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Abstract—Individual tree detection is critical for forest investi-
gation and monitoring. Several existing methods have difficulties
to detect trees in complex forest environment due to insufficiently
mining descriptive features. This study proposes a deep learning
framework based on a designed multi-channel information com-
plementarity representation for detecting trees in complex forest
using UAV laser scanning point clouds. The proposed method
consists of two main stages: ground filtering and tree detection.
In first stage, a modified graph convolution network with a local
topological information layer is designed to separate the ground
points. Unlike most existing parametric methods, our ground
filtering method avoids the optimal parameters selection to adapt
to different kinds of environments. For tree detection, a top-
down slice (TDS) module is firstly designed to mine the vertical
structure information in a top-down way. Then, a special multi-
channel representation (MCR) is developed to perserve different
distribution patterns of points from complementary perspectives.
Finally, a multi-branch network (MBNet) is proposed for in-
dividual tree detection by fusing multi-channel features, which
can provide discriminative information for MBNet to detect
trees more accurately. MBNet was evaluated on seven forest
areas (UAV LiDAR data with the mean size of 14,000 m2 and
point density of 250 points/m2). Experimental results showed
that the proposed framework achieves excellent performance.
Our method obtains promising performance with mean recall of
89.23% and mean F1-score of 87.04%.

Index Terms—Tree detection, Ground filtering, UAV LiDAR,
Deep learning, Multi-channel representation.

I. INTRODUCTION

FOREST plays an imperative role in the earth’s ecosystem.
It has significant impact on maintaining environmental

conditions, such as habitat protection, air quality and water
cycle [1]. These required for inventorying forest correctly
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and efficiently. Traditionally, forest inventory needs expensive
labor cost, high time consumption [2] and several constraints,
such as the weather and field survey conditions [3, 4]. With
the progress of LiDAR (Light Detection and Ranging), UAV
laser scanning system is widely used in forest inventory. Due
to the ability of capturing 3D forest structures effectively and
accuracy [5], UAV point clouds provide available solutions for
numerous forest management tasks, such as estimation of tree
species, height, wood volume and crown size, biomass, and so
on [6, 7]. Detection of individual trees is important in forest
inventory for subsequent estimation of necessary parameters,
such as the tree species, height, diameter, crown size and
location.

Generally, tree detection from UAV LiDAR point clouds
includes an important preprocessing stage: ground filtering. A
suitable filtering algorithm can obtain clean point clouds of
non-surface objects, thus providing good initial data for tree
extraction. Several researches have been undertaken to study
the problem, such as [8–10]. Although these methods achieve
good quality results under relatively flat environments, the
challenge remains in processing non-flat areas. In this work,
we seek the possibility to use a modified graph convolutional
networks (GCNs) to improve filtering performance.

Several methods have been proposed to detect individual
trees from UAV LiDAR point clouds. There are three main
classes: raster based methods, point clouds based methods,
and multi-source data fusion based methods. Rasterization
is one of the most common ideas. These methods firstly
generate canopy height model (CHM) by calculating the the
digital elevation model (DEM) of the earth¡¯s surface and
canopy surface height. Then the local maximum is used to
determine the potential position of treetop crown, following by
the pouring algorithm or the region growing (RG) algorithm, to
delineate the tree crowns [11, 12]. Some improved CHM-based
methods include [13–15]. These raster-based methods have
achieved significant performance on tree structural attributes
determination in urban simple forest. Since CHM is generated
by gridding and interpolation, it inevitably leads to information
loss, such as covering some important height information.
The determination of tree crowns using region growing or
pouring algorithms consumes expensive time. In addition, the
rasterized image generated by CHM may not be the most dis-
criminative representation to preserve the spatial relationship
among 3D points, which would have negative impact on the
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Fig. 1: Two main stages of our framework: ground filtering and tree detection. The ground filtering stage divides the input into off-ground and ground points. Tree detection module
takes the off-ground points (purple box in first stage) as input data and outputs the individual trees.

extraction of tree features. All these shortcomings make raster
based methods difficult to extract trees in complex forests.

Contrary to CHM based methods, point based methods
analyze directly the 3D point clouds. The avoidance of gener-
ating CHM makes these methods have the main advantage on
low information loss as well as mining the spatial structure
of forest. In [16], a distance based segmentation method
was presented to generate tree crown region in a mixed
conifer forest. In [17], a voxel-based method is developed to
produce a 3D solid model of a tree for accurate estimation
of the volume of the woody material. In [18], the authors
developed a bottom-to-top method based on the intensity and
3D structure to segment trees in deciduous forests. And in [19],
the authors introduced the PTrees, a multi-scale dynamic point
cloud segmentation method to extract trees. Recently, [20]
presented a supervoxel and local convexity based method to
label trees in urban spaces. Although this method has achieved
promising results, the computational performance and ability
of processing in complex environments remain a challenge.

Recently, with the development of computer vision and
artificial intelligence, deep learning (DL) [21] has been widely
applied in image processing. Promising results on various
image processing tasks, such as image classification [22],
semantic segmentation [23, 24], and object detection [25, 26],
have demonstrated its outstanding potential of feature ex-
traction in point clouds. In this work, we attempt to apply
the DL approach to improve the descriptiveness of features
generated by UAV LiDAR point clouds in complex forests.
Our proposed framework consists of two stages: ground fil-
tering and individual tree detection. Specifically, a modified
GCNs is developed for ground filtering; while a multi-channel
representation is proposed to utilize fully the forest spatial
vertical structure information. Then, a multi-branch network
(MBNet) is designed to mine more discriminative features for
the tree detection. There are three main contributions of this
work.

• A modified GCNs model is developed for ground fil-

tering. Different from most of existing parametric filter
algorithms, our model is a nonparametric and data-driven
method, so can be applied to various landforms, such as
rough slopes, dense vegetation areas and discontinuous
terrains.

• A top-down slice multi-channel representation (MCR) of
forest is developed to reorganize the spatial structure.
Compared with traditional representations, such as CHM
and point based representation, MCR can provide more
discriminative structure information as well as detail
features to detect trees from complex forests.

• A multi-branch network (MBNet) is proposed to merge
multi-level information by concatenating features gen-
erated from different branches. Compared with existing
approaches, MBNet can mine the distribution pattern to
obtain a more discriminative descriptor.

The rest is structured as follows: Section 2 details the GCN
based filtering method and the MBNet. Experimental results
are presented in Section 3. Section 4 concludes our work.

II. THE PROPOSED METHOD

As shown in Figure 1, the proposed framework contains two
stages: ground filtering and individual tree detection.

A. Ground filtering

As mentioned in Section 1, most of the existing ground
filtering methods can achieve satisfactory results under rela-
tively flat areas, such as the urban environments. However, it
is still difficult to filter ground points in complex forests. To
improve the performance in abrupt slope, a modified graph
convolutional networks (GCNs) model is developed to learn
deep features for ground filtering. As a variant of regular
convolutional neural networks (CNNs), GCNs can capture the
pairwise dependencies between variables and the information
from graph. Recently, GCNs have achieved huge success
in processing graph structured data, especially in 3D point
clouds, such as FoldingNet [27] and DGCNN [28].
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Fig. 2: Flowchart of ground filtering method. It is a Modified GCN framework with three modules. The first module is the local topological information (LTI) layer, which
provides local features from neighbor points. The second and third modules are the GCN based networks that designed to describe the global and local features, respectively.

Due to the ability of extracting topological relationships
between neighboring points, we introduce GCNs as the basic
network to mine the local information to improve the ground
filtering performance. More specifically, the ground filtering
method consists of three modules (represented by different
colors), as shown in Figure 2. The first module is the local
topological information (LTI) layer, which provides a way to
mine the local features from neighbor points. The second and
third modules are the GCN based networks that designed to
describe the global and local features, respectively.

The LTI layer is the core part, which takes the raw
point clouds as input and outputs the shallow features with
nine dimensions. More specifically, LTI computes the local
covariance information as well as the dimensional features.
For each point, 20 neighbor points are searched using K-
Nearest Neighbors (KNN) search algorithm and the covariance
matrix is calculated. Because the covariance matrix is a real
symmetric matrix, the six upper triangle elements can be
selected as covariance features. In addition, dimensionality
features, (a1D, a2D, a3D) [29, 30], are chosen as extra geo-
metric information.

In summary, compared with the original GCN, our modi-
fied model enjoys several advantages. Firstly, LTI layer can
provides more detail information. Local spatial relationship
between neighbor points is fully utilized and geometric proper-
ties are preserved in the input data. Secondly, the combination
of local and global features enhances the descriptiveness of the
modified model. Different from the original GCN, extra global
features in our modified model compensate for the deficiencies
in the overall characterization. Thirdly, the use of focal loss
down-weights the loss assigned to well-classified samples (in
our work, for example, a point with a very high or low z value
will be a well-classified sample) and pay more attention on the
hard samples (e.g. the bushes). Therefore, under the guidance
of this loss function, the model can be trained more efficiently
in the direction of convergence.

B. Individual tree detection
Detecting objects from 3D point clouds has attracted huge

attention. Several works have been developed to undertake
this task, including voxel based methods [31, 32], view based
methods [33–35], point based methods [36, 37] and multi-
representation fusion based methods [38, 39]. The presence
of noise and pseudo outliers caused by mutual occlusion and
interpolation in complex forests makes it difficult to apply the
voxel or point based methods. Possible remedies to avoid noise
and outlier effects are to use of robust statistical approaches,
but usually it takes more time than the classical approaches
for point based processing [40]. Therefore, in this work, we
consider the view based idea and propose a multi-branch
network (MBNet). Firstly, different from the typical way of
multi-view projection, considering the fact that most forests
have rich vertical structure information, we design a top-down
slice (TDS) module to obtain the multi-layer slice represen-
tation of forest in a top-down way. Secondly, to describe the
distribution pattern of points contained in different slices, we
propose a special multi-channel representation (MCR) module
to represent these slices. Finally, based on MCR, a multi-
branch network (MBN) module is designed for individual tree
detection. Figure 3 presents the framework of MBNet, which
consists of three modules: TDS, MCR and MBNet.

1) Top-down slice (TDS) module: After the first stage, we
can obtain two separated data subsets: the ground and non-
ground point subsets. We denote the non-ground point set as
Pnon = {p1, p2, ..., pn}, where n is the number of non-ground
points. Firstly, the ranges of X,Y, Z are normalized to [0,1].
Then the TDS operation divides Pnon evenly into different
subsets along the z-axis according to a given resolution. TDS
is defined as a mapping, as follows:

TDS(Pnon) = {L1, L2, ..., LK}, (1)

where Li = {p|p ∈ P, ⌈z × k⌉ = i}, i = 1, 2, ...,K, and K
is the number of slices, z is the coordinates of point p along
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Fig. 3: Flowchart of MBNet. It consists of three modules: TDS, MCR and MBNet.

the Z axis, ⌈ ⌉ denotes the ceiling function. Finally, as shown
in Figure 3 , the merge operation integrates these slices into
sequence segments:

{S1, S2, ..., SK}, (2)

Si = Si−1 + Li−1, S1 = L1, i = 2, ...,K. (3)

Considering the fact that trees in a forest tend to exhibit
three distinct vertical distributions: the spherical canopy in the
top layer, rod-shaped trunk in the middle layer and scattered
shrub in the bottom layer, we slice the forest into three
segments, i.e., k = 3. Therefore, the spatial vertical structure
of trees would be preserved in these slices.

2) Multi-channel representation (MCR) module: The MCR
module is designed to obtain representation of slice generated
in TDS module. Traditional forest representation methods
tend to take only the height information. For example, the
common CHM based methods generate CHM by using the
height of each point. However, in addition to the height value,
several other properties can also provide valuable information
in processing complex forest.

Different from the traditional methods, in this work, we
consider two additional properties: local height gradient and
point density. The local height gradient captures the point
distribution change of local position along vertical direction of
the forest. A high gradient means that there is a high possibility
of gaps between different trees in the corresponding local
region. Therefore, local height gradient is of great importance
for determining the canopy. Additionally, point density can
help to extract tree top more accurately. This is because that,
according to the plant growth process, there would be more
points at the top of tree and its local area. Then, for each slice,
we propose a three-channel representation, which consists of
density, height and local height gradient information. More
specifically, given arbitrary slice Si, a mapping is designed to
map Si to a three-channel grid image Ii with given resolution
r. In this paper, we set r = 512. Algorithm 1 shows how to
generate the mapping.

As shown in Figure 4, each channel preserves distinctive
distribution pattern of trees. Grid image with density chan-
nel presents the distribution of points, while height channel
captures the location of tree-tops and describes the edge of
canopy. Complementary features contained in these channels
can be used to enhance the descriptiveness of the proposed
method. Compared with the traditional CHM based methods,
the proposed approach contains more distribution structures,

Algorithm 1: Mapping slice Si into image I

Input: Slice: Si = {pj |pj ∈ P, ⌈z× k⌉ = i, j = 1, 2, !‘-
, ni}; Image resolution r

Output: I: Mapping image
I = Zeros(r, r, 3); C = Cell(r, r); ;
// STEP.1 : Generating the density channel ;

for j = 1; j ≤ ni do
x = ⌈xpj

× r⌉; y = ⌈ypj
× r⌉;

I(x, y, 1)← I(x, y, 1) + 1; // Density channel ;
C(x, y)← pj ; // Puting point pj into C(x, y);

// STEP.2 : Generating the Height channel ;
for h = 1;h ≤ r do

for t = 1; t ≤ r do
I(h, t, 2)← |max(z)−min(z)|; // where z
is the z-axis of point p, and p = (x, y, z) ∈
C(h, t) ;

// STEP.3 : Generating the Height gradient channel ;
for h = 1;h ≤ r do

for t = 1; t ≤ r do
I(h, t, 3) ←

∑1
i=−1

∑1
j=−1 ∆(i, j);//where

∆(i, j) = |I(h+ i, t+ j, 2)− I(h, t, 2)| ;

// Normalizing each channel of I to [0,255] ;
I ← Norm[0,255](I) ;

return I;

which would contribution to increase detection performance.
Besides, for the Algorithm 1, with three loops, its time
complexity is O(ni) + O(r2) + O(r2), where ni is the
number of points in slice Si, and r is the given resolution
of mapping image. In this paper, the image resolution is set
as r = 512. Therefore, the time complexity of Algorithm 1
can be considered as O(ni), i.e., linear in the number of input
points. This is acceptable in practical application.

3) Multi-branch network (MBNet) module: Extracting trees
from grid image belongs to the object detection task in
image processing. However, since the grid image contains
only one type of object (i.e., trees), it is feasible to treat tree
extraction as an instance segmentation task. In this work, we
use the encoder-decoder (ED) as the basic network. For an
ED network, the encoder extracts feature from input data, and
encodes these features into low dimensional representation,
a feature vector, in a latent space, while the decoder uses
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Fig. 4: (a) Raw data, (b) Representation generated by MCR module. Trees in (a) are denoted with different colors manually. Each kind of color represents one individual tree. In
(b), ImageDensity , ImageHeight, and ImageHeight Grad denote the channel with density, height and height gradient information, respectively.

TABLE I
DETAILS OF ENET. THE INPUT SIZE IS 512 × 512. REGULAR(I) DENOTES A REGULAR CONVOLUTION WITH I × I FILTER. DILATED(I) DENOTES THE DILATED CONVOLUTION

[41] WITH I × I FILTER, AND THE ASYMMETRIC(I) DENOTES AN ASYMMETRIC CONVOLUTION [42] WITH I × 1 FILTER AND 1 × I FILTER.FIGURE 5 SHOWS THE INITIAL
BLOCK AND BOTTLENECK MODULE.

Name Description Output size Name Description Output size
Initial block Regular(3) 16×256×256

Block4

Bottleneck 4.0 Up sampling
+ Regular(3)

64×128×128Block1 Bottleneck 1.0 Down sampling
+ Regular(3) 64×128×128

4×Bottleneck1
.x(x=1,2,3,4) Regular(3) Bottleneck 4.1 Regular(3)

Block2

Bottleneck 2.0 Down sampling
+ Regular(3)

128×64×64

Bottleneck 4.2 Regular(3)

Bottleneck 2.1 Regular(3)

Block5
Bottleneck 5.0 Up sampling

+ Regular(3) 16×256×256Bottleneck 2.2 Dilated(1)
Bottleneck 2.3 Asymmetric(5) Bottleneck 5.1 Regular(3)Bottleneck 2.4 Dilated(3)
Bottleneck 2.5 Regular(3) Full convolution 2×512×512
Bottleneck 2.6 Dilated(7)
Bottleneck 2.7 Asymmetric(5)
Bottleneck 2.8 Dilated(15)

Block3 Repeat Block2, without bottleneck 2.0

the deconvolution operation to recover the input image, and
predicts the label for each pixel. ED network has been applied
successfully in semantic and instance segmentation, such as
U-Net [43], U-Net++ [44] and ENet [45, 46]. The method in
[46] is a modified ENet using a well-designed loss function
for the binary instance segmentation and achieves promising
performance. Therefore, in our work, we utilize ENet and the
loss function in [46] as basic module and design a multi-branch
network (MBNet) to learn the semantic features for instance
segmentation from three segments generated in TDS module.

As shown in Figure 5 (a), the MBNet module contains
three parallel modified ENets, which have the same network
structure. Features generated by each ENet are fused by an
adding operation, following by a softmax layer. In each ENet,
the encoder has three blocks, while the decoder contains two

blocks. An initial block is added between input and encoder.
A full convolution layer is used to output the final feature
maps. Table I presents details of each block, and Figures 5
(c) and (d) show the initial block and the bottleneck module,
respectively.

It is necessary to point out that the training of MBNet
module is performed in a two-step-training way. The first step
is the pre-trained step. In this stage, each branch is trained
individually. Then, we can obtain three pre-trained parameter
sets. In the second stage, three branches are trained together
and the outputs of these branches are fused in an element-
wise addition way. The advantage of two-stage-training way
is that the model can be trained more steadily and converge
faster. This is because these three branches learn their own
features from different segments. Training in one step may
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Fig. 5: (a) The flowchart of MBNet module,(b) the architecture of ENet, (c) Initial block, and (d) The bottleneck module in Table I. In initial block, the size of MaxPooling is 2
× 2 and the stride is 1, while the Conv(3) denotes a 3 × 3 regular convolution with 13 kernels. In bottleneck module, the main branch consists of three convolutional layers: a 1
× 1 regular convolution that reduces the dimensionality, a main convolutional layer and a 1 × 1 regular convolution that designs to expend the dimensionality. If there is down
sampling in a bottleneck, a MaxPooling operation is added to the main branch. Details are presented in Table I.

TABLE II
MAIN PARAMETERS OF LASER SCANNER.

Parameters Values
Model Riegl UVX-1

Place of origin Austria
Size /mm 277×180×125

Weight /kg 3.5
Survey-grade accuracy /mm 10

Laser emission frequency /kHz 550
Scan speed /scans.s−1 200

Field of view /(◦) 330

Fig. 6: Samples from study area. These forests are extremely noisy.

influence each other and may cause serious oscillations in the
optimization process.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Study area

The study area is the Shaoguan (24◦42
′
N, 113◦53

′
E),

located in Guangdong, China. The dataset was acquired with

a ALS system, which consists of an unmanned aerial vehicle
(UAV) and a lightweight and compact laser scanner. The model
of UAV is DJI M600 Pro (SZ DJI Technology Co. China). The
flying altitude and speed of UAV were up to 150 m and 10
m/s, respectively. The main parameters of the laser scanner
are provided in Table II.

Seven areas with complex forests were selected for our
experiments. They are in different complex levels. The altitude
gap ranges from 106m to 64m. Figure 6 shows three samples.
Obviously, all these samples contain mixed noise, especially
unordered outliers that bring huge difficulty for detecting
individual trees. To further analyze these selected areas, several
key statistical information is presented in Table III. From Table
III, we can see that these areas are of high-density point clouds
(approximately 250 points/m2 in each area). For example,
area 1 contains the largest number of points, which is close
to 4,500,000. The number of points in area 7 is the lowest,
but it is still more than 2,500,000. Besides, it can be inferred
from the height information that all these areas are very rough.
Especially, the largest altitude gap is 106 m in Area 1. In
addition, Figure 7 presents the height histogram for each area,
which shows the terrains are diverse and no-flat. Therefore,
these selected areas are suitable for our study. It needs to point
out that the ground truth for ground filtering algorithm and
individual tree detection in this work are obtained by careful
manual classification. Specially, they are independently labeled
and verified by three people to make the annotation as accurate
as possible.

Several experiments are conducted to evaluate the proposed
method in the following subsections, including tree detection
using MBNet, efficiency testing and model design analysis.
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TABLE III
KEY STATISTICAL INFORMATION OF SEVEN STUDY AREAS. THEY ARE SORTED ACCORDING TO THE ALTITUDE GAP

Area1 Area2 Area3 Area4 Area5 Area6 Area7

Size (m2) 20,231 12,495 11,708 13,168 12,636 15,115 16,110

Point number 4,498,425 4,268,649 3,655,193 3,898,510 3,426,171 3,976,401 2,595,690

Max height (m) 212 212 210 208 201 181 159

Min height (m) 106 107 124 115 123 95 95

Altitude gap (m) 106 105 86 93 78 86 64
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Fig. 7: Height histograms of seven areas.

TABLE IV
DEFINITIONS OF TYPE I ERROR, TYPE II ERROR, TOTAL ERROR , AND KAPPA COEFFICIENT k.

Predicted results

Ground Non-ground

Ground-truth
Ground a b a+b f=(a+b)/e

Non-ground c d c+d g=(c+d)/e

a+c b+d e = a+b+c+d

Type I error b/(a+b)

Type II error c/(c+d)

Total error (b+c)/e

k
[(a+d)/e - p]/ (1 - p), where p = f×(a+c)/e + g×(b+d)/e,

a,b,c and d are the true positive, false negative, false positive and true negative, respectively.

TABLE V
OPTIMAL PARAMETERS FOR CSF IN SEVEN AREAS.

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7

Cloth resolution (m) 2.04 9.11 5.88 7.75 2.38 5.48 4.04

Max iterations 200 750 500 800 500 300 450

Classification threshold (m) 4.57 11.85 8.93 8.18 4.04 11.33 7.46
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TABLE VI
COMPARING GROUND FILTERING RESULTS GENERATED BY DIFFERENT METHODS. I, II, T. AND K DENOTE TYPE I ERROR, TYPE II ERROR, TOTAL ERROR AND KAPPA

COEFFICIENT, RESPECTIVELY.

Area Metric Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Means Max Min

CSF

[47]

I (%) 2.49 2.04 2.01 4.57 3.31 6.53 3.54 3.49 - 2.01

II (%) 9.34 9.11 8.66 11.85 14.42 16.6 12.25 11.74 - 8.66

T. (%) 6.00 5.88 5.03 8.93 8.45 12.28 8.53 7.87 - 5.03

k 87.52 87.75 89.12 81.86 82.3 74.75 81.46 83.53 89.12 -

PointNet

[36]

I (%) 4.28 2.58 4.32 9.18 2.97 8.98 8.83 5.88 - 2.58

II (%) 9.14 6.22 4.06 8.51 15.41 11.26 5.95 8.65 - 4.06

T. (%) 5.92 4.35 4.24 8.96 7.68 10.75 7.15 7.00 - 4.24

k 87.21 90.76 90.32 81.64 82.48 77.73 84.29 84.91 90.76 -

DGCNN

[28]

I (%) 4.12 2.00 3.20 7.68 2.82 8.97 8.20 5.28 - 2.00

II (%) 9.62 5.92 4.02 8.34 13.31 11.25 5.81 8.32 - 4.02

T. (%) 6.01 3.91 3.43 8.15 6.82 10.73 6.78 6.54 - 3.43

k 86.99 91.69 92.13 83.30 84.49 77.75 85.09 85.92 92.13 -

Ours

I (%) 2.39 1.85 4.23 6.86 2.09 5.66 7.05 4.30 - 1.85

II (%) 10.49 5.85 3.71 9.09 14.76 15.15 7.03 9.44 - 5.85

T. (%) 5.41 3.77 4.00 7.91 6.79 10.59 6.80 6.46 - 3.77

k 88.14 91.98 90.85 83.65 84.47 77.84 85.13 86.00 91.98 -

B. Ground filtering

In this work, we conducted experiments on the above
datasets and compared our method with previous ground
filtering algorithm, including the deep learning based methods,
PointNet [36] and DGCNN [28], as well as the classic method,
the cloth simulation filtering (CSF) proposed in [47]. CSF
uses the cloth simulation algorithm to achieve state-of-the-
art results and is available in the open-source CloudCompare
(http://www.cloudcompare.org/).

We used the metrics provided in [48] and [49] to measure
the performance. As shown in Table IV, [48] proposed three
metrics for quantitative analysis. Type I error measures the
rate of ground points mislabeled as non-ground points, while
Type II error represents the percentage of non-ground points
mislabeled as ground points. Total error shows the rate of
all mislabeled points. Besides, the Cohen’s kappa coefficient
(k) [49] is widely used in most of filtering algorithms [50–
52]. It measures the inter-ratio agreement more robustly than a
percentage. Since the CSF is a parameter method, we evaluated
the performance of CSF on each area using grid search method
to obtain the optimal parameters. Table V shows the optimal
parameters for seven areas. It needs to point out that, as ours
is a supervised method, training data is required. Therefore, in
our experiments, when an area is used as testing data, other six
areas are considered as training data. In addition, our method
was trained with TensorFlow on a NVIDIA Tesla P100 GPU.
The batch size was set to 8 and the initial learning was 0.001.
When training the model, we used adaptive moment estimation

(Adam) with a momentum of 0.9. The number of epochs was
50.

Table VI presents the compared results. Obviously, our
method achieves excellent performance. More specifically, our
method obtains the best results on areas 2. Besides, in areas
1, 4, 5, 6 and 7, our method also achieves competitive results.
Additionally, compared to CSF and PointNet, our method
increases the performance by 2.47% and 1.08% in overall
average k coefficient, respectively. These results mean that
our method can filtering the ground points more precisely. On
the overall average total error and Type II error, our method
also has the obvious advantage, with a significant reduction
comparing with other three methods. That means our method
can reject object points more effectively and has a smaller
proportion of all error points.

The reason for the better performance of our method is that
the local graph structure using in the ground filtering frame-
work can preserve the relationship among neighbor points.
Compared with PointNet and DGCNN, the local features of
ground points are captured by our method more effectively.
Besides, compared with CSF, as a non-parametric method, our
method does not need to find the optimal parameters

To further present the comparative results, we visualized
the ground and non-ground points for some areas. As shown
in Figure 8, our method achieves excellent performance in
preserving ground points. Note that filtering ground points in
steep areas is another challenge [10]. Our method also labels
the ground points as non-ground points in some areas, just
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Fig. 8: Results of ground filtering generated by different methods on several scenes. The ground and non-ground points are marked by blue and red color, respectively. The areas
marked by the green boxes are areas with more mislabeling error points.

as shown in the scenes II and III. However, the number of
mislabeling points is very low and acceptable in practice.

C. Tree detection using MBNet
In our work , tree detection contains three steps, including

building the synthetic dataset, training MBNet on synthetic
dataset and testing MBNet on both synthetic and real datasets.

1) Synthetic dataset generation: Generating synthetic data
is of great importance for the proposed method. It is known
that supervised method based on deep learning requires a large
number of labeled training samples. For example, in image
processing field, ImageNet [53], a huge dataset, provides a
variety of labeled images to improve the performance of image

processing methods. Similarly, in our work, we designed a
simple but effective method to generate large number of
synthetic samples. Specifically, after ground filtering, indi-
vidual trees were firstly extracted manually from the non-
ground points. Then, part of these individual trees was selected
randomly and put together to form a sample. Note that, to
better simulate the real scene, the location of each tree is also
random. Finally, trees in this sample are projected into a 2D
grid image using Algorithm 1. A large number of training
samples can be obtained by repeating this way of random
sampling. Table VII describes the detail of synthetic dataset
and Figure 9 shows several samples.

2) Training MBNet on synthetic dataset: The proposed
model was trained on the above synthetic dataset. We trained
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# 6 # 7 # 8 # 9 # 10
Fig. 9: Several samples from synthetic dataset.

Step

L
oss

Fig. 10: The curve of training error. The loss decreases rapidly in the early stage, and tends to be stable in the later stage. Starting from around 9,000 steps, the model converges.

TABLE VII
DETAILS OF THE SYNTHETIC DATASET.

Training sample number Testing sample number Mean point number Mean tree number

Synthetic dataset 1,200 200 22,309/sample 12/sample

the model with Tensorflow on a NVIDIA Tesla P100 and the
initial learning rate is set to 0.001 and decreased by half in
every 20 epochs. The batch size is 32. The pre-trained stage
has the same hyper-parameters. Figure 10 shows the curve of
training error. It was found that in the first 1,000 steps, the
error decreased significantly, which means that through the
previous training, the model has obtained the optimal direction
of descent. Then, from 1,000 to 7,000 steps, the deceleration of
error rate gradually slows down. This means that the model is
steadily moving towards the direction of convergence. Finally,
starting from around 9,000 steps, the error tends to be stable,
which means the model has converged. Therefore, considering
that in this work, the number of training samples is 1200 and
the batch size is 32, the number of epoch is set to 250.

3) Testing MBNet: We evaluated the proposed detection
approach on real datasets, i.e. seven areas. The Mask-RCNN

[54] and a baseline, classic CHM and RG based algorithm
(denoted as RG-CHM), were used for comparing with the
proposed method. Considering the complexity of forest, we
studied the most important aspect of performance for each
sample, the number of trees. Following three metrics are used
to measure the performance:

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

F1 score =
2× Precesion×Recall

Precesion+Recall
, (6)

where TP , FP and FN are the number of true positives,
false positives and false negatives, respectively.
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TABLE VIII
COMPARATIVE RESULTS OF TREE DETECTION GENERATED BY DIFFERENT METHODS.

RG-CHM Mask-RCNN [54] Our method

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Area 1 97.79 26.25 41.38 77.93 45.69 57.60 94.44 83.51 88.64

Area 2 85.86 86.31 86.08 74.69 46.11 57.01 97.14 77.95 86.49

Area 3 77.36 58.82 66.83 73.06 53.86 62.00 93.09 89.68 91.35

Area 4 77.78 16.67 27.45 68.69 70.11 69.39 77.78 95.83 85.87

Area 5 75.09 8.33 15.00 68.69 56.52 62.01 80.00 95.24 86.96

Area 6 82.36 61.46 70.39 71.96 44.51 55.00 74.34 91.96 82.22

Area 7 70.51 80.95 75.37 75.24 66.10 70.37 85.19 90.48 87.75

Means 80.96 48.39 54.64 72.89 54.70 69.91 85.99 89.23 87.04
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Fig. 11: Tree detection results generated by different methods on several samples. The first three columns are the results from synthetic dataset, while the last three columns are
the results generated from the real dataset. ”+” with red color denotes as individual tree.

Table VIII presents the performance of different methods.
As shown in Table VIII, by achieving mean precision of
85.99%, mean recall of 89.23% and mean F1-score of 87.04%,
our method outperforms the baseline and Mask-RCNN. Fur-
thermore, in each area, the F1-score of our method is higher
than that of other two methods.

The better results achieved by our method mainly because
of two reasons. Firstly, the multi-branch representation of
forests preserves the distribution patterns of tree points with
different heights. Compared to the CHM representation used
in RG-CHM method, the MCR contains rich hierarchical
structure information that can improve the descriptiveness
of our method significantly. Secondly, compared to Mask-
RCNN, our designed multi-branch network first takes multi-
channel representation as input, which would provide rich

vertical distribution information at different heights. Then, the
fusion module used in our network allows the information
contained in each 2D grid images to be fused together to
complement each other, which would enhance the ability of
feature extraction.

Figure 11 shows several detection results from 2D grid im-
age generated by different methods. Obviously, compared with
RG-CHM and Mask-RCNN, our method has more significant
advantage over them. Furthermore, our method has a better
balance between the recall and precision. For each sample,
the area of crown and the number of trees predicted by our
method are more accurate than RG-CHM and Mask-RCNN.
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Fig. 12: Performance of different representations on seven areas. The metrics are (a) precision, (b) recall and (c) F1 score, respectively.

TABLE IX
INFERENCE TIME OF DIFFERENT METHODS ON REAL DATASET OF SEVEN AREAS IN

SECONDS (S), WHERE ”Ai” MEANS ”Area i”

Method Mean A1 A2 A3 A4 A5 A6 A7

RG-CHM 31.01 45.82 20.93 52.37 3.94 60.72 26.46 6.89

Mask-RCNN 0.61 1.29 0.65 0.72 0.16 0.54 0.66 0.26

Ours 4.77 7.98 4.98 6.43 1.42 4.91 5.62 2.06

D. Efficiency testing

We firstly evaluate the time efficiency of different methods.
Specifically, we compare our method with RG-CHM and
Mask-RCNN by calculating the inference time on real dataset
of seven areas. Table IX presents the comparison results.
Obviously, our method achieves better performance than RG-
CHM on each area. More specifically, RG-CHM is about
six times slower than our method in terms of average time.
The reason for the high efficiency of our method mainly lies
in the acceleration of GPU, which can execute the network
quickly. However, comparing with the DL-based method, the
Mask-RCNN, our method has a high time consumption. Mask-
RCNN is more than seven times faster than our method in
terms of average time. This is because our method takes the
multi-branch network and needs to fuse the features generated
by multiply branches, which would bring lower time efficiency.

Secondly, we calculate the parameters of the proposed
method. The number of parameters is about 1.11 M, where
¡°M¡± stands for million. Besides, we report storage required
to save model parameters in half precision floating point
format and the required space is about 2.1MB, which means
our model has a lightweight size and can be applied for real
project in the forest inventory.

E. Model design analysis

As discussed in Section 3, our designed framework consists
of three representations: the density based, height based and
height-gradient based grid images. To analyze our model, we
evaluated the effects of each representation.

NetD, NetH , and NetHG are used to denote the proposed
method only with the density based, height based and height-
gradient based grid images, respectively. We compared our
method with these three baselines. As shown in Table X, our

TABLE X
COMPARISON OF DIFFERENT REPRESENTATIONS AND OUR METHOD.

Real dataset

Precision (%) Recall (%) F1 score (%)

NetD 93.85 70.86 80.06

NetH 98.06 46.37 61.75

NetHG 96.54 61.83 73.73

Ours 85.99 89.23 87.04

method achieves the best performance in terms of recall and
F1 score. Specifically, our method significantly outperforms
other three baselines by a margin on real dataset. Compared
with NetD, our method achieves significant improvements of
18.37% and 6.98% of recall and F1-score, respectively.

The above results show that our method has a better
balance between precision and recall. The reason lies in the
multi-branch fusion strategy. The three representations used
in the designed framework preserve different information in
three aspects, which can provide rich complementary structure
features to enhance the descriptiveness. However, it needs to
point out that in terms of precision, our method is worse
than NetD, NetH and NetHG. Besides, we can observe that
NetH achieves the best performance in terms of precision.
This is because for NetH , comparing our method, it takes
only the height information as its representation, the tree points
are extracted more strictly. This means NetH would obtain a
lower FP . According to the definition of precision, NetH can
obtain a higher precision.

To further investigate the effects of each representation, we
evaluate the performance of different representations in each
area. Figure 12 provides the details for the performance of
different representations in seven areas. More specifically, the
precision/recall/F1 score in Table X is the average value of
Figure 12 (a)/(b)/(c) in seven areas. As shown in Figures 12.
(b) and (c), we observe that our method obtains the highest
recall and F1 values, respectively in each area. This shows
that our method is more descriptive than three baselines. In
addition, among three baselines, NetD performs well in terms
of recall, while NetH achieves better performance in precision,
whereas NetHG produces the worst results. This is consistent
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with the expectation of these representations. Representations
of NetD and NetH are designed to capture the distribution
patterns of density and height of points respectively, while that
of NetHG encodes the gradient of height, which is mainly
expected to provide additional supplementary information.
Therefore, these representations make their own contributions
to the designed framework.

IV. CONCLUSIONS

This work aims to extract more discriminative features
for ground filtering and individual tree detection in complex
forest. At the ground filtering stage, a local topological based
GCN is designed to mine the relationship among neighbor
points to improve the ground filtering performance. As a
data-driven approach, the modified GCN avoids the parameter
selection problem associated with most of the existing para-
metric methods. Compared to CSF and PointNet, our method
increases the performance by 2.47% and 1.08% in overall
average k coefficient, respectively. Compared to DGCNN, our
method also achieves better results. At the detection stage,
unlike most of the existing methods mainly focused on the
height information of forest, we firstly developed a multi-
channel representation (MCR) to preserve three kinds of distri-
bution patterns of points in three complementary perspectives:
density, height, and height-gradient of points. Secondly, based
on MCR, a multi-branch network (MBNet) is designed to fuse
the hierarchical structure features to detect trees. The proposed
MBNet presents a promising way to apply the DL to extract
deep features from complex forest accurately. Experimental
results show the superiority of the proposed architecture.

Limitation and future work: Firstly, as the description in
part II, our method mainly focuses on the point clouds with
obvious differences in spatial distribution. More specifically,
our method mainly deals with the trees with larger crown
coverage and smaller trunk space. Therefore, generally speak-
ing, the proposed method is more suitable for the large
broad-leaved forest, such as the study area of this work, the
Shaoguan, located in Guangdong, China, which belongs to
the subtropical monsoon climate zone. For the common trees
in other areas, such as coniferous forest in the north, our
method will be limited due to the small difference in vertical
spatial distribution. Secondly, since our method is designed
mainly for individual tree detection, it cannot be used directly
for more detailed analysis. However, the results obtained by
our method can be used for downstream tasks. For example,
building on our method, several parameters, such as the tree
height and crown size, can be obtain by designing inverse
mapping from 2D image to 3D point cloud, which would
be an important topic in our future work. Thirdly, it also
needs to point out that the point cloud quality has important
influence on the performance of tree detection. For example,
the point cloud quality, especially the point cloud density, has
a significant impact on the second module, i.e., MCR module.
More specifically, for the computation of density channel in
the algorithm 1, fixing the image resolution r, if the point
cloud density is low, the mapping image will be difficult to
accurately preserve the distribution pattern of the point cloud.

In future work, we will explore an adaptive resolution setting
method, so that the mapping image resolution r can adapt to
the point cloud density. In addition, as shown in Table IX,
comparing with Mask-RCNN, because of the use of multiply
branches, our method has lower time efficiency. Besides, as a
data-driven approach, the performance of our method would
be dependent heavily on the requirement of large number of
labeled samples, which would consume a lot of time and labor
costs. Therefore, as the further work, generating more samples
from real forest environments and investigating unsupervised
methods, such as domain adaptation, will be focused.
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