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A B S T R A C T   

Non-point source (NPS) pollution has greatly threatened socio-economic development and human health due to 
water environment degradation. It is very important to quantitatively analyze spatio-temporal variation rules of 
NPS pollution sources surrounding drinking water source area (DWSA) and their impact on the water envi
ronment with time-series satellite images. In this paper, we study a systematic remote sensing monitoring 
method on DWSA of upper Huangpu River, Shanghai. Firstly, an optimized Extreme Learning Machine (ELM) 
classification algorithm, namely Mixed Kernel ELM with Particle Swarm Optimization (PSO-MK-ELM) was 
constructed. Based on the PSO-MK-ELM, four NPS pollution sources- farmland, building land, woodland, and 
water were identified accurately and efficiently. Then their corresponding spatiotemporal analysis was per
formed with 30 years (1989–2019) Landsat images. On the basis of NPS pollution source area and census data 
from 1989 to 2017, the principal pollutants discharged into DWSA were also calculated with the common Export 
Coefficient Model (ECM). Finally, the contributions of the spatial and temporal changes of NPS pollution sources 
on pollutant emissions were analyzed. The result indicates the PSO-MK-ELM has an advantage of efficiency and 
accuracy in NPS pollution source extraction and our results are expected to provide a scientific basis and data 
support for NPS pollution control and DWSA protection for better practices for environmental management in 
megacities worldwide.   

1. Introduction 

Among many natural resources, water resources is one of the key 
strategic and economic resources for ensuring sustainable economic and 
social growth (Li and Qian, 2018). The protection of the drinking water 
source area (DWSA) as an important water storage area is closely linked 
to the stability of civilization and the well-being of the people (Tang 
et al., 2019). In general, non-point source (NPS) pollution occurs from 
soil runoff, erosion, air deposition, flooding, intrusion or hydrological 
alteration (rainfall and melting snow), where it is difficult to trace 
pollution back to a particular source. This NPS pollution threatens water 
and environmental security as it is one of the major pollution types to 
DWSA (Chen et al., 2016). According to the Environmental Protection 

Agency, NPS pollutants mainly originate from pollution sources 
including agricultural activities and urban living which finally converge 
into the water body via runoff effects (Ongley et al., 2010). The physical 
and anthropological variability due to land use/cover change (LUCC) 
and urbanization has significant impact on NPS pollutant emission (Ding 
and Liu, 2019; Duan et al., 2016). One of the main reasons for excessive 
emissions, is due to increasing population and their life style activities 
that have significant impact on LUCC. These variations in physical and 
anthropological activities due to rapid urbanization process result in 
more NPS pollutants being released (Zhang et al., 2017). Therefore, it is 
very important to continuously monitor changes in NPS pollution 
sources and to quantify their effect on DWSA. 

The standard NPS emission investigation depends heavily on field 
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assessment and laboratory analysis, making it tedious and labor inten
sive (Shen et al., 2020). It further makes it difficult to continuously 
monitor large survey areas to predict pollutant emission. Duan et al. 
(2013) argues that these conventional methods only acquire sparsely 
sampled data making it difficult to evaluate water pollution quantita
tively and with higher precision. With the recent technology advances, 
remote sensing technology serves to address these challenges by quickly 
acquiring image snapshots for identifying and monitoring pollution on 
large geographic surveys (Gómez et al., 2016). Since time-series remote 
sensing images can reveal spatial-temporal changes of land-use types 
including the NPS pollution sources, it can be used to estimate the NPS 
pollution emission and to analyze its impact on emission variations into 
a DWSA. Consequently, the remote sensing-based surveys are of spatio- 
temporal nature, to some extent, they can capture the impact of NPS 
pollutants on a DWSA. 

The analysis of remote sensing images is dependent on two signifi
cant parameters, they being, LUCC over a temporal frame and its impact 
on NPS pollutant emission. Significant challenges arise by correlating 
NPS pollutant emission and LUCC with a long period: (1) to identify NPS 
pollution sources in time-series remote sensing images; (2) to quantify 
the NPS pollutant emission and analyze its variations with LUCC. The 
land-use types and area information of NPS pollution sources provide 
the basic information for NPS pollutant emission estimation and quan
titatively analyzing the LUCC impacts on the variations of emission. 

The first problem is usually solved by Machine Learning (ML) 
methods on chronological remote sensing images (Duro et al., 2012; 
Talukdar et al., 2020). Numerous researchers studied ML classifiers to 
extract ground information for monitoring and analyzing LUCC (Mah
dianpari et al., 2018; Rudke et al., 2019; Tong et al., 2020). Generally, 
pixel-based classification can be divided into parametric and non- 
parametric methods (Phiri and Morgenroth, 2017). A widely used 
parametric method is the Maximum Likelihood, which acquires a 
desirable classification result when the data fulfills the normal distri
bution. However, the complex landscapes of an urban environment 
usually break the pre-assumption (Liu et al., 2011). On the contrary, the 
non-parametric classification methods like Support Vector Machine 
(SVM) and Artificial Neural Networks (ANNs) are not dependent on the 
data distribution (Mountrakis et al., 2011; Rokni et al., 2015). SVM is 
initially designed to deal with binary questions that maximize the dis
tance between support vectors. It becomes popular for its capability to 
handle high-dimensional data with a few training samples (Ma et al., 
2019). But it is relatively time-consuming for multi-class problems. 
ANNs maps the input into specific classes by assigning different weights 
on connected nodes and also the key is to initialize and adjust these 
weights to implicitly learn the rules between the input and the output 
(Maxwell et al., 2018). However, high training costs and intensive user- 
defined criteria are major obstacles to improve the accuracy. As an 
outstanding ANNs method, Extreme Learning Machine (ELM) can 
randomly assign the weights from input to the hidden layer which re
duces the training time and only addresses the number of hidden layer 
neurons with fewer human interventions (Huang et al., 2015; Pal et al., 
2013). However, classical ELM cannot guarantee high classification 
accuracy when dealing with highly nonlinear problems and thus it is 
natural to introduce a kernel function to deal with it. Further investi
gation is needed to simplify the model complexity and improve the NPS 
pollution source recognition accuracy. This can be achieved by the 
learning ability of the model and strong generalization kernel ELM 
method. 

In addition to the aforementioned challenges, quantifying the NPS 
pollutant emission into the water needs to be addressed. The literature 
present two widely accepted models. The physical-based models repre
sented by SWAT (Lai et al., 2020) strictly simulate physical processes by 
abundant parameters that limit their applications in data-lacking areas; 
on the contrary, the empirical models are exemplified with less input 
data for an appropriate pollutant emission estimate (Adu and Kumar
asamy, 2018; Zhang et al., 2019). The Export Coefficient Model (ECM) is 

a widely used empirical model that calculates the total NPS pollutant 
emission as the sum of each NPS pollution source emission in accordance 
with its individual contribution (Ding et al., 2010; Johnes, 1996; Wu 
et al., 2015). However, the comprehensive study of the interrelation
ships between the long-term LUCC affected by the urbanization process 
and its effect on the NPS emission of DWSA in mega-cities is compara
tively minimal. Furthermore, the well-researched NPS pollution is more 
concerned with sources linked to agricultural activities and the esti
mation of nitrogen and phosphorus emissions. (Duan et al., 2020; Wang 
et al., 2019). 

The NPS pollutant emission estimated by the ECM usually relied on 
statistical data. Since the area information was evolved with time and 
space, it is difficult to monitor the LUCC information timely based on the 
field investigation. Consequently, we turned to a robust ELM method, 
which is expected to own both distinguishing learning ability and strong 
generalization ability in extracting the LUCC information on time-series 
images. Combining the extracted area LUCC information with other 
required input parameters (annual emission coefficient, removal rate, 
and the effluent coefficient), we could use the simple but effective ECM 
to estimate the NPS pollutant into the DWSA. In this paper, we used 
time-series Landsat images of DWSA of the upper Huangpu River in 
Shanghai to find how the LUCC from the 1980s to 2010s affects the NPS 
pollutant emission variations. First of all, we need to solve the problem 
of constructing an efficient and accurate extraction algorithm. Based on 
the optimized classification algorithm, using nine images from 1989 to 
2019 to obtain the LUCC information and the spatiotemporal rules. Then 
ECM was utilized to estimate four typical pollutant emission from 1989 
to 2017 in DWSA. Spatial-temporal variation analysis of NPS pollutant 
emission was finally conducted. Our contribution is that we provided a 
comprehensive framework from LUCC information extraction based on 
the time-series remote sensing images to quantitatively NPS pollution 
monitoring in a DWSA. Specially, we developed an efficient and reliable 
machine learning algorithm in LUCC information extraction, and this 
helped us to get rid of estimating the NPS pollutant emission based on 
the statistical data completely. Besides, it provides reliable data support 
for LUCC analysis and analyzes its impacts on NPS pollutant emission. 

2. Study area and data sets 

2.1. Study area 

In this paper, DWSA of upper Huangpu River was taken as a case 
study. Fig. 1 showed the study area (red rectangle) and its zoom in. It is 
used in classification comparison and accuracy evaluation. Considering 
the NPS influence sphere, the quantitative NPS emission analysis area is 
selected in the second-order DWSA of the upper Huangpu River with a 3 
km buffer zone (yellow curve). It includes about 754 km2 water area and 
land area in total. Waters (blue curve) mainly includes Hengliaojing, 
Weigangjing, Xiatang, Taipu River, Lanlugang, Dianshan Lake (cyan 
curve), and Huangpu River. Among all the waters, Dianshan Lake is of 
utmost importance since it is the largest natural freshwater lake in 
Shanghai and the source of the Huangpu River. 

2.2. Data 

2.2.1. Time-series Landsat images 
In this study, nine Landsat images with orbit number 118 / 39 were 

collected by TM, ETM+, and OLI from 1989 to 2019. The image pa
rameters were illustrated in Table 1. To ensure the consistency of data 
analysis in the target area, the images were all acquired in summer. And 
six spectral bands with spatial resolution of 30 m were used in the 
experiment. 

2.2.2. Statistical data 
Annual reports were utilized in evaluating our method and calcu

lating NPS pollutant emission. For accuracy assessment, area of 
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administrative division, crop and intensive fish pond from 2015 annual 
report of Jinze Town, Qingpu District was gathered and displayed in 
Table 2. Population density statistical data used in NPS pollutant 
emission estimation was listed in Table 3. Pollutant emission coefficients 
and effluent coefficients of land-use types from the statistics department 
were listed in Table 4. 

2.2.3. Reference dataset 
The reference data of the 2015 Landsat-8 image of the whole DWSA 

of the upper Huangpu River was used to train four ML classifiers and 

assess classification accuracy. Table 5 listed 1841 samples used in this 
study. 

3. Method 

The overall method is to construct an intelligent ML algorithm on 
Landsat long time-series images of the upper Huangpu River, to analyze 
NPS pollution source spatial-temporal LUCC around the DWSA, to 
calculate the effluent pollutant emission and to find out the LUCC impact 
on pollutant emission changes. In detail, the Mixed Kernel ELM with 
Particle Swarm Optimization (PSO-MK-ELM) algorithm was utilized on 
nine Landsat imageries to extract ground object information followed by 
the analysis of LUCC in DWSA. Then, combining the estimated area from 
the PSO-MK-ELM with statistical reports, the pollutant emission of four 
major pollutants into the DWSA was calculated separately based on the 
ECM. Finally, the spatial-temporal NPS pollution source variation 
impact on pollutant emission variations was analyzed in detail. Fig. 2 
showed the workflow of our method. 

Fig. 1. Study area: DWSA of the upper Huangpu river. The yellow curve borders the second-order DWSA of the upper Huangpu River with a 3 km buffer area. The 
blue line delineates waters. The cyan closed curve is the boundary of Dianshan Lake. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
Landsat images used in this study.  

Data source Sensor Date (YYYY/MM/DD) 

Landsat-5 TM 1989/06/05 
Landsat-5 TM 1995/08/10 
Landsat-7 ETM+ 2000/09/18 
Landsat-5 TM 2007/07/28 
Landsat-5 TM 2009/07/17 
Landsat-8 OLI 2013/08/29 
Landsat-8 OLI 2015/08/03 
Landsat-8 OLI 2017/08/24 
Landsat-8 OLI 2019/07/29  

Table 2 
Statistical data from 2015 annual report of Jinze Town, 
Qingpu District.  

Type Area (km2) 

Administrative region 108.42 
Farmland 9.42 
Intensive fish pond 9.86  

Table 3 
Population density of the water source nearby.  

Year Population density of water source nearby districts (people/km2) 
Qingpu Songjiang Minhang Fengxian Jinshan 

1989 670 825 3410 757 929 
1995 678 818 1467 757 975 
2000 679 819 1759 733 905 
2007 1160 1632 5113 1089 1139 
2009 1217 1965 4894 1191 1179 
2013 1787 2867 6830 1679 1331 
2015 1804 2906 6845 1687 1362 
2017 1799 2892 6836 1681 1367  
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3.1. Preprocessing 

All the images used were preprocessed using radiometric correction, 
atmospheric correction, and geometric correction techniques. The 
radiometric correction and atmospheric correction were used to elimi
nate the absorption and attenuation effect during propagation and 
retrieve a surface reflectance associated with ground objects. And the 
geometric correction was to calibrate the location of pixels by using 
fifteen uniformly distributed ground control points. 

3.2. Feature space construction 

To enlarge differences of land-use types, we transformed original 
data into a suitable feature domain for machine-sensing. In this paper, 
we constructed a six-dimension space by spectral analysis and band 
selection. The spectral analysis results imply that the Normalized Dif
ference Vegetation Index (NDVI), Normalized Difference Factory Index 
(NDFI), and the brightness component of Kanth-Thomas (K-T) 

transformation are suitable features since they are good indicators for 
vegetation, factories and bareland. Besides, the band selection computed 
by the Optimum Index Factor (OIF) (Dwivedi and Rao, 1992) method 
manifests the optimal band combination is the near-infrared, red, and 
green band for TM / ETM + or near-infrared, red, and blue for OLI. 

3.3. PSO-MK-ELM algorithm and accuracy assessment 

3.3.1. The derivation of PSO-MK-ELM algorithm 
The core of the PSO-MK-ELM algorithm is to improve the perfor

mance of classification by using a multi-kernel ELM method with pa
rameters that are automatically determined by a bionic algorithm. 

ELM is a generalized single layer feed-forward neural network 
(SLFN), which predicts the classification results by only one hidden layer 
in the original data space and avoids being influenced by weights and 
biases setting when the activation function is infinite differential (Huang 
et al., 2015). And the forward description of an ELM classification 
problem with t input with d nodes, l hidden nodes and m class labels can 
be written as: 

Y
t×m

= H
t×l
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l×m

=

⎛
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(1)  

where H denotes the hidden layer output matrix to randomly map fea
tures in a nonlinear way, β refers to the weight vector linking the hidden 

Table 4 
NPS pollution sources emission and effluent coefficients.  

Pollution sources Pollutant emission coefficients Effluent coefficient 

TN (kg∙hm− 2∙a− 1) TP (kg∙hm− 2∙a− 1) COD (kg∙people− 1∙a− 1) NH3-N (kg∙hm− 2∙a− 1) 

Farmland 24.2 1.2 150 1.8 0.1 
Woodland 4.8 0.2 80 0.2 0.15 
Sewage 2.19 0.07 9.86 1.46 0.7 
Aquaculture 8.9 4 252.4 4.7 0.90 

* Data source of pollutant emission coefficients. The pollutant emission coefficients of farmland, woodland and aquaculture are from Handbook of The First National 
Pollution Source Survey Production and Emission Coefficients. And the data of Sewage is from Water Environment Improvement of Main Rivers into Lake Taihu 
Watersheds Technical Specification for Governance Planning. 
** Data source of effluent coefficient. Effluent coefficient of four pollution sources are acquired from Water Environment Improvement of Main Rivers into Lake Taihu 
Watersheds Technical Specification for Governance Planning. 

Table 5 
Data set used in 2015 data classification.  

Type of samples Training data Test data Total number 

Water 200 102 302 
Building land 200 105 305 
Woodland 200 106 306 
Farmland 200 109 309 
Bareland 200 104 304 
Factories 200 115 315  

Fig. 2. Workflow of our method.  
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and output layer and Y is the output vector. In the light of regularization 
theory, β can be retrieved as: 

β̂ =
(
HTH + I

/
c
)− 1HTY, (2) 

where I is an identity matrix and c is a regularization parameter. 
Since the hidden layer output matrix maps the original data space 

into the ELM feature space nonlinearly, it can be substituted by a kernel 
matrix to realize the same purpose on the ground of the kernel theory. 
Then Equation (2) can be written as: 

β̂ =
(
KTK + I

/
c
)− 1KTY, (3)  

where the kernel matrix is represented as: 

K =

⎛

⎜
⎜
⎝

K(x1, x1) K(x1, x2) ⋯ K(x1, xt)

K(x2, x1) K(x2, x2) ⋯ K(x1, xt)

⋮ ⋮ ⋱ ⋮
K(xt, x1) K(xt, x2) ⋯ K(xt, xt)

⋯

⎞

⎟
⎟
⎠

t×t

, (4) 

K(⋅ , ⋅) stands for a kernel function. The Polynomial kernel function 
considers the contribution on the kernel value regardless of the spatial 
distance with a good generalization capability while the Gaussian kernel 
function includes only the influences of points near the center point with 
a high learning ability (Brailovsky et al., 1999; Liu et al., 2015). When 
linearly combining these two kernel functions, the mixed kernel func
tion can be rewritten as: 

K(x, x’) = KG
(
xG, x’

G

)
+ KP

(
xP, x’

P

)
(5a)  

KG
(
xG, x′

G

)
= exp

(⃦
⃦xG − x′

G

⃦
⃦2

σ2

)

(5b)  

KP
(
xP, x

′

P

)
=
(
xP⋅x′

P + a
)b (5c)  

where K,KG,KP are the hybrid, the Gaussian, and the Polynomial kernel 
function, respectively. And xG, xP are input vectors for the Gaussian and 
the Polynomial kernel function. 

Optimal parameter selection in Equation (3) is a key issue since pa
rameters can affect the classification accuracy. Fortunately, it can be 
solved by using the PSO algorithm. The idea of the PSO algorithm is to 
initialize a set of particles and each particle parameterized by velocity, 
position and fitness attribute suggests a potential optimal solution in 
space and search for the ideal parameter by iterating in D-dimension 
space (Zhang et al., 2015). The algorithm is not only easy to operate and 
fast to compute, but also advantageous in many application fields 
(Tamiminia et al., 2017; Wang et al., 2018). In particular, it is suitable to 
deal with multivariable and nonlinear problems. Consequently, we used 
the PSO algorithm to search for optimal solutions of Gaussian kernel 
function, Polynomial kernel function and regularization parameters. 

3.3.2. Accuracy assessment 
Accuracy assessment in this paper was conducted in both global and 

local aspects. The first assessment was set to evaluate the PSO-MK-ELM 
algorithm in the whole range of the DWSA. The second accuracy 
assessment measured the algorithm in subset zones, evaluating the ac
curacy with statistical data. And the reference data of the former accu
racy assessment consisted of 1841 samples from the ground survey over 
the DWSA and from the corresponding high-resolution images, and 200 
training samples of each land-use type were randomly selected and the 
remaining samples were used for the test. The details of samples were 
listed in Table 5. And the latter reference data was statistical data from 
the 2015 annual report of Jinze Town, Qingpu District. 

The first accuracy assessment compared our PSO-MK-ELM algorithm 
with other widely used algorithms in terms of total accuracy, Kappa 
coefficient, and computational time consumption. We constructed a 
confusion matrix based on the reference data for the calculation of the 
first two indexes. Then the total accuracy and Kappa coefficient could be 

used to assess overall classification accuracy among different classifi
cation algorithms and the consistency of the predicted class with the 
actual one. And the computational time was recorded during the clas
sification since it reflects the classification efficiency directly. The sec
ond accuracy assessment was designed to evaluate the PSO-MK-ELM 
classification results with its accordingly statistical data. The purpose of 
the assessment was to find out the difference between the statistical area 
and the extracted area. Consequently, the absolute and the relative error 
were chosen as the indicators. 

3.4. NPS pollutant effluent emission calculation 

ECM is a classical method that utilizes empirical parameters to 
reckon the NPS pollutant emission. It originated from the LUCC and lake 
eutrophication assessment of North America in the 1970s, popularized 
for computational simplification in nitrogen and phosphorus loss pre
diction in 1996, started to be highly concerned in China since 2000 
(Duan et al., 2020). ECM is simple in formula with a few parameters and 
it is easy to operate. Besides, it can output a reliable emission even in the 
shortage of in-situ monitoring data. Considering the advantages of ECM, 
we utilized it to estimate the NPS pollutant emission. ECM is formulated 
as: 

L =
∑n

i=1
AiEi(1 − Ti)fi, (6)  

where L represents the total pollutant emission from different pollution 
sources per year in the unit of ton or kilogram. n stands for the number of 
NPS pollution sources; Ai means an area or a quantity of the i-th pollu
tion source. Area information of NPS pollution sources was acquired and 
counted via the PSO-MK-ELM classification results. The urban popula
tion is reckoned by the multiplication of building land area and the 
population density. Ei refers to the annual emission coefficient of the i-th 
pollution source. Ti expresses the removal rate of the i-th pollution 
source, which usually refers to the capability to get rid of the domestic 
sewage. And we chose 60% removal rate in the following estimation. fi is 
the i-th effluent coefficient that was determined according to a Technical 
Specification released by the Department of Ecology and Environment of 
Jiangsu Province. 

3.5. Interrelation between LUCC information and NPS emission of DWSA 

Area variations of land-use types affect the contribution of NPS 
pollutant emission that discharged into DWSA. Based on the PSO-MK- 
ELM algorithm, we acquired the LUCC information of the 30-year 
range. And it was used as an input parameter of ECM when used in 
the NPS pollutant emission estimation discharged into DWSA. Then the 
LUCC information utilized for spatiotemporal analysis could reveal how 
land-use type changes affected the emission variations. 

4. Results and discussion 

4.1. LUCC results 

We input the blue, red, and near-infrared band into the Gaussian 
kernel function when the rest NDVI, the first component of K-T trans
form, and NDFI into the Polynomial kernel function in the experiments. 
To compare the classification performance of different ML algorithms, 
Support Vector Machine (SVM), Maximum Likelihood, Classical ELM, 
and PSO-MK-ELM were used on the reference data. The classification 
results were shown in Fig. 3. And the classification accuracy evaluation 
was listed in Table 6. 

The PSO-MK-ELM performed better than other three methods when 
comprehensively evaluated the accuracy and time cost of four algo
rithms. The total accuracy of four classifiers exceeds 0.84, which in
dicates those ML algorithms are capable of separating ground objects in 
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the research area to a satisfying accuracy. But our method and SVM can 
both distinguish the surface information with 5% accuracy improvement 
than the other two methods. Furthermore, our method is 1.12% more 
accurate than SVM and only consumes about 43.787% computational 
time of SVM to achieve the same classification accuracy level. Indeed, 
the kappa coefficient of the PSO-MK-ELM is slightly lower than the SVM, 
but higher total accuracy and less computation time still validate its 
effectiveness. 

4.2. Accuracy validation 

4.2.1. Comparison between LUCC extraction and statistical data 
The area of administrative region, farmland, and intensive fish pond 

listed in Table 7 were extracted from Fig. 3 (d) based on the urban di
vision and the urban river vector range (Fig. 4). And the values were 
compared with the data in Fig. 2. The extracted area (105.27 km2) of 
Jinze Town administrative region is nearly consistent with the statistical 
one (108.42 km2) with − 3.15 km2 absolute error and 2.91% relative 
error. Similarly, farmland and intensive fish pond have absolute errors 
of 0.94 km2 and − 0.79 km2 with relative errors of 9.98% and 8.01% 
accordingly. It demonstrates that the proposed method can accurately 
distinguish three types of land with the highest absolute error of no more 

than 3.2 km2. Indeed, the relative errors of farmland and fish pond are 
higher than that of the administrative region. The result is probably due 
to floating plants (water hyacinth, cyanobacteria) which are prone to be 
misclassified into the grains in summer. Because the administrative re
gion is less likely to be affected by seasonal changes and therefore shows 
a good performance in the relative error. It is then logical to attribute 
discrepancies between the extracted area and the statistical area from 
the annual book to seasonal differences in data acquisition. In general, 
our method can fulfill the accuracy requirements for a further quanti
tative study. 

4.2.2. Comparison of detail retention capabilities 
To compare the identification ability of different classifiers from the 

perspective of detail preservation, a fish pond near the bank was 
extracted (Fig. 5). When compared with the SVM classification result, 
both the classical ELM and our method show a better recognition ability 
to identify vegetation covering the fish pond. What’s more, our method 
is more accurate to distinguish woodland from other ground objects 
such as building land. 

Fig. 3. Classification results of reference data. (a) SVM (b) Maximum Likelihood (c) Classical ELM (d) PSO-MK-ELM.  

Table 6 
Classification accuracy evaluation statistics.  

Type of samples Total 
Accuracy 

Kappa 
Coefficient 

Time consuming (s) 

SVM 0.9155 0.9033 6.2420 
Maximum 

Likelihood 
0.8419 0.8228 5.1868 

Classical ELM 0.8619 0.8373 1.4192 
PSO-MK-ELM 0.9267 0.9026 2.7332  

Table 7 
Area statistics from the PSO-MK-ELM classifier.  

Type Estimated area 
(km2) 

Absolute error 
(km2) 

Relative error 
(%) 

Administrative 
region 

105.27 − 3.15 2.91 

Farmland 10.36 0.94 9.98 
Intensive fish pond 10.65 − 0.79 8.01  

Fig. 4. Ground object information of Jinze Town.  
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4.3. LUCC spatiotemporal analysis 

In this part, nine images (1989–2019) of the second-order DWSA 
with a 3 km buffer zone were processed by the PSO-MK-ELM algorithm. 
The classification results were displayed in Fig. 6 and the extracted area 
data were listed in Table 8. To illustrate the data in Table 8 vividly for 
spatiotemporal analysis, we drew a line chart to explain the variation 
tendency (Fig. 7). 

In the past 30 years (1989–2019), six land-use types were recognized 
and extracted. According to area statistics and line graph drawing after 
the PSO-MK-ELM classification, the dynamic spatio-temporal change 
laws of LUCC can be analyzed.  

• The area of building land was in general slowly increasing except for 
the decreasing period from 1989 to 1995 and from 2013 to 2015. As 
a kind of NPS pollution source, building land in residential areas 
could exert an adverse impact on the water quality improvement of 
DWSA considering the sewage and domestic waste emission. From 
1989 to 2019, the area increased only 2.7988 km2 per year on 
average. This gradual increase indicates an outstanding balance of 
urban development and environmental protection under urbaniza
tion. As for the decreasing period, it was likely to be caused by de
molition and reconstruction of the process of urbanization.  

• The trend of farmland variation showed a negative correlation with 
woodland. Farmland area extended constantly and reached at the 
peak of 307.5759 km2 in 2000 as more food was required after more 
individuals settling down into the city under the urbanization while 
woodland decreased for the livelihood and development of the 

increasing population. After that, the extension of farmland 
decreased and the decreasing trend was consistent with the gradual 
increase of woodland area until 2009. Since other land types were 
not detected anomalies during the same span, it can attribute to the 
implementation of the Returning Land from Farmland to Forest 
Policy. After 2009, although farmland started to increase while 
woodland decreased, the variation rate is milder comparing with the 
previous periods.  

• The area of water almost varied little in the past 30 years in terms of 
its amplitude. It decreased about 11.5587 km2 in total that indicates 
the water body within the DWSA remained relatively stable and thus 
can infer that the aquaculture area did not vary significantly. And the 
constant area of the water body should be attributed to the protec
tion laws of DWSA.  

• The area of factories started to see a gradual increase since the year 
2000, while by the year 2019, it saw a gradual decline. In the years 
1989 and 1995, the area of factories was recorded as 0 km2 which 
mirrors the DWSA characteristics of low-level industrialization, 
agriculture-oriented status, and early stage of urbanization within 
that period. From 2000 to 2019, the area could vary no more than 
5.7360 km2 annually. And a reduction has been noted from the years 
2017 to 2019 due to industrial structure adjustments.  

• The area of bareland fluctuateed along with the changes of other 
LUCC types. From 1989 to 2007, bareland increased in a relatively 
violent way when reaching the peak value of 71.3493 km2 mainly 
caused by the sharply varied farmland and woodland. From 2007 to 
2009, the increasing woodland and building land area covered the 
decreasing farmland under the influence of the growing population 

Fig. 5. Classification results comparison of different methods: (a) False color (band 4, 3, 2), (b) SVM, (c) Classical ELM, (d) PSO-MK-ELM.  

Fig. 6. PSO-MK-ELM classification results of the second-order DWSA with a 3 km buffer zone: (a) 1989, (b) 1995, (c) 2000, (d) 2007, (e) 2009, (f) 2013, (g) 2015, (h) 
2017, (i) 2019. 
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and the environmental conservation policy, which caused the 
descending trend as the whole. From 2009 to 2019, bareland area 
changed a little in general. And the fluctuation around the year 2015 
was caused by the demolition and reconstruction of Shanghai. 

4.4. NPS pollution source variation analysis 

NPS pollution sources in our study refers to woodland, farmland, 
building land and water, which are related to the agricultural activities 
and urban life. In this part, we focused on the NPS pollution source 
variations especially the spatial-temporal changes resulted from the 
urbanization process. According to Fig. 7, the spatiotemporal evolution 
of NPS pollution sources could be divided into three stages: 

The first stage (1989–2000) depicted an urbanization period with an 
agriculture-dependent production. Urgent needs for improving living 
conditions resulted in demolition and reconstruction, which was re
flected by building land trend to decrease first and then it started to 
increase. With the upgraded houses, more people were attracted to settle 
in this area which required more farmland to cultivate and more houses 
to live in. And woodland area therefore shrunk. 

The second stage (2000–2009) displayed an accelerated urbaniza
tion phase with some measures of environmental protection measures. 
Building land was still expanding in order to deal with population 
growth pressure at a quicker rate. As for farmland, it was converted into 
woodland that could help protect the water source ecological environ
ment after the implementation of Returning Land from Farming to 
Forest Policy nationally. And it caused a significant conversion between 
woodland and farmland. Besides, it also changed the mode of production 
of the citizens nearby. That is to say, some people were making a living 
from farmland to factories that was presented in the increasing area of 
factories and decreasing farmland. 

The third stage (2009–2019) delineated a highly urbanized level. 
Building land and farmland were still expanding but at a mild growing 
pace under the urbanization effect. And the descending area of wood
land mainly became farmland to fulfill the basic need for food. 

It is worth noting that water was the only NPS pollution source 

whose area could keep stable. And the relative stability of water area 
was determined by the nature of DWSA. 

4.5. ECM for NPS pollutant emission estimation 

According to the statistical information, the effluent pollutant 
emissions of NPS pollution sources were displayed in Table 9. In the 
shortage of detailed census data of 2019, the emission estimation uti
lized eight images from 1989 to 2017. From Table 9, it could be seen 
that:  

• TN. From 1989 to 2017, the TN emission increased from 597.342 t to 
1651.668 t with an average increase of 37.6545 t annually. And the 
corresponding emission ranged from 8.18% to 13.18%. The emission 
of TN achieved the peak and trough in 1995 and 2015 separately.  

• TP. The TP emission was 60.603 t in 1989 and only added 29.885 t 
after 28 years, which means that the annual average increasing 
amount was 1.0673 t. The corresponding rate of emission contribu
tion varied in the range of 0.72% and 1.05%. The emission of TP 
reached a maximum of 90.488 t in 2017 and a minimum of 57.385 t 
in 1995.  

• COD. The emission of COD in 1989 was 5350.433 t and added up to 
9775.928 t in 2017 with a 1.83 times increment over 28 years. The 
COD ranked first in terms of the absolute pollutant emission and the 
per year contribution ratio which indicates it as the most influential 
pollutant within the research area.  

• NH3-N. The initial emission of NH3-N equaled 338.538 t in 1989 and 
it came to 1013.117 t in 2017. The ratio of the annual increment was 
24.0921 t. And it varied from 4.23% to 8.38% in the sampling years. 
And the highest and the lowest emission load was the 1044.539 t of 
2013 and 230.464 t of 1995. 

4.6. NPS pollutant emission analysis 

Typical pollutant emission from 1989 to 2017 were displayed in 
Fig. 8. 

In general, four pollutants including TN, TP, COD and NH3-N dis
charged into the second-order DWSA of the upper Huangpu River were 
affected by agriculture, forestry, aquaculture and resident life. Accord
ing to the annual emission contribution, the pollutant emission ranked 
from top to bottom is COD (77.88%-86.54%), TN (8.18%-13.18%), NH3- 
N (4.23%-8.38%), and TP (0.72%-1.05%). Conformed with the changes 
of pollution source areas, the in-water emission was then varied. Under 
the pressure of urbanization, domestic sewage emission increased and 
the COD emission was subsequently increased. So did the NH3-N emis
sion. And the TN emission was influenced by farmland and building 
land, and the latter ascending tend outweighed the descending former 
one that caused the increased TN emission in total. Considering the 
shrunk farmland and stable aquaculture, the TP emission in general 
decreased. 

Specifically, the LUCC variation and its relations to NPS pollutant 
emission into the water could be obviously seen as: 

Table 8 
Area statistics of the second-order DWSA.  

Year Building land (km2) Farmland (km2) Woodland (km2) Bareland (km2) Factories (km2) Water (km2) 

1989 104.8509 228.8844 299.9592 0 0 120.5865 
1995 89.4474 295.9209 235.8972 8.3061 0 124.7094 
2000 125.9631 307.5759 119.0673 31.1976 49.6674 120.8097 
2007 151.9974 110.5587 236.8539 71.3493 63.1296 120.3921 
2009 156.0888 58.9734 312.7491 31.3416 73.6209 121.5072 
2013 167.8977 93.9276 263.0754 31.5621 85.8429 111.6792 
2015 151.9974 110.5587 236.8539 53.3493 90.1296 111.3921 
2017 169.4304 144.6678 193.0518 38.0628 98.2944 110.4777 
2019 188.8155 174.8196 177.6096 33.2847 70.0614 109.0278  

Fig. 7. Line chart of LUCC statistical data from 1989 to 2019.  
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• TN. The emission of TN was mainly derived from farmland, wood
land and building land. While farmland was decreasing, building 
land area expanded faster and thus caused a gradual increase of TN. 
From the period 1989 to 1995 and the period 2013 to 2015, TN 
emission descended because of the increasing farmland. And then 
from 2009 to 2015, farmland remained relatively stable, TN emission 
changed milder than in the previous years.  

• TP. Considering the major contributions of TP were from water, 
farmland and woodland, TP emission was therefore going down as 
the result of slowing changes of fish pond farming and significant 
down towards changes of farmland. 

• COD. Water and building land were both chief LUCC types contrib
uting to COD emission with closely related to the aquaculture and 
urban life. With the continuously increasing areas of building land, 
COD emission increased accordingly.  

• NH3-N. As the principal output of the domestic sewage discharged 
from building land, the NH3-N emission was directly influenced by 
the gradual increase in building land as the result of a growing 
population. 

5. Conclusions 

In this paper, we proposed a comprehensive method to monitor long- 
term water pollution variation in a DWSA by using Landsat images. An 

optimized machine learning algorithm (PSO-MK-ELM) was constructed 
to acquire LUCC information in 30 years for studying the NPS pollution 
source variation rules. Following the spatial-temporal variation analysis, 
four pollutants released into the DWSA were estimated to quantify their 
contribution to water quality. Finally, spatio-temporal variations of NPS 
pollutant emission were analyzed under the impact of LUCC. 

The contributions in this study are stated as follows. 

(1) The classification results validate that the PSO-MK-ELM algo
rithm is highly accurate and efficient to extract NPS pollution 
sources in DWSA.  

(2) The results of long term spatial-temporal LUCC monitoring show 
that the distribution variations of NPS pollution sources should be 
attributed to urbanization process and policy of environmental 
conservation. Specifically, building land variation is mainly 
influenced by the demolition and reconstruction needs in 
different urbanization stages. The opposite change trend of 
farmland and woodland is mainly caused by Returning Land from 
Farming to Forest Policy. And the relatively stable area of water is 
the result of laws of DWSA conservation.  

(3) The emission reveals that COD is the dominant NPS pollutant 
from the late 1980s to the late 2010s in the study area while TP 
contributes the least to the DWSA at the same time. And the 
variation of NPS pollutant emission is conformed with the 

Table 9 
NPS effluent pollutant emission and its contribution ratio.  

Year NPS effluent pollutant emission (t) and its annual emission percentage (%) 

TN Percent TP Percent COD Percent NH3-N Percent 

1989 597.342 9.41 60.603 0.96 5350.433 84.30 338.538 5.33 
1995 446.006 8.18 57.385 1.05 4719.270 86.54 230.464 4.23 
2000 557.867 9.33 59.625 1.00 5050.838 84.50 309.058 5.17 
2007 1084.687 11.69 75.566 0.81 7437.045 80.14 683.256 7.36 
2009 1133.942 11.74 77.346 0.80 7725.411 80.00 719.947 7.46 
2013 1623.355 13.02 89.818 0.72 9711.919 77.88 1044.539 8.38 
2015 1494.197 12.83 85.646 0.74 9108.787 78.21 957.261 8.22 
2017 1651.668 13.18 90.488 0.72 9775.928 78.01 1013.117 8.09  

Fig. 8. Four NPS pollutant emission and its major sources. (a) TN, (b) TP, (c) COD, and (d) NH3-N.  
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distribution change of NPS pollution sources. It verifies again that 
the urbanization process and environmental protection policies 
are the forces to influence LUCC in DWSA and on the change of 
NPS pollutant emission. 

Our study proves that the intelligent remote sensing monitoring 
method using time-series satellite images can provide a scientific data 
analysis basis for water resources protection and pollution source con
trol. In addition, it is possible to extend the research to other water 
source protection areas worldwide for the sustainable development. 
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