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ABSTRACT 

 

The integration of photogrammetry and deep learning 

methods can be powerful for Earth observation applications. 

Photogrammetry techniques allow the achievement of 

detailed geospatial products with cm-level positional 

accuracy. Deep learning enables automatic image 

classification, segmentation, and object detection. For 

instance, when dealing with a large data set, 

photogrammetric processing steps, such as image 

orientation and dense point cloud generation, results in high 

computational costs. In contrast, deep learning methods are 

fast in the inference step. Here, we explore the 

complementarity of deep learning and photogrammetry, 

aiming to generate accurate and fast geospatial information. 

The main aim is to discuss the possibilities of using deep 

learning in the photogrammetric process. We conduct 

experiments to present the potential of the Mask R-CNN 

method trained on the COCO dataset to generate masks, 

essential to remove image observations from moving objects 

during the orientation (alignment) step. 

 

Index Terms— remote sensing, structure-from-motion, 

computer vision, machine learning 

 

1. INTRODUCTION 

 

Images from low-cost RGB cameras attached to unmanned 

aerial vehicles (UAV) or mobile mapping systems have 

been widely used. Photogrammetric techniques can provide 

high-detailed and accurate geospatial data [1], even using 

image datasets from these image sensors.  

The photogrammetric process can be summarized in 

three steps: (a) sensor (inner) and platform (exterior) 

orientation (alignment); (b) dense cloud generation; and (c) 

orthoimage generation. This process is currently based on 

the computer vision techniques structure from motion (SfM) 

[2] and multi-view stereo (MVS) [3], which can be 

computationally expensive when dealing with a large 

dataset.  

In another perspective, deep learning has been achieved 

outstanding results in several remote sensing applications 

[4][5]. When proper data is available, deep learning 

generally outperforms, in terms of accuracy, traditional 

remote sensing, and machine learning techniques in image 

classification tasks. Methods based on deep learning are 

expensive to train, requiring powerful graphics processing 

units (GPU); however, they are fast in the inference process 

after training the model [6]. 

Deep learning methods have been applied directly in 

orthoimages or point clouds to generate geospatial 

information. In summary, first, the orthoimages and point 

cloud are generated in the photogrammetric process, and 

after the objects are mapped from them based on deep 

learning techniques. Therefore, there is no integration 

between photogrammetry and deep learning.    

Here, we explore the complementarity of deep learning 

and photogrammetry, aiming to generate accurate and fast 

geospatial information. The main purpose of this work is to 

discuss the possibilities of integrating deep learning into the 

photogrammetric process. In the experimental section, we 

especially focus on identifying moving objects in the mobile 

mapping images using a pre-trained deep learning method, 

aiming to avoid unstable observations in the 

photogrammetric orientation (alignment) procedure. The 

removal of these observations can provide a more robust 

solution for the orientation procedure, generating, as a 

consequence, more reliable point clouds and orthoimages. 

Even not considered in the experiments, other integration 

possibilities are discussed.   

 

2. BACKGROUND 

 

This section presents the photogrammetric processing steps 

(Section 2.1) and the deep learning methods for object 

detection and segmentation (Section 2.2).  
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2.1. Photogrammetric process 

 

The first step in the photogrammetric process is the sensor 

(inner) and platform (exterior) orientation, also known as 

alignment. This process is currently based on the SfM [2] 

method, in which the sensor interior and exterior orientation 

parameters are estimated simultaneously. The success of this 

estimation is directly related to the quality of image 

observations obtained automatically in the image matching 

procedure. In urban scenarios, moving objects can be 

tracked in the images and outputted as image observations 

from the image matching procedure, including errors in the 

alignment process and degrading the next photogrammetric 

processes, such as dense cloud generation. To cope with this 

problem, here we propose the integration of deep learning-

based methods (Section 2.2) in the photogrammetric process 

to identify and mask moving objects from the images, 

avoiding the detection of these objects by image matching 

operators.  

We believe that the integration of deep learning in the 

photogrammetric process can provide a more reliable 

alignment, which is underlying for the second 

photogrammetric process step, which is the generation of 

the dense cloud (digital surface model – DSM). The DSM 

generation is based on the MVS method [3]. And as a final 

step, the orthoimages are generated.  

 

2.2. Deep learning-based methods 

 

Deep learning methods enable automatic image 

classification, segmentation, and object detection, which can 

be applied to optimize the photogrammetric process. In our 

work, we focus on the use of object detection and 

segmentation. 

Object detection methods generate bounding boxes on 

objects of interest. Applications in remote sensing with 

these methods have been increasing [7]. Several novel 

benchmarks and methods were proposed recently. In remote 

sensing applications, Faster R-CNN [8] and RetinaNet [9], 

and are the most used methods. Recently, new methods, 

such as ATSS [10], had been developed, providing accurate 

results for pole detection in aerial imagery [11] and apple 

detection in terrestrial images [12]. 

Segmentation methods aim to establish a class for each 

pixel on the image. Regarding semantic segmentation, 

SegNet [13], U-Net [14], Deeplab [15] and others have been 

mostly explored in remote sensing [16][17]. In our work, an 

instance segmentation method (Mask R-CNN) to define 

each object's bounding box and classify the pixels inside the 

bounding box was assessed. The Mask R-CNN [18] is a 

well-known instance segmentation method, which was 

adopted in the current work as a mask generator for 

undesirable moving objects in the image.  

 

 

 

3. METHODOLOGY 

 

3.1. Dataset 

 

The dataset is composed of 287 frames with a resolution of 

1280 × 720 pixels, acquired with a GoPro HERO6 Black 

RGB camera. The frames were generated based on a video 

considering one fps (frame per second) in a street of the 

municipality of Campo Grande, Mato Grosso do Sul, Brazil. 

This dataset was also used in our previous work [19], 

aiming to detect manholes and storm drain. 

 

3.2. Mask generation  

 

We used a pre-trained Mask R-CNN [18] through the 

MMDetection toolbox [20] with the COCO dataset. Mask 

R-CNN generates, for each detected object, the mask with 

the edges of the object and the corresponding bounding box. 

Nevertheless,  to generate the mask files used in the 

photogrammetric process, the following categories were 

considered: person, bicycle, car, motorcycle, bus, and truck. 

Those categories were selected since they are, in general, 

moving objects in the frames. In the results section, we 

present a qualitative analysis and discuss the potential and 

limitations of using this technique as a mask generator. 

 

4. RESULTS 

 

Figure 1 presents the results using the Mask R-CNN 

method, in which bounding box and segmentation in cars, 

motorcycles, and pedestrians are generated. 

In general, the achieved results are accurate, generating 

bounding boxes and segmentation masks for the objects of 

interest. However, in some situations, objects that are not 

from the classes of interest are detected, as depicted with a 

red circle in Figure 1. Finally, mask files (see Figure 2) are 

generated and used in photogrammetric software as input. 

This can be used in commercial or open-source software, 

such as Agisoft Metashape, Pix4D, and MicMac. With the 

adopted procedure, it is possible to remove moving objects 

that can interfere in the alignment procedure.    
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Figure 1: Examples of bounding box and masks generated 

using Mask R-CNN model pre-trained on Coco dataset. 

 

Based on the experiments, we verified that even 

considering pre-trained models, satisfactory results are 

achieved. Even not explored, the same strategy of using 

masks (but now for the objects of interest) can be used when 

generating the point cloud, which is a subsequent step in the 

photogrammetric process. Consequently, only point clouds 

from the objects of interest would be generated, reducing the 

storage requirements and the processing cost. Also, there 

would be no need to apply deep learning methods again, as 

only points of the objects of interest would belong to the 

point cloud.  

 

 
Figure 2: Bounding box masks used in the photogrammetric 

processing. 

 

5. CONCLUSION 

 

This paper presented potential applications of deep learning 

to improve and optimize photogrammetric processing. Here, 

we present a solution for image orientation in close-ranging 

photogrammetry considering a mobile mapping application 

in urban areas, which is rich in moving objects. In the 

proposed approach, a deep learning model - trained in a 

generic dataset, was used to generate masks, which can 

minimize the detection of homologous points by image 

matching methods in moving objects.    

Based on the experiments, we verified that even 

considering pre-trained models, satisfactory results are 

achieved. The adopted strategy can benificiate several Earth 

observation applications in urban environments, including 

tree species mapping and asphalt monitoring.  
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