessible in our dataset. By turning the point cloud into a rasterized representation,
each point classification will turn to label its corresponding feature image [40]. To this end,
for each point Pi, a corresponding image is generated based on the method proposed in
Hu and Yuan, 2016 [19]. Figure 3 shows the workflow of point to image transformation,
in which for each point Pi in the point cloud, a corresponding feature image is generated
based on its elevation difference with neighboring points.
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Figure 3. Point-to-feature image transformation.

The point Pi is located at the center of this square window, and thus, it will be referred
to as the central point. The square window is then partitioned into multiple cells based
on two parameters: cell size and image size. Image size indicates the number of rows
and columns of an image. Cell size indicates the resolution of feature image pixels, which
should be set slightly larger than the average point spacing. Since the average point
spacing of the point cloud is approximately 1 m, to avoid empty cells and make most of
the abundant spatial information simultaneously, the cell size is chosen to be 1.5 m, which
is slightly larger than the point spacing. The largest building in the dataset has a width of
approximately 70 m. To identify such a building, a spatial context of approximately double
the building size is needed. Thus, the image size is chosen to be 128 × 128 cells, which
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is equivalent to 192 × 192 m. Next, the maximum (Zmax), minimum (Zmin), and average
(Zmean) elevation within each cell is calculated. The last but critical step is to subtract Zi
from Zmax, Zmin, and Zmean to acquire pixel values for synthetic red, green, and blue bands;
then, through sigmoid function, the elevation difference is mapped into three-pixel values
between 0 and 255 using:

Fred = b256 ∗ σ(Zmax − Zi)c (1)

Fgreen = b256 ∗ σ(Zmin − Zi)c (2)

Fblue = b256 ∗ σ(Zmean − Zi)c (3)

The following sigmoid function is used to take a number of x as input and transforms
it into a value between 0 and 1:

σ(x) =
(
1 + e−x)−1 (4)

3.5. Feature Image Classification

The deep Residual Network (ResNet) [27] was chosen to perform the classification task
due to its outstanding performance on the ImageNet dataset. Compared to plain networks,
residual networks can perform well in much deeper architectures while maintaining lower
computational complexity. With the increasing depth of the network, the training and
testing accuracies first saturate and then decrease. Experimental results show that such
a decrease in accuracy is not overfitting since both training and testing accuracy have
simultaneously dropped. The residual networks are designed to ease the training of deep
CNNs by adding residual learning blocks to the corresponding “plain” networks (networks
that simply stack layers). Convolutional layers are the main calculating part of CNN, which
uses kernels to transform input data into feature maps. They use kernels to connect to a
local reception field in the previous layer (either an input image or an intermediate feature
map). By sliding over the full extent of the input volume, the output feature map represents
the filter response of the input image or feature maps.

A batch normalization (BN) is performed after each convolutional layer and before
activation. BN is an effective way to accelerate learning and prevent overfitting. The input
data in each mini-batch are normalized using:

yi = γ
xi − µB√
σB2 + ε

+ β (5)

where β = {x1, x2, . . . , xN} denotes the current batch, µB and σB
2 are the mean and

variance of the mini-batch, respectively, ε is a constant added to the mini-batch variance for
numerical stability, and γ and β are the parameters to be learned. A ReLU (Rectified Linear
Unit) activation is used after BN to ensure nonlinearity. The ReLU activation function
computes F(x) = max(0, x), which simply regards all values below zero as zero.

The pooling layers are also referred to as down-sampling layers. It usually follows
one or several convolutional layers to reduce the dimension of the feature map. The
pooling layer minimizes the dimension of feature maps by taking the average or maximum
value within the kernel, thus reducing the network’s parameters, and has a certain effect
in preventing overfitting. The neurons in fully connected layers are connected to every
neuron in the previous layer. Fully connected layers are the last group of layers in ResNet,
which outputs the probability of each input that belongs to a certain class by softmax
activation function in its last layer. The dimension of the last fully connected layer depends
on the number of classes to be predicted. In our case, the fully connected layer has two
neurons, since the task is a binary classification problem.

3.6. Transfer Learning

The training was based on fine-tuning the ResNet models with pre-trained ImageNet
weights on the feature images dataset. ResNet models with 18, 34, and 50 layers were



Remote Sens. 2021, 13, 3448 9 of 19

adopted, referred to as ResNet18, ResNet34, and ResNet50, respectively. In order to
overcome the size difference between feature images and ImageNet images, the top two
layers of the network need to be modified, which are the average pooling layer and the fully
connected layer. Since our problem is a binary classification problem, the fully connected
layer was resized to (512, 2) for ResNet18 and -34 and (2048, 2) for ResNet50. The second
last layer, which is the average pooling layer, has a kernel size of 4 and stride 1. Cross-
Entropy Loss is used to measuring the loss of the neural network. Our aim was to minimize
the loss, i.e., the smaller the loss is, the better the model will be. The loss is calculated by:

J = − 1
N

N

∑
n=1

[ynlog(pn) + (1− yn)log(1− pn)] (6)

where pn is the predicted probability of an input belong to its true class, yn is the label of
current input, and N is the batch size. The training was performed on a computer with an
NVIDIA GeForce GTX 1080 GPU, an Intel CPUi7-9700k 3.6 GHz with 8 cores, and 32 GB of
RAM.

3.7. Interpolation

Interpolation is the process of transforming the extracted ground points into a con-
tinuous surface representing terrain elevation. The three following interpolation methods
are employed and compared to minimize the RMSE: Inverse Distance Weighting (IDW),
ANUDEM (Australian National University DEM), and Natural Neighbor.

IDW is a deterministic interpolation method that predicts the value at location p using:

Zp =
∑N

i=1

(
Zi
di

k

)
∑N

i=1

(
1

di
k

) (7)

where N is the number of neighboring points, Zi is the elevation of ith neighboring point,
di is the distance between the ith neighboring point and location p, and k is the power of
distance. The value of Zp is essentially a distance-weighted average of Zi (i = 1, . . . , N).

IDW explicitly makes the assumption that things nearer are more similar than things
apart; thus, measured points that are spatially closer to the interpolated location will be
assigned higher weights. The method is essentially a distance-weighted average approach:
as the distance between the measured point and the interpolating location increases, the
inverse of the distance decreases and, therefore, the weight. The power k adjusts the speed
of the weights, which diminishes with distance. If k = 0, Equation (7) will calculate a simple
average of the neighboring points’ Z values. As k increases, the weights of distant points
will decrease rapidly. IDW is an exact interpolator, which means that the interpolated
value will not exceed the minimum or maximum of the elevations used to predict the
interpolated value.

ANUDEM is an interpolation method that creates grid DEM using locally adaptive
elevation gridding [41]. Although this method is designed to work with drainage structure
and hydrologically relevant topographic data [42], it can also produce outstanding quality
DEMs with regular elevation point data. ANUDEM uses a spline fitting method that is
computationally efficient and can work with an arbitrarily large dataset. A multi-grid
method is proposed to generate the DEM starting from the coarse grid, then refined the
resolution on a successive finer grid.

Natural neighbor, also known as “area-stealing” interpolation, is an exact interpolator.
The predicted values do not exceed the minimum and maximum values of input elevations.
Similar to IDW, the natural neighbor method does not infer any trend from the input
data. Instead, it only considers the elevation value of the interpolating location’s direct
neighbors and derives predicted values using the weighted average. The key component in
natural neighbor interpolation is the Voronoi diagram, which corresponds to the Delaunay
triangulation in terms that the Voronoi diagram can be produced by connecting all the
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circumcircles centers of the Delaunay triangulations. First, a Voronoi diagram is created
for each of the elevation points. Then, for every location p that needs to be interpolated,
a Voronoi polygon is created. Next, points Zi (i = 1, . . . , N), whose Voronoi polygon
overlaps with the polygon of location p, are defined as p’s natural neighbors. Weights
are assigned to the natural neighbors based on the overlapping area between the Voronoi
polygon of p and the polygons of Zi (i = 1, . . . , N). The predicted value at p will be the
weighted average of its natural neighbors’ Z-values.

4. Results

Through extensive experiments, increasing the complexity of the model and increasing
the amount of training data does not significantly improve the classification result, so the
simplest model with the least training data is chosen due to the efficiency in training time
and low labeling requirement. Thus, the combination of ResNet 18 and 10% of training
data is considered optimal. The classification result is presented in Figure 4.
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Type I and Type II errors are common measurements for DTM classification accuracy.
Type I error indicates the misclassification of the ground as non-ground, and Type II error
is the misidentification of off-ground objects as ground. In Figure 4, the red pixels indicate
the occurrence of Type I errors, while the green pixels indicate the occurrence of Type II
errors. Very little Type I error is presented in the scene. That means the terrain points are
largely preserved. On the other hand, a few Type II errors can be observed, especially
along the railway (highlighted by eclipse), where the occurrence of shrubs tends to be
misclassified as ground.

Two zoomed-in scenes are selected to visually present the filtering details. Shaded
images of DSM and DTM are created for better visualization. Figure 5 illustrates the
filtering results of buildings, roadside trees, and cars in parking lots. Figure 6 shows the
filtering results of dense vegetation. It can be seen that most of the off-ground objects are
correctly removed, while the terrain characteristics are preserved.

The confusion matrix is shown in Table 2. The proposed method can achieve high
classification accuracy. The percentages of Type I, Type II, and the total error are 0.52%,
4.84%, and 2.43%, respectively. Additionally, the system is biased towards making Type II
errors, which is favorable. According to Sithole et al. (2004) [38], filters should strive to
minimize Type I errors, since Type II errors are caused by misidentifying off-ground objects
as ground. Such errors are typically conspicuous and are relatively easier to remove. On
the other hand, Type I errors are the misclassification of the ground as non-ground, which
results in terrain reconstruction gaps and is, thus, difficult to correct.
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Table 2. Classification confusion matrix of ResNet 18.

Reference

Predicted label

Ground Non-ground Total Errors (%)

Ground 1,660,886 8718 1,669,604 Type I error: 0.52

Non-ground 63,957 1,257,998 1,321,955 Type II error: 4.84

Total 1,724,843 1,266,716 Total error: 2.43

5. Discussions
5.1. Impact of Pre-Trained Weights

In order to investigate whether using pretrained model accelerates the training process,
we trained and compared the models from both random initialized (RD) and transferred
(TF) weights. The evaluation was conducted by comparing the true labels done manually
and the results achieved by each implemented method. Figure 7 shows the training and
validation accuracy achieved using 10% of the training data on ResNet18. Although
the pretrained model achieved higher training accuracy throughout the training process,
we can observe a little difference in validation accuracy. The model using transferred
weights achieved higher validation accuracy than the random initialized model in the first
five epochs, which was consistent for all subsequent epochs. This indicates a stronger
generalization ability of our proposed ResNet. However, their difference has a negligible
amount of 0.003.
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5.2. Comparison of Different ResNet Models

Three ResNet models are used in this study: ResNet18, ResNet34 and ResNet50. As
the depth of the network increases, it is capable of representing more complex features.
However, the computational time as well as required memory and storage space are
also increasing. Moreover, complex networks may overfit the training dataset and fail to
generalize well to other datasets. Thus, to select the optimal network, three ResNet models
are compared with four different training data rates (10%, 20%, 30%, and 40%), while the
validation percentage is held constant at 10%.

After experimenting on the validation dataset, a learning rate of 0.001 and drop out
of 0.2 are chosen to train the models. As shown in Figure 8, the validation accuracy of
the three models does not differ significantly, which means ResNet18 is sufficient for the
classification task. On the other hand, adding more training data can effectively improve
the validation accuracy. With 10% of the training data, the average accuracy achieved by
three models is 97.49%, while with 40% of the training data, the average accuracy achieved
is 97.89%. However, this improvement is relatively trivial, since the validation accuracy
only improves 0.04%, which indicates a slight improvement in reducing the number of
misclassified points. The computational cost (time) for training each model is shown in
Figure 9. It can be seen that as the number of layers increases, the training times also
increase. While ResNet18 and ResNet50 yield similar results, the amount of time used to
train ResNet50 is almost tripled. Thus, ResNet18 is the best model, since it provides similar
results to ResNet50 in a shorter time. Training time increases linearly with the amount of
input data. For ResNet18, 34, and 50, the time used to train one epoch on 10% of the data is
4 m 25 s, 7 m 33 s, and 12 m 27 s, respectively.
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5.3. Comparative Studies

We compared the proposed method with two traditional filters, namely the Progres-
sive Morphological Filter (PMF) [29] and Progressive TIN Densification filter (PTD) [22].
The comparison was conducted based on three criteria: classification accuracy, RMSE of
interpolated DTM, and qualitative results.

Table 3 illustrates the point-wise classification accuracy of each model. The Type I,
Type II, and the total error of ResNet are 0.52%, 4.84% and 2.43%, while the errors for PTD
are 1.55%, 5.37%, and 3.22% and for PMF 7.82%, 11.62%, and 9.48%, respectively. It can be
seen that the ResNet model produces the lowest error rates.

Table 3. Comparison of the error rate.

Error (%) ResNet PTD PMF

Type I 0.52 1.55 7.82

Type II 4.84 5.37 11.62

Total 2.43 3.22 9.48

RMSE is another index that reflects the quality of the DTM. After ground points are
extracted, raster DTMs are generated using interpolation. Three interpolation techniques
are compared: IDW, ANUDEM, and natural neighbor. The RMSEs of interpolated DTMs
are shown in Table 4.

Table 4. RMSE of interpolated DTMs.

RMSE (m) ResNet PTD PMF

IDW 0.0751 0.101 0.313

ANUDEM 0.0816 0.108 0.263

Natural Neighbor 0.0730 0.0944 0.295

It is not surprising to see that the RMSE results are consistent with point classification
accuracy. DTMs generated by ResNet extracted points also have the lowest RMSE, which
is less than 10 cm. DTMs generated by PTD extracted points have slightly higher RMSE,
while DTMs generated by PMF extracted points have RMSEs almost three times higher.
Among the three interpolation methods, natural neighbor yields the best result for ResNet-
and PTD-extracted points, while ANUDEM yields the best result for PMF extracted points.
Qualitative assessment is made to examine the filter performances for different non-ground
objects. Certain terrain characteristics are identified as difficult to filter for all DTM filtering
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techniques based on visual inspection, such as complex building structure, low vegeta-
tion, and attached objects (buildings connected with or built into the ground). Based on
the RMSE analysis, each filter extracted points are interpolated using the most suitable
interpolation technique.

5.4. Vegetation and Buildings in Sloped Areas

Sloped areas with vegetation or building on top are difficult to filter due to the large
variability in slope and terrain discontinuity caused by vegetation or building blockage.
This type of terrain is challenging for the PMF filter in terms of classification, which assumes
a constant slope for the entire study area. Figure 10 shows the filters’ performances in a
sloped area with trees near a building. It can be seen that both ResNet and PTD yield only a
few errors by misclassified curbs and grass (shows in green color), while PMF misidentified
a large part of the terrain as non-ground (shows in red color).
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Figure 10. Filtered results for a sloped area with vegetation: (a) ResNet, (b) PTD, (c) PMF, and
(d) aerial image from Google Maps. Red color shows Type I errors, and green color shows Type II
errors. Frames represent exactly the same study area.

5.5. Complex Structures

PTD filter encounters difficulties with complex buildings with rooftops at different
heights. An example of such a building structure is shown in Figure 11. The building
rooftops are at three different elevations, while the two lower parts of the rooftop are
misidentified as ground by the PTD filter. The ResNet filter performs well in this situation
since it considers a point’s direct neighbors and the elevation difference to all points
within 196 m distance. The sufficient spatial information passed through point to image
transformation enables the filter to detect building rooftops even when higher objects are
presented in the scene.
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5.6. Mixed Buildings and Terrain

Special cases of buildings connected with or built into terrain make it difficult to
define the boundary of ground and non-ground (see Figure 12). A part of the building is
built into the terrain, making the building rooftop level with the inner ground. There are
three options for classifying this type of structure. Option 1 is to keep the inner ground
and remove all the buildings. Option 2 is to keep the rooftop and the inner ground while
removing only the front building façade. Option 3 is to remove the entire building as well
as the inner ground. The ground truth label adopts the second option, since it preserves
most of the spatial information while introducing little error.

Both ResNet and PTD filters abide by the second option: to classify the rooftop and
the inner ground as bare earth. However, even though the trees on the ground are removed,
the rooftop handrail was misclassified as ground. The PMF complies with the second
option; as shown in Figure 12c, the front building rooftop is all classified as non-ground.

5.7. Dense Vegetation

All three filters perform worse when identifying terrain in the densely vegetated area.
As shown in Figure 13, large quantities of Type I and Type II errors can be observed in all
three cases. However, based on the front view image, high vegetation is correctly classified.
The source of the errors comes from failing to differentiate between low vegetation and
bare ground. It is challenging to differentiate these two classes based only on the height
attribute, especially in densely vegetated areas where there is the vegetation of various
heights. A possible solution for this case is to use multispectral LiDAR. With the aid of
spectral information, vegetation and ground can be easily distinguished with high accuracy
estimates [4].
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6. Conclusions

This study presented a workflow for DTM generation using airborne LiDAR data
based on CNN and transfer learning for a small area covering the main campus of the
University of Waterloo region. The proposed workflow was tested using the real airborne
LiDAR point clouds. To cope with the unstructured point clouds and CNN’s requirement
of organized input data, we conducted a point-to-image transformation. Each LiDAR point
of interest with its neighboring points was transformed into a featured image based on
the elevation differences. The feature images were used as input for the ResNet models.
The ground points can be extracted by remapping the classified feature images to their
corresponding points in the airborne LiDAR point clouds. The proposed workflow was
then compared with two traditional filers (PTD and PMF) in terms of point-wise classifica-
tion accuracy, RMSE of interpolated DTM, and quantitative performance in several special
cases. Results concluded that the proposed workflow could produce high-quality DTMs
with Type I error, Type II error, and a total error of 0.89%, 3.62%, and 2.10%, respectively.
Moreover, by using pretrained weights on ImageNet, the model can achieve high accuracy
using only a small percentage of training data. Further analysis of interpolated DTMs re-
vealed that the RMSE of the proposed workflow is 7.3 cm, compared with 9.4 cm produced
by PTD and 26 cm produced by PMF. Several special cases that are particularly difficult
to filter are presented and discussed. The proposed workflow performed well in most of
these cases, except for densely vegetated regions, where the distribution of Type I and Type
II errors can be observed. Finally, the proposed model can be used in various disciplines
such as transportation, urban planning, and geology in low- to medium-density urban
regions covered by less canopy. The authors will work on more data and a larger area in
the future study to see the accountability and applicability of the developed algorithm.
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