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ABSTRACT 

As a foundational preprocessing step for a lot of downstream 

tasks, ground filtering from airborne LiDAR data is designed 

to separate the ground points and preserve the off-ground 

points with complete shape information. However, because 

of the undulating terrain, it is still a challenge work to filter 

the ground under complex mountain regions. In this paper, 

we provide a deep learning based model to improve the 

ground filtering performance in abrupt slope using airborne 

LiDAR point clouds. Specifically, we first design a local 

topological information mining module to extract the local 

features. Then a modified graph convolutional networks 

(GCNs) is developed to fusion the local features and global 

features. Compared with most existing methods, our model 

not only enjoys the parameter-free advantage, which means 

it can be applied easily in various areas, but also obtains better 

ground filtering performance and can preserve more 

complete information contained in off-ground points. 

Experiments was implemented on seven forest areas. The 

proposed method obtains promising ground filtering results 

with mean total error of 6.46% and the mean kappa 

coefficient of 86.01%. 

Index Terms— Ground filtering, airborne LiDAR, point 

cloud, graph convolutional network 

1. INTRODUCTION 

Airborne Light Detection and Ranging (LiDAR) or airborne 

laser scanning (ALS) has been considered as one of the 

standard ways to acquire data in the large areas, especially the 

mountain regions. It has been used in several tasks, such as 

forest inventory [1], urban three-dimensional (3D) analysis 

[2], and object detection [3]. As a foundational preprocessing 

step for these tasks, ground filtering from airborne LiDAR 

data is designed to separate the ground points and preserve 

the off-ground points with complete shape information. It is 

critical in ALS point clouds analysis, especially under the 

abrupt slope environments. A suitable filtering algorithm can 

obtain clean point clouds of off-surface objects, thus 

providing good initial data for subsequent applications, such 

as tree extraction and parameter estimation.  

Several researches have been undertaken to study the 

ground filtering problem, such as the morphological based 

methods [4], surface based methods [5], slope analysis based 

methods [6] and the statistical approach based method [7]. 

Although these methods can obtain promising results under 

relatively flat environments, the challenge remains in 

processing abrupt slope areas. Considering that the rich detail 

information is mainly contained the relationship between 

local points, the key problems of the above challenge mainly 

lies in two aspects: the effective mining of the local features 

and the descriptiveness of the global features. Therefore, in 

this paper, we first design a local topological information 

(LTI) module to effectively extract the local features. Then 

we attempt to apply the deep learning based approach to 

improve the descriptiveness of features generated by ALS 

point clouds in complex forests. Specially, a modified graph 

convolutional networks (GCNs) is developed to fusion the 

local features and global features. 

The rest of this paper is structured as follows: Section 2 

provides related works and Section 3 details the proposed 

method. Experimental results are presented in Section 4. 

Section 5 concludes our work. 

2. RELATED WORK 

Ground filtering is a critical preprocessing task in ALS 

point clouds analysis, especially under the abrupt slope 

environments. Existing methods can be categorized into two 

classes: point entities based methods and segment entities 

based methods [8]. In point based methods, ground and off-

ground points are separated by their own geometric properties. 

Representative works include morphological based 

researches [4], surface based methods [5], slope based works 

[6]. Although these methods achieve good quality results 

under relatively flat environments, the challenge remains in 

processing non-flat areas. Most of the existing methods 

require different parameters to adapt for different kinds of 

environments (e.g. urban, mountains) and of different 

datasets, which results heavy manual editing costs and time. 

Segment based methods consist of two steps: partitioning 

ALS point clouds into several segments and removing off-

ground segments using the properties, such as shape, size and 
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completeness [9,10]. Common segmentation methods 

include RANSAC, the slope, and the smoothness constraint. 

These approaches obtain promising performance under urban 

environments. However, it is still a difficult task for these 

methods to filter ground points from complex forest areas. 

3. METHOD 

Given N points set P = {p1, p2, …, pN, where pi = (xi, yi, 

zi), i = 1, 2, …, N}, the ground filtering task can be considered 

as a binary semantic segmentation problem. Our aim is to 

search a mapping, F, to map P into the corresponding label 

vector V = {v1, v2, …, vN, vi = (vi
 1, vi

 2), i=1, 2, …, N, vi
 1, vi

 2 

= {0,1}}. In our work, the map F is designed as a modified 

GCN. As shown in Fig. 1, the proposed ground filtering 

method consists of three modules (represented by different 

colors). The first module is the local topological information 

(LTI) layer (see Fig. 2(a)), which provides local features from 

neighbor points. The second and third modules are the GCN 

based networks that designed to describe the global and local 

features, respectively.  

The LTI layer is the core part. It computes two important 

features: the local covariance information and the 

dimensional features. Specifically, for each point, 20 

neighbor points are searched using K-Nearest Neighbors 

(KNN) search algorithm and the covariance matric, denoted 

as C = [ci,j]3×3, can be calculated. Because the covariance 

matric is a real symmetric matrix, the six upper triangle 

elements is selected as covariance features: 

{c11, c12, c13, c22, c23, c33}.                     (1) 

In addition, dimensionality features [11,12], {a1D, a2D, a3D}, 

are chosen as extra geometric information. Dimensionality 

features are defined as: 

2 3 31

1 1

2 3

2

1

1

--
= = =D D Da a a

   

  
， ，

               (2)  

where  1, 2, and 3 (1≧2≧3) are eigenvalues generated 

by Principal Component Analysis (PCA) on local neighbor 

point set. Then, the output of LTI layer and raw point clouds 

are merged using a concatenation operation. Finally, an edge 

convolution with two layers is performed to obtain the final 

output, a tensor with shape of N × 64.  

The second module is designed to mine the global feature. 

An edge convolution with two layers is used to extract the 

detail features for each point to improve the overall 

descriptiveness of the filtering model. As a fuse stage, the 

third module is used to integrate the local and global features. 

Besides, considering the fact that the number of off-ground 

points is often greater than that of ground points, we modified 

the regular loss function in the local and global features. 

Besides, considering the fact that the number of off-ground 

points is often greater than that of ground points, we modified 

the regular loss function in GCN by applying the focal loss 

[13], to achieve better training performance. 

Fig. 1 . Flowchart of ground filtering method. It is a modified GCN framework with 
three modules. The first module is the local topological information (LTI) layer, which  
provides local features from neighbor points. The second and third modules are the 
GCN based  networks  that  designed  to  describe  the  global  and  local  features, 
respectively. 

 

Fig. 2. The frameworks of LTI layer and Edge Conv layer. 

In summary, compared with the original GCN, our 

modified model enjoys several advantages. Firstly, the design 

of LTI layer provides more detail information. Local spatial 

relationship between neighbor points is fully utilized and 

geometric properties are preserved in the input data. Secondly, 

the combination of local and global features enhances the 

descriptiveness of the modified model. Different from the 

original GCN, extra global features in our modified model 

compensate for the deficiencies in the overall 

characterization. Thirdly, the use of focal loss down-weights 

the loss assigned to well-classified samples (in our work, for 

example, a point with a very high or low z value will be a 

well-classified sample) and pay more attention on the hard 

samples (e.g. the bushes). Therefore, under the guidance of 

this loss function, the model can be trained more efficiently 

in the direction of convergence. 

4. RESULTS AND DISCUSSION 

4.1 Dataset and implementation 

The dataset was acquired with a ALS system, which 

consists of a lightweight (3.5 kg) and compact (227×180×125 

mm) laser scanner and an unmanned aerial vehicle (UAV). 

Seven areas with complex forests were selected for our 

experiments. Fig. 3 shows three samples. Obviously, all these 

samples contain mixed noise, especially unordered outliers  
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that bring huge difficulty for detecting individual trees. 

Several key statistical information is presented in Table 1. 

Our method was trained with TensorFlow on a NVIDIA 

Tesla P100 GPU. The batch size was set to 8 and the initial 

learning was 0.001. When training the model, we used 

adaptive moment estimation (Adam) with a momentum of 0.9. 

The number of epochs was 50. 

 
Fig. 3. Samples from selected areas. These forests are extremely noisy. 

Table. 1. Key statistical information of seven study areas . P.N. and Alti. are Point 
Number and Altitude, respectively.  

 A1 A2 A3 A4 A5 A6 A7 
Size 
(m2) 20,231 12,495 11,708 13,168 12,636 15,115 16,110 

P. 
N. 4,498,425 4,268,649 3,655,193 3,898,510 3,426,171 3,976,401 2,595,690 

Max 
(m) 212 212 210 208 201 181 159 

Min 
(m) 106 107 124 115 123 95 95 

Alti. 
(m) 106 105 86 93 78 86 64 

4.2 Experimental results 

 We conducted experiments on the above datasets and 

compared our method with previous ground filtering 

algorithms, including the deep learning based methods, 

PointNet [14] and DGCNN [15], as well as the classic method, 

the cloth simulation filtering (CSF) proposed in [16]. We 

used four metrics for quantitative analysis [17]. Type I error 

measures the rate of ground points mislabeled as off-ground 

points, while Type II error represents the percentage of off-

ground points mislabeled as ground points. Total error shows 

the rate of all mislabeled points. Besides, the Cohen’s kappa 

coefficient (k) measures the inter-ratio agreement more 

robustly. It also needs to point out that, as our method is a 

supervised method, training data is required when it is used 

to test one area. Therefore, in our experiments, when an area 

is used as testing data, other six areas are considered as 

training data. 

Table 2 presents the compared results. Obviously, our 

method achieves excellent performance. More specifically, 

our method obtains the best results on areas 2. Besides, in 

areas 1, 4, 5, 6 and 7, our method also achieves competitive 

results. Additionally, compared to CSF and PointNet, our 

method increases the performance by 2.47%and 1.08% in 

overall average k coefficient, respectively. These results 

mean that our method can filtering the ground points more 

precisely. On the overall average total error and Type II error, 

our method also has the obvious advantage, with a significant 

reduction comparing with other three methods. That means 

our method can reject object points more effectively and has 

a smaller proportion of all error points. However, compared 

with other methods, our method has a limitation that the Type 

I error cannot be greatly reduced. Our future work will focus 

on this issue.  

The reason why our method achieves the better 

performance is that the local graph structure using in the 

proposed ground filtering framework can preserve the 

relationship among neighbor points. Compared with PointNet 

and DGCNN, the local features of ground points are captured 

by our method more effectively. Besides, compared with CSF, 

as a non-parametric method, our method does not need to find 

the optimal parameters, which means fewer mistakes caused 

by manual intervention.

Table. 2. Comparing ground filtering results generated by different methods 

Method Metric (%) Area1 Area2 Area3 Area4 Area5 Area6 Area7 Means Max Min 

CSF 

I error 2.49 2.04 2.01 4.57 3.31 6.53 3.54 3.49 6.53 2.01 

II error 9.34 9.11 8.66 11.85 14.42 16.6 12.25 11.74 16.6 8.66 

Total error 6.00 5.88 5.03 8.93 8.45 12.28 8.53 7.87 12.28 5.03 

k 87.52 87.75 89.12 81.86 82.3 74.75 81.46 83.53 89.12 74.75 

PointNet 

I error 4.28 2.58 4.32 9.18 2.97 8.98 8.83 5.88 9.18 2.58 
II error 9.14 6.22 4.06 8.51 15.41 11.26 5.95 8.65 15.41 4.06 

Total error 5.92 4.35 4.24 8.96 7.68 10.75 7.15 7.00 10.75 4.24 

k 87.21 90.76 90.32 81.64 82.48 77.73 84.29 84.91 90.76 77.73 

DGCNN 

I error 4.12 2.00 3.20 7.68 2.82 8.97 8.20 5.28 8.97 2.00 

II error 9.62 5.92 4.02 8.34 13.31 11.25 5.81 8.32 13.31 4.02 

Total error 6.01 3.91 3.43 8.15 6.82 10.73 6.78 6.54 10.73 3.43 

k 86.99 91.69 92.13 83.30 84.49 77.75 85.09 85.92 92.13 83.30 

Ours 

I error 2.39 1.85 4.23 6.86 2.09 5.66 7.05 4.30 7.05 1.85 

II error 10.49 5.85 3.71 9.09 14.76 15.15 7.03 9.44 15.15 5.85 

Total error 5.41 3.77 4.00 7.91 6.79 10.59 6.80 6.46 10.59 3.77 

k 88.14 91.98 90.85 83.65 84.47 77.84 85.13 86.01 91.98 83.65 
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Fig. 4. Results of ground filtering generated by different methods on several scenes. The 
ground and off-ground points are marked by blue and red color, respectively. The areas 
marked by the green boxes are areas with mislabeling error points . 

To further present the comparative results, we visualized 

the ground and off-ground points on some areas after filtering 

by using CSF and our method. As shown in Fig. 4, our 

method achieves better performance than CSF in preserving 

ground points. Especially, the improvements of our method 

are more significant in steep areas, as shown on the first two 

lines of Fig. 4. Note that filtering ground points in steep areas 

is another challenge [17]. Our method also labels the ground 

points as off-ground points in some areas, just as shown in 

the last line of Fig. 4. However, the number of mislabeling 

points is very low and acceptable in practice. 

5. CONCLUDING REMARKS 

In this paper, we provide a three-module based GCNs to 

improve the filtering performance in abrupt slope. As the key 

part of our method, a well-designed local topological 

information (LTI) module is presented to effectively extract 

the local features. Compared with other existing works, our 

ground filtering method can obtain better ground filtering 

performance and preserve more complete information 

contained in off-ground points.  
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