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ABSTRACT

Stack interchanges are essential components of transportation
systems. Mobile laser scanning (MLS) systems have been
widely used in road infrastructure mapping, but accurate map-
ping of complicated multi-layer stack interchanges are still
challenging. This study examined the point clouds collected
by a new Unmanned Aerial Vehicle (UAV) Light Detection
and Ranging (LiDAR) system to perform the semantic seg-
mentation task of a stack interchange. An end-to-end super-
vised 3D deep learning framework was proposed to classify
the point clouds. The proposed method has proven to cap-
ture 3D features in complicated interchange scenarios with
stacked convolution and the result achieved over 93% classi-
fication accuracy. In addition, the new low-cost semi-solid-
state LiDAR sensor Livox Mid-40 featuring a incommensu-
rable rosette scanning pattern has demonstrated its potential
in high-definition urban mapping.

Index Terms— LiDAR, UAV, mobile laser scanning,
road infrastructure, deep learning, semantic segmentation

1. INTRODUCTION

Urbanization and population growth have brought demands
and pressure for urban transportation infrastructures. Multi-
layer interchanges have transformed road intersections from
2D to 3D spaces to reduce traffic flow interference to improve
traffic efficiency and driving safety [1]. Accurate 3D mapping
of road infrastructure provides spatial information for vari-
ous applications, including navigation, traffic management,
autonomous driving and urban landscaping [2]. Multi-layer
interchanges are complicated road objects with different de-
signs in various terrain environments, making them difficult
to be mapped and modelled.

LiDAR sensors are favorable in 3D urban mapping due
to the capability of capturing 3D information directly, Air-

borne laser scanning (ALS) and vehicle-mounted MLS sys-
tems are commonly used in interchange bridge mapping and
reconstruction. Interchange bridge extraction from ALS point
clouds were usually performed by topography removal [3] or
segment extraction with threshold-based algorithms [1]. MLS
systems have been widely used in 3D road inventory map-
ping, but a large portion of existing methods require road sur-
face extraction as the first step [4]. Moreover, most exist-
ing studies on stack interchange mapping only focused on the
road surfaces, while the underneath structures including piers
and beams were disregarded since little data could be col-
lected from ALS or MLS sensors. UAV is a thriving platform
in urban 3D mapping due to the flexibility of data collection.
UAV LiDAR systems can collect flyover bridge structures un-
derneath the bridges. Therefore, previous methods focusing
on road surfaces may not apply in UAV point clouds.

Deep learning methods have outperformed conventional
threshold-based methods and methods using hand-crafted
features in recent years in capturing features from the mas-
sive amounts of unordered and unstructured point clouds
[5]. Among the various methods, the point-based network
KPFCNN [6] has shown superior performance in a number
of outdoor point cloud datasets in the semantic segmen-
tation task. However, mapping large road infrastructures
like stacked interchanges requires the algorithms to capture
features at large scales. Multi-scale grouping (MSG) was
proposed in [7] to deal with uneven distribution of point
density, but it helps increase the effective receptive field
(ERF) as well. However, MSG is generally very time and
space-consuming in computation to be implemented in the
networks [8]. Stacking point convolution layers can increase
the ERF [9], and it has shown promising results in semantic
segmentation tasks in outdoor scenarios [10]. In this study,
an improved segmentation network with stacked kernel point
convolutions (KPConv) [6] is explored in a multi-layer stack
interchange scene collected by a UAV LiDAR system.
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Fig. 1. Fulong Flyover and point cloud coverage

2. DATA

The data used in this study was a part of Fulong Flyover in-
terchange located in Shenzhen, China. A satellite image of
Fulong Flyover with the LiDAR point clouds’ approximate
coverage is illustrated in Fig. 1. The point clouds span ap-
proximately 400 m of road segments and cover several fly-
over bridges. The UAV flew along the flyover bridge at about
15-20 m distance several times to collect the point clouds.
Livox High-Precision Mapping1 software was used to stitch
the scans to produce the point cloud map.

The MLS system features a Livox Mid-40 LiDAR2

mounted on an APX-15 UAV3, as shown in Fig. 2. The Livox
Mid-40 is a robotic prism-based LiDAR different from con-
ventional multi-line LiDAR commonly used in autonomous
vehicles such as Velodyne HDL-32E. The new type of low-
cost LiDAR sensor features an incommensurable scanning
pattern with peak angular density at the center of field-of-
view (FOV) [11], as illustrated in Fig. 3. Livox Mid-40 has a
circular FOV of 38.4° with an angular precision over 0.1°, and
it has a range of up to 260 m with a range precision of 2 cm.
In addition, it is capable of capturing 100,000 points/second.
Compared with conventional revolving mechanical LiDAR
sensors, the Livox LiDAR has a smaller FOV but the incom-
mensuarble scanning pattern could increase the point density
over time, filling up to 20% FOV at 0.1 second and 90% at
1 second. Therefore, the Livox LiDAR could acquire points
with high density at a fraction of the cost of high-end LiDARs
in some applications where full 360° FOV are not required.

The point cloud consists of over 65 million points with
xyz coordinates and intensity. All the points were manually
labelled into 6 classes: natural, bridge, road, car, pole and
guardrail. The road surface density at near range could be
estimated as 500-1000 points/m2, matching the performance
of common vehicle-mounted 32-line LiDAR sensors.

This data poses several challenges to point cloud process-
ing algorithms. First, the flyover bridges are very close to
the mountain, and vegetation appears over, beside and under

1https://github.com/Livox-SDK/livox_high_
precision_mapping

2https://www.livoxtech.com/mid-40-and-mid-100
3https://www.applanix.com/products/dg-uavs.htm

Fig. 2. UAV LiDAR system
with Livox Mid-401

Fig. 3. Scanning pattern of
Livox LiDAR

the bridges. Conventional threshold-based algorithms would
be difficult to separate the bridge structure. Second, the road
surface points are rare and incomplete because of the slant
angle and heavy traffic at data collection. Algorithms rely on
detecting road surfaces may not perform as expected. Finally,
the bridge components are very large objects so that capturing
features at a large scale would be challenging.

3. PROPOSED METHOD

The task of semantic segmentation is to assign class labels to
each point of the point clouds. The proposed method is an
end-to-end semantic segmentation network taking raw point
clouds directly to produce point-wise classification labels.

The KPConv [6] operation g at point coordinate x applies
different weights Wk to each region with regard to a linear
correlation between x′

i, the relative position of a point in space
xi within radius r, and the kernel points x̃k:

g(x) =
∑
k<K

max(0, 1− ||x
′
i − x̃k||
d

)Wk (1)

where K is the total number of kernel points, and d refers to
the influence distance. In this study, same settings as [6] were
used: K = 15, d = 1.5r.

As illustrated in Fig. 4, the proposed network uses 5-layer
U-Net styled architecture built upon KPFCNN [6]. The archi-
tecture mainly contains the following blocks: stacked convo-
lution blocks, pooling blocks and upsampling blocks. Stacked
convolution blocks are implemented with three sets of batch
normalization-KPConv-Leaky ReLU operations.

The more challenging eastern 1/3 section with multiple
layers of bridges was selected as the testing set. The rest 2/3
of the dataset with fewer layers of bridges and less curved
roads was used as the training set. The point clouds were
resampled into 10 cm grids prior to training, and only point
coordinates were used in this study. Data augmentation meth-
ods includes random shuffling, scaling, and random rotation
around z axis. The network was trained on a NVIDIA RTX
2080 Ti with batch size set to 6.
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Fig. 4. Framework of network architecture for semantic segmentation

Intersection over union (IoU ) of each class, overall accu-
racy (OA) and mean IoU (mIoU ) are used to evaluate seman-
tic segmentation results.

IoU =
TP

TP + FP + FN
OA =

∑
TP

N
(2)

where TP , FP and FN represent the numbers of predicted
points of true positives, false positives and false negatives re-
spectively, and N stands for the total number of points. IoU
of each class measures the performance on each class. mIoU
is the mean of IoUs of all classes evaluated. OA and mIoU
evaluate the overall quality of semantic segmentation.

4. RESULTS AND DISCUSSIONS

Table 1 shows the results of the proposed method in com-
parison to some recent 3D semantic segmentation algorithms.
Compared with KPFCNN [6], our proposed method utilizing
stacked convolutions has shown improvements in both OA
and mIoU . The most significant improvement was on pole
identification with 14% increase in IoU . The performance on
car, bridge and road classification also improved by a notice-
able margin. The convolution blocks with triple KPConv op-
erations achieved the highest performance, which agrees with
the findings of [9]. With an OA of over 93% and a mIoU
over 88%, the semantic segmentation result of the proposed
method could provide confident guidance on high-definition
mapping and 3D reconstruction of urban road infrastructures.

The testing set scene is much more complicated than the
training set, with multi-layered bridges with many occlusions.
The significant errors could be attributed to the misclassifica-
tion of multiple classes to natural. The testing scene is in the
middle of the stack interchange far from the UAV’s trajectory,
the point density at the testing scene is relatively sparse. The
occlusions by the upper-level bridges make the point density
of lower-level bridges even sparser, and some errors could
be observed in the left half of the scene. Moreover, the fly-
over intersection is very close to the mountains and the veg-
etation, resulting in further difficulties in semantic segmenta-
tion. The confusion between guardrail and bridge could be

the next most significant confusion due to only one side of
the bridges was visible to the UAV LiDAR, which resulted in
some confusions in structure. In terms of the errors on poles,
errors could be found on the two street lamps’ lamp parts on
the right, while the pole parts are correctly classified. Finally,
some flat surfaces underneath the bridge at the right corner
were classified as road due to the flatness.

Even though most of the observed errors in this study
could be attributed to the structures underneath the flyover
bridges, these structures are often not visible in ALS point
clouds acquired from above in previous studies [1]. The
UAV LiDAR system provides a different view of road infras-
tructures compared to ALS and vehicle-based MLS systems
so that structures underneath the bridges could be mapped
and modelled with an additional perspective. Multi-angle
and multi-directional scans from the UAV would potentially
increase the performance of semantic segmentation if more
data could be collected.

This study intends to serve as a conceptual and prelimi-
nary experiment on stack interchange mapping using the new
type of LiDAR sensor mounted on a UAV system. There
are some limitations could be addressed in future research
in the following directions. First, the dataset is relatively
small so that the algorithms are prone to overfit, and transfer
learning could be applied to take advantage of previously
trained weights on larger datasets. But this study demon-
strated that accurate results of the complicated scenarios
could be achieved even with little training data using the
proposed algorithm. Second, there are a few calibration is-
sues can be improved to reduce some distortions and artifacts
possibly due to vibrations. LiDAR odometry and mapping
(LOAM) algorithms [12] could be incorporated in addition to
the GNSS records at post processing to increase the quality
of registration. Next, only point coordinates were used, and
the LiDAR reflectance could contribute to better semantic
segmentation results. Last but not least, the semantic seg-
mentation can serve as the initial step of scene recognition,
and 3D reconstruction methods could be applied to create
accurate 3D models and fill data gaps caused by occlusions.
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Method OA(%) mIoU(%) Natural(%) Bridge(%) Road(%) Car(%) Pole(%) Guardrail(%)

PointNet++ [7] 84.86 70.81 75.98 77.82 83.79 79.70 59.40 48.19
MS-TGNet [8] 83.80 69.03 78.19 69.43 81.65 65.93 68.24 50.74
KPFCNN [6] 90.89 82.60 87.25 78.23 88.72 88.55 77.14 75.72

Ours - double Conv 91.59 86.54 86.70 82.71 90.45 95.01 89.56 74.83
Ours - triple Conv 93.54 88.71 90.52 86.53 88.79 93.09 91.41 81.94

Table 1. Evaluation of semantic segmentation

Fig. 5. Result of proposed method

5. CONCLUSION

This study tested a UAV LiDAR system on urban road infras-
tructure mapping with a case study on semantic segmentation
of a multi-layer stack interchange. An end-to-end point cloud
semantic segmentation network was adopted to classify com-
ponents of the stack interchange, i.e. natural, bridge, road,
car, pole and guardrail. The method achieved over 93% over-
all accuracy and over 88% mIoU , despite the challenges of
lack of road surfaces and complicated structures. The stacked
convolutional layers were effective in increasing the ERF
and improving semantic segmentation performance. The
results could be extended to various tasks, including urban
high-definition 3D mapping and 3D model reconstruction. In
addition, this study also showcases the potential capability
of the UAV-mounted Livox Mid-40 MLS system on urban
high-definition mapping of complicated scenarios.
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