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A B S T R A C T   

Due to the advantages of 3D point clouds over 2D optical images, the related researches on scene understanding 
in 3D point clouds have been increasingly attracting wide attention from academy and industry. However, many 
3D scene understanding methods largely require abundant supervised information for training a data-driven 
model. The acquisition of such supervised information relies on manual annotations which are laborious and 
arduous. Therefore, to mitigate such manual efforts for annotating training samples, this paper studies a unified 
neural network to segment 3D objects out of point clouds interactively. Particularly, to improve the segmentation 
performance on the accurate object segmentation, the boundary information of 3D objects in point clouds are 
encoded as a boundary energy term in the Markov Random Field (MRF) model. Moreover, the MRF model with 
the boundary energy term is naturally integrated with the Graphical Neural Network (GNN) to obtain a compact 
representation for generating the boundary-preserved 3D objects. The proposed method is evaluated on two 
point clouds datasets obtained from different types of laser scanning systems, i.e. terrestrial laser scanning system 
and mobile laser scanning system. Comparative experiments show that the proposed method is superior and 
effective in 3D objects segmentation in different point-cloud scenarios.   

1. Introduction 

Rapid development of 3D laser scanning technologies has made 3D 
data become a hot topic in the field of computer vision (Guo et al., 
2020). 3D point cloud, which can be directly and rapidly collected by a 
variety of laser scanning systems, has been widely applied in various 
areas, i.e. autonomous driving (Yue et al., 2018), high-definition (HD) 
maps (Ma et al. 2021), robotics (Wang et al., 2021), virtual reality 
(Bolkas et al., 2020), etc. In practice, compared to traditional optical 
images, point clouds have exhibited many advantages including accu
rate and real-world geometric information of 3D objects, scale- 
invariance of 3D objects, insensitivity to the lighting conditions, etc. 
As a fundamental task in computer vision, scene understanding based on 
point clouds has shown its great potentials and attracted worldwide 
attentions (Nie et al., 2021). 

Lately, deep neural network has been introduced and explored in 

efficiently processing point clouds for scene understanding (Hu et al., 
2020). To guarantee sufficient supervised information for training the 
neural network, manually-annotating abundant point clouds should be 
carefully implemented by well-trained annotators (Geiger et al., 2012). 
Moreover, annotators usually spend much time on distinguishing indi
vidual point in some complex scenarios, e.g., the points locating in ob
ject boundaries (Luo et al., 2018). Such manual annotation is laborious 
and arduous. To mitigate the huge burden of traditional manual anno
tation and improve the efficiency of creating supervised datasets, this 
paper mainly focuses on a semiautomated method, which require a few 
human interventions, to segmenting 3D objects from point clouds. 

Several research works have begun to study the topic of semi
automated segmentation in point-cloud scenes (Golovinskiy and Funk
houser, 2009; Sedlacek and Zara, 2009; Luo et al., 2021). To segment 
points belonging to the foreground which are entangled with the 
background, a foreground-background segmentation is interactively 
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implemented through searching an optimal cut by a min-cut algorithm 
(Golovinskiy and Funkhouser, 2009). During the foreground- 
background segmentation, the prior knowledge is provided by interac
tively and manually annotating foreground points. Sedlacek and Zara, 
(2009) proposed a Markov Random Field (MRF) model to interactively 
segment 3D objects from point-cloud scenarios by modeling the con
straints including distance, continuity, point density, etc. Additionally, 
interactively drawing and giving the strokes or clicks on the foreground 
points provide the segmentation cue to distinguish the foreground and 
background points. Although those methods can obtain a good perfor
mance, the important information of object boundaries is ignored as a 
cue for a precise segmentation (Luo et al., 2021). 

Nowadays, deep learning on computer vision has been increasingly 
attracting wide attentions (Voulodimos et al., 2018). Due to the order
less and unstructured characteristic in 3D points, standard Convolu
tional Neural Network (CNN), which gains popularities in processing 2D 
images, cannot be applied directly to represent the actual structure of 
point clouds. Human-designed operations, such as voxelization (Wang 
et al., 2017) and multi-view projection (Wei et al., 2020), are introduced 
to map 3D points to grids. Inevitably, potential geometric information 
may be discarded and ignored during the mapping procedure. Owing to 
the recent breakthroughs in neural network, Graph Neural Network 
(GNN) (Zhou et al., 2020) allows to exploit graph representation to 
model the orderless and unstructured point clouds directly. Such graph 
representation treat 3D points and neighboring relationships between 
3D points as graph vertices and edges, respectively. GNN can reuse such 
graph structure in every layer to obtain the feature representation of 
point clouds. Therefore, a more robust and compact of feature repre
sentation of point clouds can theoretically be generated. 

In order to effectively exploit boundary information and compact 
feature representation for accurate object segmentation, this paper 
proposes a Boundary-Aware Graph Markov Neural Network (BA- 
GMNN), which integrates the GNN with the boundary-aware MRF 
model. Specifically, to overcome the great computational burden caused 
by the high-density points, we over-segment the point clouds and 
transform them to supervoxels (Lin et al., 2018), which are assumed as 
basic units in the segmentation process. To describe the spatial contexts 
between adjacent supervoxels, a MRF model is exploited to ensure a 
smooth segmentation (Li, 1994). To preserve the object boundaries in 
the segmentation, object boundaries are treated as constraints and 
modeled as a potential energy term in the MRF model. To obtain a robust 
and compact feature representation, we introduce the GNN to extract 
the aggregated feature from a graph structure. Therefore, we present the 
summary of our main contributions as follows: 

(1) We propose a new method to achieve the object segmentation in 
point clouds with only a few human interventions, which require the 
annotator to draw a bounding box loosely outlining the interested object 
before the segmentation. The proposed method is able to largely reduce 
the human efforts in creating the training datasets for 3D scene 
understanding. 

(2) A new neural network BA-GMNN is proposed to model the 
problem of the semiautomated 3D object segmentation from point 
clouds. The BA-GMNN naturally unifies the GNN and the boundary- 
aware MRF model into a neural network, which effectively improves 
the segmentation performance. 

(3) To validate the effectiveness of our proposed method, extensive 
experiments and comparisons are performed on two datasets, i.e. 
VMX450 (Luo et al., 2016) and Semantic3D (Hackel et al., 2017) data
sets. In addition, the experimental results demonstrate that the proposed 
method achieves a satisfactory performance on the 3D object 
segmentation. 

The reminder of our work is organized as follows. Section 2 provides 
detailed related studies on object segmentation. Section 3 presents the 
proposed methods on semiautomated segmentation of 3D object from 
point clouds. Section 4 presents and discusses the experimental results to 
demonstrate the performance of the proposed method. Section 5 

concludes the entire paper. 

2. Related work 

In this section, we cover the three aspects of the related works, i.e., 
semiautomated object segmentation in point clouds, boundary extrac
tion in point clouds, and GNNs as applied in point clouds data. 

2.1. Semiautomated 3D object segmentation 

As an effective way to reduce the labor cost for annotating training 
data, semiautomatic object segmentation has been a research hotspot. In 
recent years, the contour-based object segmentation methods such as 
PolygonRNN and PolygonRNN++ modeled the object segmentation on 
2D images as a polygon prediction problem and exploited the Recurrent 
Neural Network (RNN) to predict the polygon contour (Castrejon et al., 
2017; Acuna et al., 2018). The Curve-GCN treated the object segmen
tation on 2D images as a vertices regression problem where the positions 
of all vertices in a graph structure are simultaneously predicted by an 
end-to-end GNN (Ling et al., 2019). The pixels located in the predicted 
graph structure were denoted as the interested objects. All those 
methods needed to manually drag a coarse box around the interested 
objects for providing the supervised information. Similarly, by manually 
providing an object location as a prior knowledge, the min-cut-based 
method computes a foreground-background segmentation and finds a 
cut on a graphical model to solve the 3D object segmentations in point- 
cloud scenes (Golovinskiy and Funkhouser, 2009). By manually clicking 
or stroking a part of 3D points to indicate the supervision information, 
the Graph Cut (GC) achieves object segmentation in point-cloud scenes 
by interactively refining the segmentation results (Sedlacek and Zara, 
2009). However, those methods did not consider the object boundaries 
into the segmentation framework explicitly. In our previous work (Luo 
et al., 2021), we built a boundary-aware MRF model to impose an object 
boundary constraint while segmenting 3D objects in point clouds. 
However, the built model still exploited the handcrafted feature de
scriptors and lacked of a unified framework to solve the problem of 3D 
object segmentation using point cloud data. 

2.2. Boundary extraction 

The object boundary is an important prior information to depict the 
real shape of the objects, which assists the accuracy improvement in 
object segmentations (Cheng et al., 2020; Zhang et al., 2020). Ding et al. 
(2019) proposed the boundary-aware feature propagation module (BFP) 
to obtain and propagate the local features in the isolated region for 
learning boundary information in optical images. Zhao et al. (2019) 
proposed a new neural network named BSANet where a boundary 
awareness module to enhance the boundary features for effectively 
extracting the object boundaries on images. Nowadays, more and more 
researches have begun to focus on how to extract object boundaries in 
3D point clouds. To effectively detect object boundaries in unorganized 
point clouds, the mean shift algorithm (Comaniciu and Meer, 2002) was 
introduced to locate the centroid of local point clouds iteratively. The 
offset distance of every point, which was calculated based on the located 
centroid, was used as a measure to distinguish whether the point belongs 
to the boundary (Ahmed et al., 2018). Gong et al. (2021) proposed a 
Boundary Prediction Module (BPM) to predefine boundary points in 
point clouds. In order to train BPM, different types of boundary points 
needed to be annotated first. Then, to leverage the information gap of 
the to predict the boundary points, BPM exploited not only each 
boundary point but also its neighboring points for training, so as to focus 
on the information gap of the local point to classify the boundary points. 

2.3. Graph neural networks applied in point clouds 

Since point clouds can naturally be represented by a graph structure, 
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GNN have been leveraged in point cloud processing. Recently, the GNN- 
based techniques have been increasingly developed to handle the point 
clouds (Yin et al., 2019). A 3D GNN was proposed to conduct RGB-D 
semantic segmentation by encoding the object representation with a 
local graph structure (Qi et al., 2017). In the graph structure, the rep
resentation of each node is initialized by the image feature vector and 
iteratively updated by the information passed by its neighboring nodes. 
In addition, the GNN was exploited to semantically segment large-scale 
point clouds with superpoint graphs (Landrieu and Simonovsky, 2018). 
In each superpoint graph, every node was defined as a superpoint, which 
aggregates a set of similar adjacent supervoxels, and each edge encoded 
the contextual information between different superpoints. Wang et al. 
(2019) designed a dynamic GNN to achieve multiple convolutional 
layers by using an EdgeConv module and achieved the superior per
formance on many tasks, i.e. classification and segmentation in point- 
cloud scenarios. In order to improve the network’s ability to describe 
the contour of point cloud objects, Wang et al. (2019) proposed graph 
attention convolution (GAC), which learns the object structure by 
dynamically adjusting the shape of convolution kernel. In addition, a 
new GNN named Point-GNN was proposed to introduce the auto- 
registration mechanism to accomplish simultaneous detection of mul
tiple objects, which demonstrated the feasibility of GNN on object de
tections in 3D point clouds (Shi and Rajkumar, 2020). Although many 
previous studies have proved that GNN is suitable for processing point 
clouds, there are few studies to introduce the prior knowledge of object 
boundaries into the graph representations. 

3. Methods 

3.1. Workflow of the proposed method 

Fig. 1 outlines the workflow of our proposed method as follows: 
firstly, a bounding box BBa around the interested 3D object to be 
segmented in a given point cloud scene is loosely and manually provided 
by the annotator. Then, a bigger bounding box BBb is automatically 
generated to locate around the bounding box BBa. Here, we empirically 
set the length and width of bounding box BBb two times larger than those 
of bounding box BBa, thereby the 3D points located between the two 
bounding boxes can provide adequate prior knowledge of the back
ground points. Next, to address the computational cost caused by the 
large number of points, we conduct supervoxel segmentation (Lin et al., 
2018) to over-segment the points in the bounding box BBb. Moreover, 
the points belonging to the object boundaries are extracted by fusing the 
candidate boundaries from edge detection methods (Ahmed et al., 2018) 
and supervoxel segmentation (Lin et al., 2018). Finally, the proposed 
BA-GMNN is leveraged to generate the final segmentation on the point 

clouds. 

3.2. 3D object segmentation by BA-GMNN 

To exploit the boundary information and obtain a compact feature 
representation for accomplishing the 3D object segmentation, a BA- 
GMNN method is proposed to integrate the GNN with BA-MRF. A BA- 
GMNN includes a BA-MRF to model the joint distribution of object la
bels under the constructed feature representation. As shown in Fig. 2, 
the proposed BA-GMNN for 3D object segmentation is optimized with 
the variational Expectation-Maximization (EM) framework (Yang and 
Ji, 2019), which alternates between a label inference procedure 
(M− Step) and a feature learning procedure (E-Step). Specifically, in the 
label inference procedure, the category labels are predicted by the BA- 
MRF according to the object boundaries and the feature representa
tions of supervoxels. Here, the used feature representations of super
voxels are learnt by GNN, whose parameters are learnt in the feature 
learning procedure. In the feature learning procedure, the supervised 
information is generated from the supervoxels’ category labels predicted 
by the BA-MRF. Therefore, in this subsection, we first present the BA- 
GMNN to infer the object labels in the label inference procedure 
(M− Step). Then, learning a GNN to generate the feature for E-Step is 
detailed. Finally, the EM algorithm of the whole optimization of the two 
steps is provided. 

3.2.1. Boundary-Aware Markov Random Field 
We model the problem of 3D object segmentation in a given point- 

Fig. 1. Illustration of the workflow of the proposed method: (a) bounding box BBa denoted as red box which loosely outlines the interested object by the annotator; 
(b) bounding box BBb denoted as yellow box which is automatically generated around BBa; (c) the supervoxels obtained by the supervoxel segmentation; (d) the 
extracted object boundaries marked as red points; (e) the final result of 3D object segmentation. 

Fig. 2. The overview of BA-GMNN. There are two important steps iteratively 
implementing in BA-GMNN, i.e. label inference procedure (M− Step) and 
feature learning procedure (E-Step). 
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cloud scenario c as a two-category labeling problem, whose objective is 
to determine the category labels L = {0,1} for the supervoxels S = {S1,

S2, ...,SN}. Here, 1 and 0 in L represent the category label of foreground 
and background, respectively; N represents the total number of super
voxels extracted from the given point-cloud scenario in provided 
bounding box BBa. We formulate the energy function of BA-MRF model 
as follows: 

EBA− MRF(L) =
∑

s∈S
D(Ls)+ α

∑

(si ,sj)∈Ns

V(Lsi ,Lsj )+ β
∑

(si ,sj)∈Ns

W(Lsi ,Lsj ) (1) 

where D(Ls), V(Lsi , Lsj ) and W(Lsi , Lsj ) represents the data term, 
smooth term and boundary term, respectively. Ns represents the set of 
the pairwise supervoxels which are spatially-adjacent. In practice, Ns is 
determined on a predefined search radius R and searched through the 
KDTree algorithm (Li et al., 2016). Additionally, the weight factor α and 
β control the weight ratio of smooth term and boundary term in the 
energy function, respectively. 

Concretely, the data termD(Ls) is defined to indicate the likelihood of 
supervoxel S when assigning the category label Ls, as follows: 

D(Ls) = − logPs
(
Ls|Xg

s

)
(2) 

wherePs
(
Ls|Xg

s
)

denotes the probability of supervoxel taking category 
label Ls, conditioned on the feature, Xg

s . Here, Xg
s is the feature of 

supervoxel, which can be obtained in the feature learning procedure. To 
calculate the Ps

(
Ls|Xg

s
)
, two Gaussian Mixture Models (GMM) (Reynolds 

et al., 2000), i.e., GMMb and GMMf, are leveraged to represent the pos
terior label distribution of supervoxels for both the background and 
foreground. Also, the parameters of GMMb is learnt with the supervoxels 
located between BBa and BBb, while GMMf is learnt with the supervoxels 
in BBa. Once the parameters of GMMf and GMMb are determined, 
Ps
(
Ls|Xg

s
)

can be calculated as 

Ps
(
Ls|Xg

s

)
=

∑K

i=1
wigi(Xg

s ; μi,Σi) (3)  

g(Xg
s ; μ,Σ) =

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2π)d
|Σ|

√ exp
[

−
1
2
(Xg

s − μ)T Σ− 1(Xg
s − μ)

]

(4) 

where wi is the weight of GMM’s Gaussian component i. μi and Σi are 
the mean vector and covariance matrix of Gaussian component i, 
respectively. 

The smooth term V(Lsi , Lsj ) encodes category dependencies between 
the two neighboring supervoxels Si and Sj. We adopt the Potts model 
(Kohli et al., 2007) to encourage that the neighboring supervoxels with 
similar geometric features should be assigned the same category label. 
The smooth term V(Lsi , Lsj ) is computed as follows: 

V
(
Lsi ,Lsj

)
=

⎧
⎨

⎩

exp
(
− γa‖Xg

si
− Xg

sj
‖
)
,Lsi ∕= Lsj

0, Lsj = Lsi

(5) 

where γa represents the scale factor making the smooth term com
parable with other energy terms in the energy function of BA-GMNN. 

The boundary term W(Lsi , Lsj ) is incentive for the supervoxels posi
tioned at segmentation boundaries to obtain all the object’s boundary 
points. Note that, the boundary term encourages that the final seg
mentation should occur at the extracted boundaries. Therefore, we 
denote the boundary term W(Lsi , Lsj ) as follows: 

W(Lsi , Lsj ) =

⎧
⎨

⎩

exp
(
− γb(P

b
si
+ Pb

sj
)
)
,Lsi ∕= Lsj

0, Lsj = Lsi

(6) 

where scale factor γb assists in the comparability of the boundary 
term in Eq. (1). Pb

si 
denotes the possibility of supervoxel Si positioned on 

object boundaries. In practice, Pb
si 

is approximately calculated as follows: 

Pb
si
=

nb
si

np
si

(7) 

where np
si 

and nb
si
denote the total points and boundary points in the 

supervoxel Si, respectively. Here, nb
si 

can be calculated by the boundary 
extraction method proposed by Luo et al. (2021). Here, the object 
boundaries are extracted by two stages, i.e. coarse boundary generation 
and meaningless boundary removal. At the coarse boundary generation 
stage, the boundary candidates are detected by the method proposed in 
Ahmed et al. (2018). At the meaningless boundary removal stage, two 
boundary candidates provided by the supervoxels segmentation and the 
coarse boundary generation are naturally fused by removing the 
boundaries not in the intersection of those two boundary candidates. 
Finally, the fused boundary candidates are considered as the object 
boundaries which may be beneficial to accurate object segmentation. 

The condition Lsi ∕= Lsj in Eq. (6) indicates that the spatially- 
neighboring supervoxels given with different category labels should 
locate at the calculated segmentation boundary. In fact, the boundary 
term W(Lsi , Lsj ) penalizes the supervoxels at the segmentation boundary 
with no points belonging to object boundaries. Therefore, minimization 
of the boundary term benefits the object boundary preservation in the 
segmentation results. 

Finally, due to meeting the semi-metric condition, the minimization 
of energy function Eq. (1) can be efficiently solved by the Graph Cuts 
algorithm (Boykov et al., 2001). 

3.2.2. Graph neural network 
Different from BA-MRF, GNN mainly focuses on learning a useful 

feature representation for predicting the category labels of the super
voxels. In the GNN, a graph structure G = {V,E} is defined where the 
node set V, and the edge set E are denoted by supervoxels and spatially- 
adjacent relations between supervoxels, respectively. With the con
structed graph in GNN, the category label of each supevoxel is predicted 
in the following way: 

Ps
(
Ls|Xg

s

)
= Cat

(
Ls|softmax

(
ωXg

s

) )
(8)  

Xg = g(XV ,E) (9) 

where Xg ∈ R|V|×d represent all supervoxels’s feature representations 
generated by GNN, and Xg

s ∈ Rd is the GNN-generated feature repre
sentation of supervoxel S. ω ∈ RK×d represents a matrix where d and K 
denote the dimension of the feature representation and the number of 
label categories, respectively. The function Cat stands for category dis
tributions. XV is the initial feature representations of all supervoxels. In 
practice, the XV is calculated by applying two feature descriptors 
including FPFH (Rusu et al., 2009) and orientation (Munoz et al. 2009). 
The function g is learnt by a GNN model, GNNω, whereCat, E, and ω 
denote the input node features, the spatial relations, and the output 
parameters of GNN model, respectively. In addition, The GNN model is 
structured with 2 graph-based convolutional layers with 16 hidden 
units, and ReLU as the activation function (Nair and Hinton, 2010). 
During the GNN model training, the Adam optimizer (Kingma and Ba, 
2014) minimizes the classification error under the supervision. 

3.2.3. BA-GMNN optimization with EM algorithm 
The proposed BA-GMNN consists of two main components: BA-MRF 

and GNN. Specifically, the BA-MRF models the joint probability distri
bution of category labels of supervoxels conditioned on their feature 
representations, i.e.,P(L|Xg). The GNN model learns promising feature 
representations Xg for predicting category labels of supervoxels. How
ever, there is no sufficient labeled supervoxels for supervising the 
learning procedure of the GNN. Moreover, the label inference by using 
BA-MRF requires the feature representationsXg. To optimize the two 
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components, a pseudolikelihood variational EM algorithm is proposed.  
Algorithm 1 The EM algorithm for optimizing the BA-GMNN 

Input: a graph G = {V,E}; some labeled supervoxels (Xl
v, L

l)

Output: the final labels Lu for unlabeled supervoxels Xu
v .  

1: while not converge do 
2: M¡Step: Label Inference Procedure 
3: Use the GNNω to generate the supervoxel representation, Xg, by Eq. (9).  
4: Obtain the labels of unlabeled supevoxels, Lu, with BA-MRF by minimizing the 
energy function (1).5: E-Step: Feature Learning Procedure6: Obtain the predicted 
label distribution of the unlabeled supervoxels, PMRF(Lu |Xg), by Eq. (10).  
7: Update the GNN, GNNω, by minimizing Eq. (11) based on Ll  

andPMRF(Lu |Xg).  
8: end while 
9: return Lu   

Algorithm 1 details the pseudolikelihood variational EM algorithm to 
optimize BA-GMNN. The EM algorithm is iteratively executed the 
following two steps: M− step and E-step. In M− step, we use the BA-MRF 
to model the local dependencies of supervoxel labels under the bound
ary constraint. In E-step, we update the GNN, GNNω, to obtain the 
feature representation for label prediction. Specifically, in M− step, the 
supervoxel feature, Xg, is generated by GNN, GNNω. At the first itera
tion, the GNNω is pre-trained by using the labeled supervoxels (Xl

v,L
l). 

Once the Xg is obtained, the BA-MRF can be solved to generate the 
predicted labels for unlabeled supervoxels. Moreover, in E-step, the 
predicted label distribution of the unlabeled supervoxels, PMRF(Lu|Xg), 
can be approximated by the BA-MRF as follows: 

PMRF(Lu|Xg) =
1

Z(Xg)
EBA− MRF(Lu) (10) 

where Z(Xg) is the normalization term. The computation of 
PMRF(Lu|Xg) can be effectively solved by an approximation inference 
method, i.e. loopy belief propagation (Murphy et al., 2013). 

Oω = Oω,U +Oω,L (11)  

Oω,U =
∑

Xi∈Xu
v

EPMRF (Li |X
g
i )
[Ps(Li|Xg

i )] (12)  

Oω,L =
∑

Xi∈Xl
v

Ps(Ll
i|X

g
i ) (13) 

where Oω,U and Oω,L are the objective function of GNNω trained by 
predicted label distribution of the unlabeled supervoxels and labeled 
supervoxels, respectively. Here, Ll

i is the category label of the annotated 
supervoxel, Si, which is obtained from the prior knowledge and provided 
by dragging bounding box in the point-cloud scene. Oω,U calculates the 
KL divergence betweenPMRF(Li|Xg

i ) and Ps(Ll
i|X

g
i ), which makes the 

feature representation generated from GNN are beneficial to the 3D 
object segmentation. 

4. Experiments 

4.1. Datasets 

We demonstrate the capabilities of the proposed method for 3D ob
ject segmentation from point-cloud scenes, both qualitative and quan
titative using evaluations performed on VMX-450 (Luo et al., 2016) and 
Semantic3D (Hackel et al., 2017) datasets. Particularly, the point clouds 
in the VMX-450 dataset were captured in Xiamen Island, Xiamen, China 
using a RIEGL VMX-450 mobile laser scanning (MLS) system. The MLS 
system, mounted on a minivan, integrates 2 RIEGL VQ-450 laser scan
ners, 4 high-resolution digital cameras, an inertial measurement unit 
(IMU), a Global Navigation Satellite System (GNSS) antenna, and a 
distance measurement indicator (DMI). The point density of the 
collected points reaches approximately 7000 points/m2 whereas the 
precision and accuracy are approximately 8 mm and 5 mm, respectively. 

The point clouds in the Semantic3D dataset were obtained in Central 
Europe region using a Leica ScanStation P50 and P40/P30 terrestrial 
laser scanning (TLS) system. Due to the high measurement resolution 
and long measurement range, the point density extremely changes and 
the occlusion largely exists. Still, the precision of the point clouds in 
Semantic3D dataset is within 5 mm. 

Each dataset includes 50 different scenarios, which cover different 
types of objects such as light poles, roadblocks, billboards, traffic lights, 
road flags, traffic signs, trees, etc. Preservation of the object boundaries 
remains a major challenge for accurate 3D object segmentations. Addi
tionally, to conveniently evaluate the proposed semiautomated method, 
user interventions are simulated by loosely providing a bounding box 
around the interested object. 

4.2. Evaluation 

For quantitative evaluation of the proposed method’s performance 
for 3D object segmentation in point clouds, we used precision, recall, 
and F1-score (Najafi et al., 2014), which are calculated by 

precision =
True Positives

True Positives + False Negatives
(14)  

recall =
True Positives

True Positives + False Positives
(15)  

F1-score =
2⋅precision⋅recall
precision + recall

(16) 

where True Positives represent the correctly classified foreground 
points in the segmentation results. False Positives and False Negatives 
represent the points incorrectly classified as foreground and background 
points, respectively. 

4.3. Experimental implementation 

In our experimental setting, the supervoxel resolution R used in over- 
segmenting the point cloud is set at 0.125 m. During the procedure of 
boundary extraction, we set the resolution of the center point at 0.75 m 
and the search radius around the center point at 1.2 m. In the BA-MRF 
model, the values of weights α and β are set to (50, 200) in VMX-450 
dataset, and (50, 100) in Semantic3D dataset. In addition, the scale 
factors γa and γb are set to 0.001 and 1. In addition, the number of 
neighbors of supervoxels is set to 8. Additionally, in the alternating 
optimization stage of the BA-GMNN for object segmentation, we train 
the GNN with 2 iterations and each iteration contains 200 epochs. 

4.4. Results and analysis 

To assess the performance of the proposed BA-GMNN in 3D object 
segmentation, both qualitative and quantitative evaluations were per
formed on all the datasets. As shown in Figs. 3 and 4, objects in different 
scenarios are accurately segmented, which demonstrate that the pro
posed BA-GMNN can accurately segment 3D objects from point-cloud 
scenes in VMX-450 and Semantic3D datasets. Additionally, the object 
boundaries were well preserved in the segmentation results, which ex
hibits the effectiveness of the boundary constraints modeled in the 
proposed BA-GMNN. Table 1 shows the overall quantitative results of 
our proposed method on two datasets. Moreover, the quantitative seg
mentation results of different objects are recorded in Table 2. As shown 
in Table 1, the proposed BA-GMNN achieves precision, recall, and F1- 
score of (0.985, 0.939, 0.959) and (0.936, 0.953, 0.940), on the two 
datasets, respectively. The quantitative results demonstrate the feasi
bility of our proposed method on 3D object segmentation of point 
clouds. In addition, the proposed BA-GMNN shows superior perfor
mance on the VMX-450 dataset compared to Semantic3D dataset. This is 
because the point density of the point clouds collected by the TLS system 
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changes seriously, which affects the accuracy of boundary extraction 
and the consistency of feature representation. 

In order to exhibit the superior performance on the 3D object seg
mentation of point clouds, we compared the proposed BA-GMNN with 
three methods: (1) the GNN-based method (GNN), which treats the 
object segmentation as a semi-supervised problem and exploits graph 
neural network as the classification model. (2) the GMNN-based method 
(GMNN) (Qu et al., 2019), which also treats the object segmentation as a 
semi-supervised problem and combines the graph neural network and 
MRF model as its the classification model. (3) the Graph Cut-based 
method (GC) (Luo et al., 2016). From the comparative results exhibi
ted in Figs. 3 and 4, we can see that other than the proposed BA-GMNN, 
other methods cannot effectively preserve the object boundaries during 
the segmentation. The GMNN-based method has a higher precision than 
the GNN-based method. This is because the feature representation learnt 
in GMNN is beneficial to the segmentation task. The GMNN-based 
method has a lower recall. The reason is that lacking of adequate 
training samples causes misclassification where true positives are 
wrongly classified as false negatives. By introducing boundary con
straints as the prior knowledge, the proposed BA-GMNN method can 
introduce more true positives into the procedure of model training. In 
addition, as shown in Fig. 3(d), the BA-GMNN method segment all the 
leaves of iron trees, even in cases where the iron trees are not in the 
bounding box provided by the annotator. This is because the BA-GMNN 

method treats segmentation process as a two-phase classification prob
lem which encourage similar supervoxels in feature space to be assigned 
with the same category label. 

Fig. 5 gives two failure cases of our proposed method on semi
automated segmentation of 3D objects. As the first case shown in Fig. 5 
(a) and (b), there are many local components with similar feature 
description in the background and foreground objects, i.e. the pole and 
the tree trunk, and the flag on the light pole and tree leaves. Our pro
posed BA-GMNN may obtain an inaccurate segmentation in such sce
nario. This is because the BA-GMNN method treats the object 
segmentation as a semi-supervised classification problem. Too many 
similar samples in different categories may influence the accuracy of the 
segmentation. As the second case shown in Fig. 5 (c) and (d), it is 
difficult to extract the boundary points in the bush segmentation. This is 
because too many clutter points lead to the unclear boundaries which 
cannot help our proposed method to separate the foreground from the 
background. Therefore, as shown in Table 2, the segmentation quanti
zation result of bushes is not as good as other objects. 

Our proposed method was evaluated on a workstation which is 
equipped with eight Intel Xeon E5-2620 processors, a memory of 125 GB 
and a Tesla P100 GPU, and is running at Ubuntu 16.04. We recorded the 
execution time of each stage in our proposed method implemented on a 
single thread. Specifically, the calculation time of supervoxels segmen
tation and feature extraction for VMX450 and Semantic3D data sets is 

Fig. 3. Comparative segmentation results of different scenarios on the VMX-450 dataset.  
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0.27 h and 0.14 h, respectively. The boundary extraction for two data
sets takes 0.039 h and 0.037 h, respectively. The BA-GMNN optimization 
for two datasets takes 0.91 h and 0.48 h, respectively. 

Fig. 4. Comparative segmentation results of different scenarios on the Semantic3D dataset.  

Table 1 
Comparison results among our method and other semiautomated segmentation 
methods tested on the VXM-450 and Semantic3D datasets.   

VXM-450 Semantic3D  

Precision Recall F1- 
score 

Precision Recall F1- 
score 

GNN  0.747  0.853  0.786  0.851  0.930  0.883 
GMNN  0.835  0.524  0.607  0.963  0.609  0.725 
GC  0.996  0.895  0.930  0.894  0.959  0.918 
BA-GMNN 

(ours)  
0.985  0.939  0.959  0.936  0.953  0.940  

Table 2 
Experimental results of different objects by our method on the VXM-450 and 
Semantic3D datasets.   

VXM-450 Semantic3D  

Precision Recall F1- 
score 

Precision Recall F1- 
score 

RoadBlock  0.971  0.934  0.953  0.981  0.919  0.948 
TrafficSign  0.943  0.999  0.969  0.968  0.999  0.984 
Billboard  0.995  0.913  0.948  0.968  0.981  0.974 
Tree  0.959  0.994  0.976  0.998  0.997  0.998 
LightPole  0.960  0.961  0.958  0.987  0.994  0.990 
Bushes  0.973  0.712  0.784  0.789  0.998  0.880 
Others  0.999  0.979  0.989  0.886  0.958  0.915  
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5. Discussion 

To examine the impact of the boundary term β, on the performance 
of 3D object segmentation, the evaluations for the BA-GMNN on 
VMX450 and Semantic3D datasets are performed on the following 
configurations: 0, 100, 200, 300, 400, and 500. As shown in Fig. 6, as the 
weight of boundary term increases from 0 to 200, the value of F1-score 
increases gradually. This is because the boundary constraints imposed 
on the object segmentation are beneficial to improve the accuracy of 
segmentation. The peak value of F1-score is reached at 200 and remains 
stable between 200 and 400. Once the weight of the boundary term is 
larger than 400, the value of F1-score gradually decreases. This is 
because too larger weight of the boundary term may influence the 
function of the smooth term and the data term in the energy function of 
BA-GMNN. Similarly, as shown in Fig. 7, when the weight of boundary 
term ranges from 0 to 100, the performance of segmentation increases 
rapidly and reaches the peak at 100. When the weight of boundary term 
increases from 100 to 400, the value of F1-score almost remains stable. 
Once the weight of the boundary term is larger than 400, the perfor
mance of segmentation decreases rapidly. Therefore, for segmenting 3D 
objects in the VMX450 and Semantic3D datasets, we set the boundary 
energy weights in BA-GMNN to 200 and 100, respectively. 

6. Conclusions 

Our paper proposes a new method which integrates GNN and BA- 
MRF for effective semiautomated object segmentation from 3D point 
clouds. The proposed method can potentially reduce the manual anno
tation task of point clouds for 3D scene understanding. In order to 
consider neighboring contexts and boundary constraints, we propose to 
design a boundary term into a MRF model. Moreover, to construct a 
useful feature representation for predicting category labels, although 
there is no adequate labeled training samples, a GNN is introduced and 
trained by a pseudolikelihood variational EM algorithm. Extensive 
evaluations on two datasets collected by TLS and MLS systems demon
strates that the proposed method achieves the F1-score at 0.959 and 
0.940, respectively. Related studies also show that the proposed method 
outperforms other methods in boundary preservation as observed in the 
segmentation results. In future research, it is very promising to obtain a 
satisfactory segmentation in the scenario where object boundaries 
cannot be accurately extracted. In addition, providing annotators with a 
more convenient approach to complete the interaction in the segmen
tation procedure may be another possible research direction. 
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Fig. 5. Examples of failure cases of our proposed method: (a) and (c) are benchmark; (b) and (d) are segmentation results of BA-GMNN.  

Fig. 6. Influence of the weight of boundary term on the performance of the 3D 
object segmentation in VMX-450 Dataset. 

Fig. 7. Influence of the weight of boundary term on the performance of the 3D 
object segmentation in Semantic3D Dataset. 
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