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A B S T R A C T   

This paper presents a novel approach combining the Simple Linear Iterative Clustering (SLIC) superpixel algo-
rithm with a Convolutional Neural Network (CNN) over high-resolution imagery to detect trees in a typical urban 
environment of the Brazilian Cerrado biome. Our analysis approach for better results uses the deep learning 
classifier ResNet-50, with a variation in the batch size and five traditional shallow learning methods. The results 
were processed and avaliated using mainly accuracy as a metric, but we show that the accuracy poorly represent 
the overlap between the manual annotation and the resulting map, so we bring the IoU metric results to better 
show the Network learning classification maps results. The combined SLIC algorithm and the best CNN resulted 
in an accuracy of 93.20%, IoU of 0.700 and a variation of 1% for difference in the area of tree canopies if 
compared to our labels, while the best shallow presented an accuracy of 91.70%, IoU of 0.200 and a variation in 
area of 12.52%. Demonstrating that the proposed CNN method is suitable for segmenting trees from high- 
resolution images acquired over urban environments. The segmentation with SLIC and CNN can provide very 
useful results for urban management using low cost RGB images. Such outcomes are of great interest for local 
managers since reliable maps showing the spatial distribution of trees in urban areas are often required for many 
applications.   

1. Introduction 

Forests harbor a significant part of the planet’s biodiversity, promote 
the water cycle, recycles carbon from the atmosphere, among many 
other beneficial environmental services (Kwong and Fung, 2020). The 
efforts in mitigating global forest cover and biodiversity loss often are 
focused on preserving native natural habitats, but that is often not the 
case with urban forests or groves, despite the essential services that 
urban vegetation and biodiversity perform to the city such as, mitigating 
heat islands, Mitigating storm-water runoff and flooding, promoting the 
ecological balance, improving the resident’s quality of life, barrier for 
pollutants, and many others (Baró et al., 2014; Shojanoori and Shafri, 
2016). Managers require reliable, accurate, and up-to-date information 
to maintain a sustainable environment, like vegetation health and 

coverage area. These characteristics contribute to understand the urban 
forest dynamics better and implement efficient decision-making strate-
gies related to its management and sustainability (Fassnacht et al., 
2016). 

As field measurements for tree counting are time-consuming and 
may be expensive, remote sensing systems acquiring high spatial reso-
lution images and coupled with machine learning techniques may 
overcome this limitation (Shafri et al., 2011). However, this task be-
comes more challenging for urban areas because of its complexity, 
which comes in the form of the intrinsic features of the urban landscape 
that present objects with a wide variety in shapes, colors, and textures. 
Also, the structure of the area and small tree crown can result in mixed 
pixels (Shojanoori and Shafri, 2016). Shojanoori and Shafri (2016) 
recommended that further studies targeting urban forests shall focus on 
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three main issues, being the first one on the development of vegetation 
indices. Second, to promote high-accuracy algorithms to distinguish 
urban tree species automatically via high-resolution multi-spectral im-
aging. Finally, to develop automatic tree counting methods. 

For this task, we will combine the use of machine learning and 
remote sensing. Machine learning is the science (and art) of program-
ming computers so they can learn from data (Geron and Géron, 2017). 
Inside the machine learning field, we have the Shallow learning algo-
rithms (SL) and the current state-of-the-art method for image semantic 
segmentation, called deep learning (DL). With a simplistic view, the 
main difference between them is the number of learning layers; in the DL 
algorithms, we have many more learning layers than in the SL algo-
rithms. Networks with more than tree layers are already considered to 
be deep, but some Deep Networks such as ResNet101 (He et al., 2013), 
have hundreds of layers. With the DL algorithms as described by 
Goodfellow et al. (2016), is possible to the machine to learn specific and 
adaptable spatial features directly from the images, creating a system 
that is capable of mapping a raw input into the desired output with little 
human interference, in the case of Unsupervised learning the machine 
tries to emulated a difference in the data and brings the results in the 
form of a map. Also, inside the machine learning field, we have the 
superpixel algorithms, which group pixels into perceptually meaningful 
atomic regions (Achanta et al., 2012), making it easier for the machine 
to process the data. CNN’s are largely applied for image recognition and 
segmentation, and previous studies also considered the combination of 
superpixels and CNN for different image datasets and obtained notable 
results (dos Santos Ferreira et al., 2017; dos Santos et al., 2019; Zhao 
et al., 2017). Automatic learning algorithms are becoming an indis-
pensable tool for remote sensing applications like object detection and 
segmentation (Wan et al., 2018; Shelhamer et al., 2017; Noh et al., 2015; 
Sothe et al., 2020; Ma et al., 2019; Piazza et al., 2016). In the forest 
context, we also have many examples of applications such as Feng et al. 
(Feng et al., 2015) that proposed a method based on the Random Forest 
algorithm and texture analysis to differentiate land covers of urban 
vegetated areas. Onishi and Ise (2018) proposed a deep learning seg-
mentation method making a model for object identification with NVI-
DIA DIGITs. Heinrich (Heinrich, 2016) proposed an object identification 
method using a deep learning framework and GoogLeNet (Szegedy et al., 
2015) as a transfer learning model. Furthermore, there are in-numerous 
methods to obtain valuable land cover information, including tree spe-
cies detection (dos Santos et al., 2019), forest inventory (Puliti et al., 
2015), forest-wildfires tracking (Tang and Shao, 2015), citrus tree 
counting (Osco et al., 2019). 

All above mentioned tasks are solved with machine learning tech-
niques. Machine learning is the science (and art) of programming 
computers so they can learn from data (Geron and Géron, 2017). 
Adhikari et al. (2021) proposed a Simple Linear Iterative Clustering 
(SLIC) segmentation and a classification with a Random Forest (RF) 
algorithm for segmenting tree canopies in an orchard area. The authors 
used images with a spatial resolution of 0.13m and achieved an overall 
accuracy of 93%. However, the proposed approach was not yet evalu-
ated over complex environments in which tree canopies does not follow 
regular patterns. Additionally, the comparison of different ML algo-
rithms has not been evaluated yet. Therefore, the combined use of SLIC 
and different ML are still necessary, especially over complex urban 
environments. 

We combine high resolution imagery and machine learning methods 
to segment tree canopies in a typical urban environment accurately. The 
urban tree segmentation task refers to the automated classification of 
each pixel of a given image into a tree or background, and that is a 
challenging problem because urban forests are a particular case of 
vegetation with specific characteristics as an object they are diverse in 
shape, color, texture and dense or poor in numbers, blended with other 
metropolitan elements and grouped or remotely localized (Jensen et al., 
2009). Therefore, automated urban forest mapping is a challenging 
computational task. With this objective in target, we want to propose a 

model for accurate and automatic segment groups and singular trees 
combining remote sensing and ML. This task has been an extended date 
objective of many researchers and land-use managers (Fassnacht et al., 
2016). The combination of ML techniques with UAV-based imagery 
provides a robust and cost-efficient method for data extraction and 
analysis, assisting in environmental management strategies, climate 
change actions, and many others. Furthermore, the association of ML 
with UAV imagery makes possible a more refined (singular trees) and 
automatic tree detection with high accuracy under challenging 
environments. 

The proposed approach analyzes one Convolutional Neural Network 
(CNN) performance and compares it to a set of five shallow learning 
algorithms. The input data was extracted from an orthomosaic using a 
SLIC superpixel technique. The SLIC presents an excellent boundary 
detection capabilities as presented in Achanta et al. (2012), which is 
fundamental while working with semantic segmentation tasks. This 
study’s contribution is to present an automated and accurate method 
suitable for segmenting individual trees or groups of trees from a typical 
urban environment inside the Cerrado biome, with high-resolution RGB 
imagery obtained with consumer-grade UAV, and using open-source 
software. This way provides an accessible and accurate quantification 
of the vegetated cover inside any given area of a city, giving information 
support for future decision making, planning, and improving the envi-
ronmental services provided by the urban trees. 

2. Materials and methods 

2.1. Workflow and hardware 

The DL framework of this research, see Fig. 1, is presented in the 
format of a Convolutional Neural Network (CNN) with a supervised 
learning, we inputted the machine with our label and the raw image 
raster file, processed the data and evaluated the results. The method-
ology and results, and discussion are arranged in a logical manner. First, 
we acquire the images and pre-process the image file by creating the 
orthomosaic and rectified it. Secondly, we create manual labels of our 
target object (trees) using the orthomosaic. Thirdly, with the orthomo-
saic we created the superpixels and extracted the attributes that the 
classifiers will use to classify the image. Fourthly, we classified the 
orthomosaic with the selected algorithms. Lastly, we analyzed and dis-
cussed the results. 

All the models were trained in a hardware with the following con-
figurations: Processor – AMD Ryzen 7 (1800x); RAM memory – 2 × 16 
GB DDR4 de 2400mhz; Hard-Drive: 240 GB SSD; Graphical Card – 
NVIDIA TITAN Xp, with specs of: Frame Buffer G5X; Memory Speed 11.4 
Gbps; Boost Clock 1582 MHz, architecture NVIDIA PascalTM. 

2.2. Data acquisition 

The study was carried out in an area located at the Federal University 
of Mato Grosso do Sul (UFMS), in the municipality of Campo Grande, 
Mato Grosso do Sul state, Brazil (20∘26′37′′S, 54∘38′52′′W) presented in 
Fig. 2(a). The study area has non-uniform crown densities, with isolated 
trees and some groves. Aside from just trees, the UAV flight also regis-
tered streets, cars, buildings, and other objects. These characteristics 
were considered when choosing this sample for the demonstration of the 
proposed method, of detecting trees in urban environments. 

The flight campaign was conducted using Pix4DCapture software, 
and more details can be observed in Table 1. The UAV system kit consists 
of: a sensor for data acquisition, autopilot for controlling the platform in 
a determined track, GPS for orientation and navigation, Inertial Mea-
surement Unit (IMU) for attitude measurement, and a data link signal 
transfer, ground station, and control points geolocalization. More in-
formation about the sensor and flight are presented in Table 1. 

The orthorectification process intends to rectify each image and 
group them into a single one with a constant scale. This is often a 
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Fig. 1. Overview of the workflow and learning process. In this figure sections presents in the text are refereed as sec.  

Fig. 2. (a) Continental location of the area, (b) regional location of the area, (c) study site where the flight mission was conducted, inside UFMS Campus with the 
UAV, on 26 May 2018. 
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difficult task because variations during the image acquisition phase can 
result in multiple errors in the orthorectification process. Therefore, it is 
necessary to perform a post-processing quality evaluation and correc-
tions to ensure that the reconstructed image presents an adequate rep-
resentation of the real environment. For a better environment 
reconstruction, it is recommended to cover an area beyond the physical 
boundary of the interest area in question, making the borders and center 
areas to have higher image overlap, resulting in a better reconstruction 
per flight. 

Most of our work was performed using the software Pynovisão (dos 
Santos Ferreira et al., 2017), using the link http://git.inovisao.ucdb.br/ 
inovisao/pynovisao, it is possible to access the documentation. 

We used the Pix4d (Pix4D, 2019) software for the orthomosaic cre-
ation and correction. The orthomosaic was generated using 423 images, 
considering longitudinal and lateral overlaps of 90% and 90%, respec-
tively. The orthomosaic in Fig. 2(c) has a GeoTIFF format image with 
(11283 × 8671 × 3) pixels, that is a field representation of 3.2611 ha of 
the study site, each pixel has 3.33 cm2. For optimal image processing a 
good geolocalization is necessary, it serves as a guide to the mapping 
software in the creation of the digital scenario. With this objective a total 
of six ground control points and sixteen checkpoints were distributed in 
the area. The Root Mean Square Error (RMSE) in the checkpoints were 
7.1 cm in X, 4.6 cm in Y, and 9.5 cm in Z coordinates. The image mean 
projection error for the checkpoints were 1.38 pixels. 

2.3. Manual object notation 

We used Labelme software (https://github.com/wkentaro/labelme) 
to manually annotate trees in images, generating an archive that can be 
described as a ground truth of our desired area or a “mask”. Fig. 3 (c) 
shows the generated mask. 

2.4. SLIC superpixel 

The machine does not see the images as we humans see, where we 
see colors, shapes, textures, and many other kinds of information. 
Instead, the machine “sees” significant conjunction of abstract binary 
data. To better differentiate and extract information from a given 
dataset, it is helpful for the machine that we somehow organize and 
make it simple. We used a superpixel algorithm for this task. The 
function of the superpixel is to group the pixels into perceptually 
meaningful atomic regions. There are many kinds of superpixels avail-
able to do that. Still, we choose the SLIC Superpixel, proposed by 
Achanta et al. (2012) since it can detect image boundaries, is simple to 
use, increase the speed, and improve the final quality of the result. The 
superpixel provides the machine with simplified information to do the 
classification tasks compared to the raw image. It organizes the data, 
separating (clustering) the data that is then interpreted as visual 

characteristics such as color, shape, and texture, reducing the compu-
tational complexity. 

The feature extraction performed in this work takes into account 405 
attributes: 36 for color, 214 for texture, and 155 for shape and gradient 
as described in Table 2. The attributes were based on previous ap-
proaches conducted by (Costa et al., 2019; dos Santos Ferreira et al., 
2017) and consider now the improvement with the addition of the 
K-curvature extraction algorithm. 

Superpixels-based methods aim to group pixels of a given image with 
similar or redundant characteristics such as color, texture, or shape into 
regions. The resulting dataset is less complex than the original pixel grid 
(S), making tasks such as object detection and object detection image 
segmentation more simple. There are many approaches to generate 
superpixels, varying in advantages and drawbacks, but the approach 
selected for our task was the SLIC method proposed by Achanta et al. 
(2012). 

SLIC was found to be applicable to UAV orthoimages and feasible to 
accurately delineate object outlines taking into account the high- 
resolution provided by the UAV orthoimages (Crommelinck et al., 
2017).While using SLIC, by default, the only parameter of the algorithm 
that we need to adjust is K, that is the desired number of approximately 
equally-sized superpixels, but we can also control the compactness (m). 
The greater the value of m, the more spatial proximity is emphasized and 
the more compact the cluster. This value can be in the range [1 to 20], 
and the default value for m in this paper is 10. The approximated size of 
a superpixel represents its complexity; the complexity O of the SLIC 
superpixel is dictated by the number of pixels in the image (N), resulting 
in the complexity O(N). For an image with N pixels, the approximate size 
of each superpixel is, therefore, N/K pixels. For roughly equally sized 
superpixels, there would be a superpixel center at every grid interval S =

̅̅̅̅̅̅̅̅̅
N/K

√
, that is the maximum spatial distance expected within a given 

cluster. 
Following along in our research, we adopted three different base K 

numbers (K): 2000, 3000, and 4000. Although the K number generated 
for the tree canopies class was smaller than for the background class, 
since the area in the image representing the background was bigger, 
because of this disparity, we applied an under-sampling technique to 
balance the dataset in respect to the K distribution. Under-sampling is a 
technique used in data science that randomly reduces the K number of 
samples from the largest data set until it matches the K number of the 
smallest data set samples. The K number for each class before and after 
the K number under-sampling is presented in Table 3. The dataset used 
in this study can be accessed by the link: https://github.com/dieg 
oandresantana/tree-canopies-experiment/. 

2.5. Machine learning and classification 

For the classification of the images, we used one Deep learning 
method and a set of five traditional Shallow Learning methods, as pre-
sented in Table 4. The shallow learners performed a supervised type of 
classification that depend on handcrafted features and instructions to 
target the problem. A more detailed description of the adopted classi-
fiers is available in https://www.cs.waikato.ac.nz/ml/weka/ and all the 
parameters of the algorithms are set to their respective library default 
values. The classifiers used the numerical data and parameters extracted 
in the superpixel phase of our work and perform the classification of the 
orthomosaic. In this case, the classifier’s objective is to learn what 
should be considered a tree canopies and what should be considered 
background, making it a binary classification. 

2.5.1. ResNet50 
The ResNet is a classic deep neural network winner of the ImageNet 

Challenge in 2015, and it was proposed by (He et al., 2016). The basic 
building block of a residual network is the Rectified Linear Unit (ReLU) 
activation function. The ReLU is responsible for transforming the 

Table 1 
Weather condition and image capturing specifications.  

Date (month/day/year) 05/26/2018 
Local time (hh:mm) 10:00 
Temperature (∘C) 24.18 
Dew point (%) 59.42 
Wind direction N 
Wind Speed max (km/h) 14.04 
Weather condition Fair 
Aircraft Phantom 4 Advanced 
Sensor 1′′ CMOS 
Field of view 84∘ 

Nominal focal length 8.8 mm 
Single image dimension (px) 5472 × 3684 × 3 (20Mb) 
Number of images 423 
Ortomosaic image size (px) 12779 × 17518 × 4 (426Mb) 
Ground sampling distance (cm/px) 1.82 
Mean flight height (m) 30  
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summed weighted input from the node into the node’s activation or 
output for that input in a neural network. It has become the default 
activation function for many neural networks because a model that uses 
it is often easier to train and may achieve better performance. 

For our processing, stochastic gradient descent optimization was 

used, considering the learning rate of 0.01, a momentum of 0.9, and we 
also performed a variation in the batch size, adopting the configuration 
of 8, 16, and 32, respectively. It is important to mention that the vari-
ation in the batch number configures a new CNN. The number of epochs 
was 50, and all the weights were pre-trained, considering the Image-Net 

(a) (b)

(c) (d)

Fig. 3. (a) Mask generated with LabelMe Software using the orthomosaic. (b) Center location of each acquired image for the creation of the orthomosaic with lateral 
and longitudinal overlaps of 90% and 90%. (c) Orthomosaic of the study area. (d) Presentation of the overlap between the orthomosaic and the manual annotation. 
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weights (Deng et al., 2009). The output images consisted of resized 
superpixel segments of 256 × 256 × 3 pixels. 

2.5.2. Performance metrics and validation 
We calculated the confusion matrix for the evaluation of the classi-

fication, and from it, we derived the accuracy, precision, recall, and F1- 
score for the shallow and the Deep learning methods. 

The accuracy is given by: 

Accuracy =
TP + TN

TP + TN + FP + FN
(1)  

where TP, TN, FP, FN stand for the number of true positives, true neg-
atives, false positives and false negatives, respectively. In our analysis, 
positives and negatives refer to the pixels assigned by the underlying 
classifier to the Tree and Background classes, respectively. Such posi-
tives and negatives are true or false, depending on whether or not they 
agree with the ground truth. 

The F1-score is given by: 

F1 − score = 2 ×
P × R
P + R

(2)  

where P and R stand for Precision and Recall, respectively, and are given 
by the ratios: 

P =
TP

TP + FP
(3)  

R =
TP

TP + FN
(4) 

We also performed ten-fold cross-validation with the dataset using 
the accuracy metric as an evaluation. Cross-validation is a statistical 
method used to randomly split the dataset into training and test sets, 
ensuring that all folds have the same ratio of each superpixel class (Tree 
or background). The validation phase consists of picking one of the 
folders for the test. At the same time, the remaining folders were used to 
train the classifiers. This process is repeated ten times using each fold 
one time for the test set. As a result, the accuracy rate will be given by 
the average of the ten rounds of testing and validation. And finally, we 
processed an ANOVA test with the ten-fold cross-validation results for 
the accuracy metric. 

The Union Intersect (IoU), also known as the Jaccard Index, is 
frequently used as a precision metric for semantic segmentation tasks 
(Wu et al., 2019; Berman et al., 2018). In the Reference and the Pre-
diction mask, IoU is indicated by a ratio of the number of pixels in both 
masks to the total number of pixels, in the following equation we will 
present the formulation for the IoU: 

IoU =
|Reference ∩ Prediction|
|Reference ∪ Prediction|

(5)  

3. Results and discussion 

This section presents the results of the experimental evaluation of the 
selected semantic segmentation approaches. In Section 3.1 we present 
an evaluation in the terms of the metrics presented in Section 2.5.2, and 
we performed an analysis of the classifiers and the efficiency of each 
method. Then in Section 3.2 we performed a visual analysis of the results 
and presented the maps generated by the best classifiers. 

3.1. Performance analysis 

Tables 5 and 6 presented the results of the selected methods. The 
cross-validation results are highlighted in Table 7. Except for the NB, all 
the classifiers performed well in the task, achieving both accuracy and F- 
1 score above 85%. 

Table 7 presents the average values for the accuracy achieved with 
the 10-fold, cross-validation with the adopted SLIC Superpixel config-
urations and methods. As we can see, the Superpixel and batch Numbers 
represent a decisive factor in the final result. For example, the best ac-
curacy result for the 2000 K and 3000 K configuration are for the 
Random forest algorithm and for the 4000 K configuration the CNN with 

Table 2 
Description of the extraction methods and their respective quantity of extracted 
attributes.  

Extractor Method Quantity Reference 

Color 
RGB 12 

Swain and Ballard (1991) HSV 12 
CIELAB 12  

Texture 

GLCM 36 Soh and Tsatsoulis (1999) 

GF 160 Feichtinger and Zimmermann 
(1998) 

LBP 18 Van Klaveren et al. (1999)  

Shape and 
Gradient 

Hu Moments 7 Hu (1962) 
Central 
moments 10  

HOG 128 Triggs et al. (2000) 
K-curvature 10 Abu Bakar et al. (2015)  

Table 3 
Slic superpixel number corresponding to each Class for each total k number.  

Slic superpixel number (k) 2000 3000 4000 

Tree canopies 360 576 787 
Background 1179 1837 2538 
Tree canopies (balanced) 360 576 787 
Background (balanced) 360 576 787  

Table 4 
Shallow learning and deep learning algorithms elected for the task.  

Classifier Reference 

Random-Forest 
(RF) 

Breiman (2001) 

SVM Platt (1999), Keerthi et al. (2001), Hastie and Tibshirani 
(1998) 

J48 Salzberg (1994) 
Naive Bayes (NB) John and Langley (1995) 
AdaBoostM1 (AM1) Freund and Schapire (1996) 
ResNet50 He et al. (2016)  

Table 5 
Metrics results for the shallow learning methods the best results are presented in 
bold.  

Classifier K- 
number 

Accuracy Precision Recall F1- 
score 

Processing 
time seconds 

RF 
2000 0.9073 0.907 0.908 0.907 5.91 
3000 0.9170 0.914 0.916 0.914 10.71 
4000 0.9092 0.908 0.910 0.908 6.32  

J48 
2000 0.8668 0.863 0.864 0.863 3.75 
3000 0.8806 0.880 0.880 0.880 7.18 
4000 0.8633 0.870 0.872 0.871 3.87  

NB 
2000 0.7357 0.846 0.734 0.755 0.72 
3000 0.7372 0.847 0.737 0.756 1.14 
4000 0.7357 0.844 0.735 0.755 0.80  

SVM 
2000 0.9071 0.907 0.908 0.907 2.79 
3000 0.9131 0.909 0.911 0.909 7.33 
4000 0.9076 0.900 0.902 0.901 2.96  

AM1 
2000 0.8585 0.860 0.854 0.857 10.58 
3000 0.8631 0.867 0.860 0.862 16.87 
4000 0.8627 0.865 0.862 0.864 10.82  
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batch size 16, and this CNN result was also the best for all the methods 
analysed. We believe that this was because CNN models performs better 
the more data available; with more superpixels, the CNN had more data 
to learn, reaching better results, indicating also if that we presented the 
CNN with a higher K number it should perform better. 

Fig. 4 presents a box plot of the performance obtained by each K 
number and each method separately. The range of variance obtained 
was smaller with the AdaBoost and Naive Bayes methods, but they 
performed worse than most of the classifiers used, so we omitted them to 
show more clearly the results of the other techniques, the Box-plot 
highlights that even when a CNN is selected, the processing 

configuration is critical. The classifier results were endorsed using the 
ANOVA analysis at a confidence level of 95% using the accuracy as a 
metric. The p-value was 2− 16 meaning that we can reject the null hy-
pothesis and evidencing a statistical difference in the performance of the 
methods tested. Latter in the test we will see that the while some net-
works performed well with the accuracy metric, they are a poorly in-
dicator of the resulting maps, and a more suitable metric for analysing 
the maps is the IoU. 

Although the big image size, low resolution, and complexity of the 
image impose a problem for most image processing algorithms, the deep 
neural networks still returned highly accurate results. The error can be 
explained by the qualitative phase of manual segmentation, which may 
also include the human error in manipulating the data. It is also 
important to mention that the boundary delineation is still a challenge 
for the machine learning field (Lecun et al., 2015; He et al., 2016; 
Goodfellow et al., 2016). 

3.2. Visual analysis 

Fig. 5 presents the SLIC superpixels processing output and what is 
considered as tree canopies (red) and background (green) using 2000, 
3000, and 4000 superpixels configurations. We put the 3000 SLIC 
superpixel configuration in detaching because it resulted in a slightly 
better result for this dataset, as we will see in Section 3.2.1. 

The dataset used in this work is characterized by various canopy 
distribution and many other features such as roads, cars, buildings 
illumination conditions, and so on, giving a lot of heterogeneous 

Table 6 
Metrics results for the deep learning method with the variation in the batch size, 
the best results are presented in bold.  

ResNet50 

K 
number 

batch 
size 

accuracy precision recall f1- 
score 

Processing 
time h:m:s 

2000 
8 0.879 0.897 0.879 0.877 01:34:20 
16 0.856 0.879 0.856 0.851 01:30:00 
32 0.776 0.838 0.776 0.754 01:27:00  

3000 
8 0.885 0.898 0.884 0.883 02:22:30 
16 0.896 0.910 0.897 0.895 02:09:30 
32 0.907 0.917 0.907 0.906 02:06:40  

4000 
8 0.872 0.890 0.872 0.869 03:04:30 
16 0.932 0.934 0.932 0.932 02:51:40 
32 0.916 0.920 0.916 0.916 02:49:00  

Table 7 
Results of the average of the 10-fold cross-validation performed using accuracy as a metric for all classifiers used. CNN represents the ResNet50, the B and the number 
following the CNN stands for batch size. RF represents the random forest, NB the Naive Bayes and AM1 the AdaBoostM1.   

Classifier average accuracy 

Super pixel number J48 RF SVM NB AM1 CNN_B8 CNN_B16 CNN_B32 

2000 0.8668 0.9073 0.9071 0.7357 0.8585 0.8790 0.8560 0.7760 
3000 0.8806 0.9170 0.9131 0.7372 0.8631 0.8850 0.8960 0.9070 
4000 0.8633 0.9092 0.9076 0.7357 0.8627 0.8720 0.9320 0.9160  

Fig. 4. Box plot comparing performance of classifiers for the cross validation accuracy metric. Because of the shortage of space, we take off the J48 and Naive Bayes 
results, because they performed poorly than the others. 
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information for the machine to learn, making it a complex segmentation 
task. Although differences in illumination geometry and the orientation 
of tree canopies should oppose a hindrance for the network to handle. In 
some regions, CNN classified as tree some parts outside the orthomosaic, 
making notable that the segmentation need to improve in the sense to 
avoid this. Some factors could explain this condition in the dataset: 
highly shadow-affected areas, a highly heterogeneous environment, the 
unbalanced dataset (originally much more samples for background than 
for the tree canopies), and, small dataset to learn, making it harder for 
the Superpixel and, therefore the CNN to learn what our object of in-
terest is, remembering that our classifiers were all trained from scratch. 

3.2.1. Resulting maps 
In this section we present another phase of the analysis, that is 

creating maps with the models that we selected, the Maps are presented 
in Figs. 8–10, the performance visualization of results that we want to 
bring are presented in Fig. 2.5.2. In summary, the segmentation per-
formance was satisfactory for the CNN’s and bad for the shallow net-
works, despite the good accuracy results presented in Table 7. As we can 
see in Figures 8–10, the shallow networks returned maps that are far 
from reality, that cannot be used in real world applications. 

For a better analysis of this phase we present these data in a quan-
titative manner in Tables 8 and 9. The area of the pixels as said before we 
had a total of 3.33 hectares of area, where 2.46 are for background and 
0.79 are for tree canopies, our object of interest. We see that the best 

(a) (c)

(b)

Fig. 5. Results of the SLIC superpixel segmentation divided by the K number: (a) 2000 K; (b) 3000 K; (c) 4000 K. The lateral and bottom numbers represents the size 
of the image in pixels, the red area represent the area where the superpixel classified the image as a tree canopy, and the green area represent the area where the 
superpixel classified the image as background. 
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Result for the IoU metric where for classifier CNN K 3000 and B 16, 
followed by our best classifier in terms of accuracy CNN K 4000 B 32. But 
we see that neither of those classifiers are the closest in terms of dif-
ference in area estimated that was the classifier CNN K 3000 B 8, 
bringing only 1,01% of error when related to our interest object. This is a 
good result that can help a lot in real cases estimations for area, the big 

(a) (c)

(b)

Fig. 6. A more detailed picture of the SLIC superpixel segmentation, presenting the segmentation, the yellow lines represent the border of each SLIC superpixel and 
each picture represent a different K number: (a) 2000 K; (b) 3000 K; (c) 4000 K. 

Fig. 7. Guide to the visualization of the classification results. TN = True posi-
tives, FP = False positives, FN = False negatives and TP = True positives. 
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(a) AdaBoostM1 2000 (b) AdaBoostM1 3000 (c) AdaBoostM1 4000

(d) Random Forest 2000 (e) Random Forest 3000 (f) Random Forest 4000

(g) J48 2000 (h) J48 3000 (i)J48 4000

Fig. 8. Overlapped segmentation maps of the classifiers used in this research for AdaBoostM1, Random Forest and J48 with superpixels datasets of 2000, 3000, and 
4000. (a) AdaBoostM1 2000. (b) AdaBoostM1 3000. (c) AdaBoostM1 4000. (d) Random Forest 2000. (e) Random Forest 3000. (f) Random Forest 4000. (g) J48 2000. 
(h) J48 3000. (i) J48 4000. 
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difference for the error in area and the IoU, may be due to the charac-
teristics of the superpixel, that is less smooth than an human made 
delineation. 

The things to note here are that the best segmentation results ach-
ieved an accuracy higher than 93%, IoU of 0,700 and an error of esti-
mation of three canopies area of 1%, suggesting that the proposed 
approach can target the proposed problems with precision. 

4. Conclusion 

This paper proposes a comparison of deep learning and shallow 
learning algorithms combined with the SLIC Superpixel method to 
recognize trees in urban environments using high-resolution images 
acquired with a consumer-grade UAV platform. The results presented 
support that the Deep learning methods presented in this research are 
capable of segmenting tree canopies inside complex urban environ-
ments. As presented, the optimum configuration of the processing, such 
as choosing the classifier and the number of parameters, is fundamental 
for the optimal final result. Our results show that SLIC used in 
conjunction with CNN’s achieving high accuracy and IoU values and 
little error when estimating the area of canopies. We cannot say the 
same for SLIC and shallow learning techniques. 

In terms of the quantitative results. We reach better accuracy results 

with the configuration with more superpixels, we estimate it to be 
because the CNN classifiers need more data to process and learn, making 
the dataset with more Superpixels a more suitable dataset for the CNN 
operate. Furthermore, considering the available publications, research 
studies that applied computer vision and machine learning techniques 
had better general results with CNN classifiers, in the detriment of the 
shallow methods, thus corroborating the results presented in this work, 
but, with the observance for the optimal parameters configuration. The 
big difference in results relay in the superior capacity of learning ab-
stract data from the CNN’s, the Urban environment is a complex dataset 
to be classified, with a lot of variation in colors, shapes and texture, that 
are emulated by the SLIC, thus creating a wide network, with 405 input 
layers in this case. The abstraction and estimation of weights in the 
Network need to have more layer or in another words, be more deep, to 
be capable of correctly back-propagate and update the weights of the 
network, thus reaching a better result in terms of IoU and area estima-
tion, the data that interest us after all. 

So for an estimation of the canopy area of trees that are present in an 
given area, even when we have 30% of mistake in the IoU we can have 
an very good estimation for area with just 1% in error when using a deep 
learning approach, suggesting it is capable of capturing this feature 
using only the SLIC data. Furthermore, the number of high-resolution 
and high-spectral images can be increased to detect more delicate 

(a) NaiveBayes 2000 (b) NaiveBayes 3000 (c) NaiveBayes 4000

(d) SVM 2000 (e) SVM 3000 (f) SVM 4000

Fig. 9. Overlapped segmentation maps of the classifiers used in this research for Naive Bayes and SVM with superpixels datasets of 2000, 3000, and 4000. (a) 
NaiveBayes 2000. (b) NaiveBayes 3000. (c) NaiveBayes 4000. (d) SVM 2000. (e) SVM 3000. (f) SVM 4000. 
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(a) CNN 2000 B8 (b) CNN 2000 B16 (c) CNN 2000 B32

(d) CNN 3000 B8 (e) CNN 3000 B16 (f) CNN 3000 B32

(g) CNN 4000 B8 (h) CNN 4000 B16 (i CNN 4000 B32

Fig. 10. Overlapped segmentation maps of the classifiers used in this research for CNN (ResNet50) an three batch-sizes (8, 16, and 32) with superpixels datasets of 
2000, 3000, and 4000. (a) CNN 2000 B8. (b) CNN 2000 B16. (c) CNN 2000 B32. (d) CNN 3000 B8. (e) CNN 3000 B16. (f) CNN 3000 B32. (g) CNN 4000 B8. (h) CNN 
4000 B16. (i) CNN 4000 B32. 
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features better and improve the detection rate of any desired object, we 
also suggest a lower level of overlap, often while reconstructing the 
scene, a high number of data in the same place generate noisy mosaics, 
because trees are a dynamic object, that is, their leaves and branches are 
in constant movement due to the wind. The current methodology fails to 
identify single small trees and trees in very shadowed areas. The present 
approach does not compute the numbers of canopies inside a given area 
but the results allows the canopy area coverage calculation to be accu-
rately estimated. 

In future works we intend to use bigger and more detailed datasets to 
investigate the cerrado Biome. We can use these results to estimate 
biophysical parameters in the future. As future works, it is necessary to 
improve and refine the information extraction such as the number and 
diversity of species in a specific region and also sanity of determined 
region. For this, architectures and methods that enable the realization of 
instance segmentation, such as BlendMask, YOLACT, Mask RCNN, and 
Detectron2. 
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