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A B S T R A C T   

Land cover classification provides updated information regarding the Earth’s resources, which is vital for agri-
cultural investigation, urban management, and disaster monitoring. Current advances in sensor technology on 
satellite and aerial remote sensing (RS) devices have improved the spatial-spectral, radiometric, and temporal 
resolutions of images over time. These improvements offer invaluable chances of understanding land cover in-
formation. However, land cover classification from RS images is an intricate task because of the high intra-class 
disparities, low inter-class similarities, and image variation types. We propose a cascaded residual dilated 
network (CRD-Net) for land cover classification using very high spatial resolution (VHSR) images to address 
these challenges. The proposed hybrid network follows the encoder-decoder concept with a spatial attention 
block to guide the network on learnable discriminate features coupled with an intermediary loss to enhance the 
training process. Moreover, a cascaded residual dilated module increases the network’s receptive field to enrich 
multi-contextual features further, thus boosting the resultant feature descriptor. Extensive experimental results 
demonstrate that the proposed CRD-Net outperformed state-of-the-art methods, achieving an overall accuracy 
(OA) of 90.73% and 90.51% on the ISPRS Potsdam land cover dataset and ISPRS Vaihingen dataset, respectively.   

1. Introduction 

Earth observation imagery plays an essential role in developing ac-
curate and timely thematic maps for land cover. It provides a precise 
understanding of anthropogenic processes on Earth’s surface that is 
consistent and spatially continuous for a different range of spatial res-
olutions and time scales (Xiang et al., 2019). Thematic maps are mainly 
derived from the classification of RS images, which is effectively ach-
ieved through computer-aided analysis. Advances in sensor technology 
on satellites and aerial RS over the years have caused increasingly 
massive, accessible, and affordable imagery with high spatial and tem-
poral resolutions. Besides, improved image quality and quantity, 
coupled with massive, accessible, and affordable computation power 
through the graphics processing units (GPUs) and parallel computing 
platforms, have led to superior computer algorithms. This, in turn, has 
inspired improvement in image analysis tasks such as scene 

understanding, detecting and segmenting objects, and pixel-level image 
classification (Xu et al., 2019). 

Pixel-level image classification is a vital process in land cover map-
ping that assigns every image’s pixel to a predefined class label where 
same-labeled pixels possess similar characteristics. VHSR image classi-
fication has various applications, such as mapping land use and land 
cover (LULC) (Weigand et al., 2020), vegetation classification (Flood 
et al., 2019), tracking watercourses and water bodies (Mishra et al., 
2020; Pereira et al., 2019), urban ecology monitoring and understand-
ing (Alshehhi and Marpu, 2021; Li et al., 2018), among others. 

Correct and updated information about the land cover is essential for 
classifying, planning, predicting, tracking, and formulating ways to use 
the Earth’s resources better and for the greater interest of humanity 
(Huang et al., 2019; Ojha et al., 2019; Yin et al., 2014). Solving land 
cover classification can help to overcome many obstacles relating to 
urban planning, environmental engineering, and natural landscape 
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monitoring, among other applications (Huang et al., 2018). 
Despite the great opportunities that land cover classification offers, 

classifying VHSR imagery poses a significant challenge due to the im-
ages’ heterogeneity property, multi-object class imbalance, and varied 
distribution. Besides, effective classification of VHSR demands massive 
computation power, superior and robust algorithms with greater accu-
racy. Traditional methods of collecting and classifying land cover data 
are human-dependent, less efficient, and demanding on time and cost 
(Sang et al., 2020). 

In this work, a novel cascaded residual dilated network (CRD-Net) is 
proposed to handle the intricate task of land cover classification using 
VHSR images. Our proposed framework is validated on the ISPRS 
Potsdam and Vaihingen land cover datasets by attaining competitive 
classification results in the two datasets without any post-processing 
strategy. The following is the outline of our work’s contribution:  

1) We propose a hybrid network for land cover classification using 
VHSR images, which uses spatial attention blocks to improve feature 
learning ability by focusing on essential learnable features; coupled 
with an intermediary loss function that enhances the network 
training procedure.  

2) The proposed cascaded residual module enlarges the receptive field 
thus improving the network’s multi-scale inference and elevates 
contextual information without falling into a gridding problem.  

3) Extensive experiments on ISPRS 2D Postdam semantic labeling 
dataset and the Vaihingen dataset show that our proposed CRD-Net 
outperforms previous methods for land-cover classification. 

Our work is presented as follows: Section 2 highlights the related 
work, indicating our novel contribution. Section 3 presents the study 
areas and dataset descriptions, the methods are described in Section 4. 
Experiments and discussions are presented in Section 5. Finally, con-
clusions are highlighted in Section 6. 

2. Related work 

Recent image processing tasks have witnessed great advances. This 
advancement comes from the increased image datasets and more 
available computation power through high-powered GPUs that have 
continuously facilitated the training of superior DCNNs for image 
analysis tasks (Cheng et al., 2017; Guo et al., 2017). 

Image classification often relies on a larger receptive field’s (RF) 
ability to obtain high-level features. Larger receptive fields ought to 
capture long-range semantic features to classify large objects correctly. 
Additionally, the low-level feature’s fine spatial details are critical for 
optimal pixel-level classification. Several works have attempted 
exploiting semantic features extracted by DCNNs extensively. FCN 
(Sherrah, 2016) proposed a fully convolutional network without pooling 
layers for dense labeling of high-resolution aerial images, thus avoiding 
deconvolution or interpolation operations to overcome spatial infor-
mation loss. SegNet (Badrinarayanan et al., 2017) utilized the encoder- 
decoder network for pixel-wise classification using pooling indices on 
the encoder phase and up-sampling on the decoder, while PSPNet (Zhao 
et al., 2017) employs feature pyramid pooling to achieve context ag-
gregation by enlarging the kernel size. 

In contrast, DeepLab+ (Chen et al., 2018), also called atrous spatial 
pyramid pooling (ASPP), exploited parallel dilated convolutions using 
varying dilation rates to probe multiscale image features. DeepLabv3+
(Chen et al., 2018) extends previous DeepLab versions by proposing the 
depthwise separable convolution in the ASPP and decoder modules, 
resulting in a more efficient and robust encoder-decoder based network. 
Whereas these methods yield good results in various tasks, they may not 
adaptively capture all valid features necessary for pixel-level classifi-
cation for VHSR images (Liu et al., 2019). 

In the land cover classification tasks, RefineNet (Lin et al., 2017) 
used a multi-path refinement approach to explicitly exploit the 

information from the downsampling phase to attain original image 
resolution using long-range skip connections. This overcame repeated 
downsampling operations such as pooling or convoluted strides, which 
lead to a reduction in the initial image’s spatial resolution. GFRNet 
(Islam et al., 2017)proposed memory gates between the layers to handle 
multiscale contexts to optimize the selection criteria of pixels forwarded 
in the DCNN network,while SCAttNet (Li et al., 2021), employed spatial 
and attention mechanisms to refine features adaptively using a light-
weight network. Whereas using gates can filter the unnecessary features 
from passing through the network, it can slow down the network and 
may not handle complex VHSR data satisfactorily. In other works, 
generative adversarial networks (GANs) and conditional random fields 
(CRF) were combined to refine classification maps for hyperspectral 
image classification (Zhong et al., 2020). 

Dilated convolution (DC) (Yu and Koltun, 2016), has become a core 
approach in many multi-class segmentation tasks due to its power in 
multi-contextual feature aggregation without loss of spatial information. 
As a result, DC has been explored in various image analysis and classi-
fication tasks (Duarte et al., 2018; Hamaguchi et al., 2018; Zhou et al., 
2018). 

Also, notable success in the application of attention mechanisms in 
natural language processing, has greatly inspired its broader adoption 
for image analysis tasks. For example, Wang et al. (2017) obtained more 
image discriminative feature representation by stacking attention 
modules to form attention-aware features for image classification, while 
Zhao et al. (2018) employed a bi-directional information propagation 
path to aggregate long-range contextual information using a point-wise 
spatial attention mechanism, that helped in fusing global and local in-
formation to understand complex natural scenes better. 

Following the intuition of (Liu et al., 2021), we propose a hybrid 
architecture that progressively learns more discriminative features 
while integrating complementary features in each network stage. 
Moreover, inspired by (Lee et al., 2015), we employ intermediary loss at 
the intermediate layers of the encoder sub-network to improve the 
training process and promote deeper supervision. The proposed archi-
tecture exploits the power of the attention mechanism in precise feature 
learning and exploits extensive information flow between the nested 
dilated layers to fully exploit multi-scale contexts. 

3. Study areas 

In this work, ISPRS 2D Semantic Labeling Contest - Potsdam and 
ISPRS Vaihingen datasets from the International Society for Photo-
grammetry and Remote Sensing (ISPRS) (Rottensteiner et al., 2012) are 
used. The standard benchmark datasets comprise aerial images over the 
urban area of Potsdam city and the Vaihingen region in Germany. The 
Vaihingen region dataset is obtained from a city with many separate 
buildings and smaller villages with several separate multi-story build-
ings. Meanwhile, the Potsdam city dataset comprises a historical city 
whose building blocks are vast and dense with narrow streets. Each 
dataset contains six labeled land cover classes that are most popular. 

The six categories have been defined as impervious surfaces, build-
ings, low vegetation, trees, cars, and clutter with the white, blue, cyan, 
green, yellow, and red color codes respectively. The clutter class in-
cludes some water bodies and other incoherent objects from the task. 
Fig. 1 shows the localization of study areas of the two datasets. 

3.1. Potsdam dataset 

The Potsdam land cover dataset was developed to enhance auto-
mated delineation of urban objects from RS data. This dataset contains 
very high-resolution objects which are heterogeneous, thus making the 
classification task quite challenging. The dataset is focused on elaborate 
2D per-pixel labeling on multiple classes. It seeks to support scientific 
methods and superior models working towards full automation for 2D 
object recognition and image classification. The Potsdam dataset 
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contains 38 tiles of 6,000 px × 6,000 px with 5 cm ground resolution. We 
used 14 of such images as test images and used only RGB images in our 
experiments. 

3.2. Vaihingen dataset 

The ISPRS 2D Semantic Labeling Challenge provides the Vaihingen 
dataset for image classification and 2D labeling. The dataset contains 33 
image tiles of 2,494 px × 2,064 px with 9 cm ground resolution. 16 of 
the 33 tiles have been labeled. Only near-infrared, red, and green (IRRG) 
bands were used in our experiments. 

4. Proposed method 

In this work, a hybrid network called CRD-Net is proposed, which 

comprises the following components: a) an encoder-decoder sub- 
network to recover the lost spatial details caused by down-sampling 
operations with dual spatial attention blocks to guide the network in 
focusing on essential features; b) intermediary loss function connected 
to the spatial attention blocks for improved feature learning. c)the CRD 
module to attain better multi-scale contextual response and information 
flow between the layers. Each component of the proposed network is 
discussed in the later sections and the pipeline of the CRD-Net archi-
tecture is presented in Fig. 2. 

4.1. Encoder-decoder with a dual spatial attention mechanism 

The encoder-decoder paradigm is common for image classification 
networks owing to its ability to probe image features and harness the 
required high-level discriminative information (Zhou et al., 2018). In 

Fig. 1. Study areas of the Potsdam dataset and the Vaihingen dataset (Rottensteiner et al., 2012).  

Fig. 2. The proposed Cascaded Residual Dilated Network Architecture.  
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addition, the decoder subnet’s ability to recover spatial details lost 
through pooling or stride convolution operations on the encoder subnet 
makes it preferred for most semantic segmentation tasks (Chen et al., 
2018). In general, the encoder-decoder network contains an encoder 
subnet that successively shrinks the feature maps and exploits high- 
semantic details as the network gets deeper. On the other hand, the 
decoder subnet recovers the crucial spatial details lost in the encoder 
segment of the network. 

Based on this idea, our network architecture uses an encoder with a 
pretrained ResNet-101 network with five residual blocks marked ENC1 
to ENC5 as the backbone, which works as an effective feature extractor. 
We use a pretrained network, since utilizing pretrained parameters and 
weights can help reduce the massive training data required to train deep 
networks from scratch and facilitate faster model convergence (Briechle 
et al., 2021). 

We employ two spatial attention blocks named Satt1 and Satt2 in our 
network architecture to generate spatial feature maps from spatial re-
lationships of the features as shown in Fig. 2. Fig. 3 shows The spatial 
attention block aims at learning a weight map representing the relative 
importance of activation for the spatial dimensions. The convolutional 
image feature maps from ENC2 and ENC3 are branched out into three 
copies representing the key, value, and query as illustrated in Fig. 3. The 
three copies are represented as f(x), h(x), and g(x), respectively to form 
the attention block named Satt1. We then apply the dot product atten-
tion to generate the resultant attention feature maps. Equally, the con-
volutional feature maps for ENC4 and ENC5 are branched out into three 
copies of f(x), h(x), and g(x), representing the key, value, and query 
values in the second spatial attention block named Satt2. The two spatial 
attention blocks are connected to two intermediary losses labeled 
InterL1 and InterL2 through outputs S1O1 and S2O1. The up-sampled 
output of Satt1 is concatenated with the output of Satt2 and then con-
nected to the CRD module in a cascaded fashion. This helps the model 
focus selectively on discriminative features and ignore redundant and 
less important information (Vaswani et al., 2017). Besides, weighting 
the channels of the feature maps selectively can significantly improve 
the feature learning in residual modules and have shown significant 
improvement in semantic segmentation tasks (Zhong et al., 2020). Our 
networks extensively exploit residual connections in the encoder- 
decoder subnetwork and the CRD module owing to the success of deep 
residual networks in image classification for both spectral and spatial 
data (Zhong et al., 2018). 

4.2. Deep supervision with intermediary loss 

Loss functions inform how erroneous the classification prediction is 
from the ground truth. This is achieved through backpropagation. Most 

deep ConvNets implement loss function at the output layer, where the 
loss is propagated backward to earlier layers. However, single supervi-
sion at the output layer may not adequately learn complex features in 
the hidden layers, resulting in classification errors (Liu et al., 2020). 

To better evaluate the loss in earlier layers and supervise the 
network, a loss objective is introduced at the intermediate layers of the 
deep neural network to improve the learning process of hidden layers 
making it more transparent and direct (Lee et al., 2015). This follows the 
intuition that a discriminative classifier working as a proxy can learn 
high discriminative features from hidden layers of the network and can 
better provide inference during hidden middle layers weight updates. 
Besides, the intermediary loss function introduced at intermediary 
layers of the network can significantly improve the supervision in deep 
networks at the layer level compared to relying on the results of the 
backpropagation process from the output layer (Muhammad et al., 
2018). 

Following (Zhao et al., 2017), two intermediary losses, InterL1 and 
InterL2, are introduced at the output of spatial attention Satt1 and Satt2 
to effect direct supervision in the intermediate layers, as shown in Fig. 2. 
The learning process is decomposed where the two intermediary losses 
pass through the intermediate layers, thus optimizing the network 
training process. 

We derive a multi-task loss function (LTotal) by combining the 
weights of the three losses as defined in Equation (1). 

LTotal =
∑t

i=1
λiLi (1)  

where Li is the loss and λi is the weight associated with task i. 
Backpropagation seeks to achieve convergence at the least loss 

weight value; different loss weights for different tasks can be distributed 
across several tasks, with each task having a significant influence on the 
network training (Chennupati et al., 2019) . Besides, adaptive tuning of 
task weights can help optimize the learning process. To achieve this, we 
employ dynamic weight adjustments (Guo et al., 2018) to update the 
weights α, β, and γ. The total loss in our network is defined by 

Total Loss = (α×MainLoss) + (β × InterL1)+ (γ × InterL2) (2)  

where α, β, and γ are the respective weights in our network, and InterL1, 
InterL2, and MainLoss are loss values of the output layer, the Satt1 
spatial block, and Satt2 spatial block, respectively. By feeding the output 
of the attention mechanism to the intermediate loss functions, the pro-
posed network can learn features more precisely guided by the inter-
mediary loss that enhances deeper supervision at the intermediate layers 
of the network. 

We scale the weights α, β, and γ for intermediary losses InterL1, 

Fig. 3. Spatial-attention block used in the CRD-Net.  
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InterL2, and the MainLoss respectively to evaluate their influence on the 
network’s training process, as highlighted under the ablation studies 
section. The three losses InterL1, InterL2, and the MainLoss cumula-
tively, contribute to the final prediction. 

Weighted cross-entropy (WCE) loss (Martinez and Stiefelhagen, 
2018) sums up pixels loss in a given mini-batch. In datasets with a high 
variation of pixels per class on the training set, class balancing is applied 
where the loss is weighted differently based on the true class. In this 
case, weights for classes with fewer pixels are elevated, while weights 
for classes with more pixels are diminished. We use weighted cross- 
entropy loss with median frequency balancing (MFB) (Eigen and Fer-
gus, 2015). The WCE loss is defined by 

Loss = −
1
N

∑N

i=1
Wi pi log

(
epi

∑N
j=1epj

)

(3)  

where N represents the commulative classes, Wi denotes the class weight 
i, pi, represents the prediction while ṕi is the ground truth distribution of 
class i. 

4.3. Cascaded residual dilated module 

We propose the CRD module to progressively enlarge the RF in a 
scalable manner to help our network capture multi-scale contextual 
information and enhance elaborate information flow without increasing 
the network complexity or falling into gridding problem. 

Dilated convolution helps aggregate multiscale contextual details 
without sacrificing the image resolution. The CRD module consists of 
dilated convolutional layers with no pooling or subsampling and grad-
ually expands the RF without resulting in loss of spatial resolution or 
coverage. The dilated kernel with parameter r > 1 causes an enlarge-
ment in the RF without raising the number of parameters or computa-
tion requirements; different rates can be set to adjust the receptive field 
range. A standard dilated convolution is obtained as defined in Equation 
(4) 

F = (r − 1)(k − 1)+ k (4)  

where r denoted the dilation rate, and k represents the kernel size, and F 
represents the receptive field. 

For a standard convolution operation with k × k kernel, S denotes the 
stride, which can have the following instances: S > 1, implies a down- 
sampling operation, S = 1, maintains the resolution of the feature map 
(considering adequate padding), and 0 < S < 1, implying up-sampling 
which increases the feature map size. Enlarging a kernel of k × k filter to 
a kernel of k + (k-1) (r-1), with r representing the dilated stride allows 
flexible aggregation of multiscale contextual details from the receptive 
field while maintaining the same resolution dimensions. 

Although the CRD module presents great benefit in expanding the 
receptive field, it can generate holes called gridding artifacts (Chen 
et al., 2018; Yu and Koltun, 2016), where neighboring output units are 
processed from separate input sets resulting in different actual RF. This 
implies that some kernel responses do not act on some regions in the 
receptive field causing variability in kernel responses from the receptive 
field. To cure the gridding problem, the proposed CRD module pro-
gressively concatenates the residual connections with the resultant and 
previous feature maps of cascaded dilated layers. The resultant 
improved information flow between the dilated convolutional layers 
ensures that all kernel responses are obtained from the full receptive 
field thus overcoming the gridding problem. 

Moreover, since image classification of VHSR images requires a 
descriptor with sufficient short, medium, and long-range semantics, the 
residual connections enhance information flow and boost significant 
features between the dilated layers following the intuition of (Wang 
et al., 2019). The proposed CRD module is illustrated in Fig. 4. Each 
layer receives the feature map from the two concatenated spatial 
attention blocks as input and performs a dilated convolution operation 
with rates of r1, r2, r3, and r4. Through residual connections, the resultant 
and previous feature maps of every dilated layer are combined. By 
gradually increasing the dilation rate in the cascading layers, the 
network is robust to achieve an effective full receptive field where lower 
dilation rates obtain fine details and small objects spatial dimensions, 
while larger dilation rates capture the larger objects’ features resulting 
in a robust feature descriptor. 

The hierarchical fusion of all the layers from smaller to larger dila-
tion rates allows the participation of the dilated convolution layer pixels 
in probing the multiscale features before concatenation. This ensures 
information sharing between the layers, thus overcoming the gridding 
problem. 

The CRD model is designed to enlarge the receptive field with fewer 
parameters based on the dilation convolution. The final feature map is 
generated from the computation of all features after aggregating the 
receptive fields of each layer and effectively capturing the multi-scale 
contextual information. All the feature vectors from different dilated 
layers are concatenated in the global pooling layer before inputting to 
the decoder unit. 

4.4. Quantitative assessment measures 

We use precision (PRE), recall (REC), intersection over union (IoU), 
pixel accuracy (PA), and mean F1-score (mF1) to evaluate the perfor-
mance of our proposed method. 

PRE = TP%(TP + FP) (5)  

REC = T P%(TP + FN) (6) 

Fig. 4. Illustration of 3 × 3 CRD module with dilation rates of  r1, r2, r3,  and r4 and the resultant nested kernel.  
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IoU = TP%(TP + FN + FP) (7)  

PA = (TP + TN)%(TP + TN + FP + FN) (8)  

F1 − Score = 2 × (Precision × Recall)%(Precision + Recall) (9)  

where TP, TN, FP, and FN, denotes true positive pixels, true negative 
pixels, false positive pixels, and false negative pixels, respectively. 

5. Experiments and discussions 

In this section, the network’s training details are explained first. 
Second, the data pre-processing procedures and the performance eval-
uation are presented. Third, the ablations experiments results are 
discussed. 

5.1. Training details 

We implemented our method using Pytorch deep learning frame-
work. The basic experiment platform is on NVIDIA GeForce RTX 2080Ti 
GPU graphics card, which contains 11 GB memory and is equipped with 
CUDA 10.2 and Cudnn7.6.5. Both the training and testing are carried out 
on this platform. 

We adopt the settings used in the related work on dilated convolution 
(Liu et al., 2019). We trained our model using Adam optimizer (Kingma 
and Ba, 2014) with AMSGrad (Reddi et al., 2018) and weight decay of 2 
× 10− 5. The polynomial learning rate (LR) decay is set as (1 − (cur iter/ 
max iter)) 0.9. The input image size is 256 × 256 pixels with a batch size 
of 5. Images 24, 2, 3, and 14 are set for the training, validation, local test 
set, and hold-out test set for Potsdam dataset images while images 16, 2, 
4, and 17 are similarly set for the Vaihingen dataset. 

5.2. Pre-processing and augmentation 

In the land cover segmentation task, image pre-processing can speed 
up the network’s self-fitting process more effectively (Li et al., 2020). 
Since the training samples are not sufficient enough, we adopt data 
augmentation (Wong et al., 2016) as an effective method of supple-
menting the training samples. To achieve this, we employed the albu-
mentations library (Buslaev et al., 2020), which provides several flexible 
and efficient image augmentation functions relating to color, contrast, 
brightness, and other geometric transformations. 

5.3. Performance evaluation 

We demonstrated the efficacy of the CRD-Net architecture by car-
rying out experimentson the two datasets. The per-class classification 
results on the test sets of the Potsdam (RGB) dataset and Vaihingen 
(IRRG) datasets trained separately using the CRD-Net model are shown 
in Tables 1 and 2 The average scores are computed from all classes, but 
the clutter. 

The clutter class is ignored due to its minor representation in the 
sample distribution of the training set. Our network achieved an overall 
mF1-score of 92.1% and 90.0% on the Potsdam and Vaihingen datasets, 
respectively. The visual classification results of the proposed model on 

Potsdam and Vaihingen datasets are presented in Figs. 5 and 6, 
respectively. 

Tables 3 and 4 show our network’s OA and mF1-score performance 
compared with other networks on the land cover classification task on 
the two benchmark datasets. Our network achieves an OA score of 
90.7% and an mF1-score of 92.1% on the Potsdam dataset out-
performing the other compared models. Comparing our proposed net-
work’s performance on the Potsdam dataset using OA, the CRD-Net 
achieves achieved 0.4% higher compared to the FCN based DST 2 
(Sherrah, 2016), which is the second-best. Compared with SCAttNet (Li 
et al., 2021), based on spatial and channel attention, our model achieves 
a 5.2% score higher. This implies that both deep supervisions through 
intermediate loss function and the CRD model improve the overall 
classification accuracy. Moreover, comparing CRD-Net with DeepLab3+
(Chen et al., 2018), based on atrous pyramid pooling, our network 
achieved a superior performance of 5.5% higher. In addition, CRD-Net 
improves SegNet (Badrinarayanan et al., 2017) and RefineNet (Lin 
et al., 2017) by 7.9% and 7.3%, respectively. 

The CRD-Net achieved an OA score of 90.51% and an mF1-score of 
90.0%, on Vaihingen dataset, outperforming all other models compared 
in the study. Moreover, the CRD-Net model attained the best mF1 per 
class scores on all categories except for road surface class. Compared 
with the dense dilated convolution merging DDCM network, our model 
achieved a marginal improvement of 0.1%, with marginal improvement 
in all classes except for the road surface. The CRD-Net achieved an 
improvement of 3.7% OA on gated refinement network G-FRNet V2. 
Moreover, compared with the other models, our network improves 
SegNet (Badrinarayanan et al., 2017), DeepLabV3+, and RefineNet (Lin 
et al., 2017), by 10.2%, 3.7%, and 6.1%, respectively. 

Notably, the growing demand for superior consistent computer- 
based analysis methods driven by the increased availability of very 
fine-resolution RS images calls for combined efforts from the research 
community to handle the cited challenges in processing VHR data for 
land cover classification. Our proposed hybrid network seeks to com-
plement the existing methods proposed for handling the intricate task of 
land cover classification. 

Specifically, our proposed method seeks to demonstrate the power of 
hybrid approaches in classification tasks by; blending the power of 
dilated convolution in harnessing contextual information for multi-sized 
objects with existing approaches like attention mechanism for and deep 
supervision that guides the training process using intermediate loss 
function. 

The proposed method is new in land cover classification using VHR 
data. Although the method posted marginal improvement on the second- 
best method, it can motivate and spur more research into improved 
hybrid models for land cover classification problems with superior 
performance. 

5.4. Ablation experiments 

We analyzed the proposed network’s performance by carrying out 
further experiments using various configurations to validate the signif-
icance of each sub-component of the proposed hybrid network. The per- 
class OA and mF1 scores of the CRD-Net under different configurations 
are presented in Table 5. Additionally, we present the visual 

Table 1 
Per class results (in percentage) on test set of ISPRS Potsdam dataset trained with 
CRD-Net model.  

Metrics Buildings Trees Low 
Veg. 

Clutter Road 
Surface 

Cars Avg 

Precision  88.9  87.6  88.8  61.7  94.4  89.0  89.8 
Recall  97.6  89.7  84.2  62.0  88.4  98.0  91.6 
F1-Score  96.7  88.6  87.4  63.9  92.9  94.8  92.1 
IoU  87.0  79.6  76.1  44.8  84.0  87.4  82.8  

Table 2 
Per class results (in percentage) on the test set of ISPRS Vaihingen dataset 
trained with CRD-Net model.  

Metrics Buildings Trees Low 
Veg. 

Clutter Road 
Surface 

Cars Avg 

Precision  95.0  86.8  85.2  89.4  93.4  88.1  89.7 
Recall  95.7  92.6  81.7  42.7  92.0  89.2  90.3 
F1-Score  95.4  89.6  83.5  55.8  92.7  88.7  90.0 
IoU  91.1  81.1  71.6  40.6  86.4  79.6  82.0  
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classification results of our proposed architecture under different 
network configurations in Fig. 7. 

5.4.1. Evaluating the impact of the spatial attention module. 
To better understand the impact of spatial attention mechanisms on 

the CRD-Net architecture, we carried out ablation experiments on the 
network without incorporating the spatial attention block in the 
network. The results show that the OA accuracy drops by 0.27% after 
dropping the spatial attention block from the network. Besides, the in-
fluence of spatial attention in focusing on specific regions in the layer is 
validated from the visualized classification results, where car class in the 
marked regions are viewed as detached in the CRD-Net model results. 
Still, the regions are visibly connected in the model with no spatial 
attention results. This demonstrates the ability of spatial attention in 
delineating regions, especially in high-resolution images in their natural 
setting where objects of dissimilar classes may possess similar features or 
in scenes where intra-class variation is present. 

5.4.2. Evaluating the impact of deep supervision and intermediary loss 
The effect of training with no intermediate loss is investigated. We 

notice that intermediary loss influences network performance. Specif-
ically, training the network using weighted intermediate loss results in 
an improvement of 0.16% on the classification results. The intermediate 
loss functions introduced at middle layers help in guiding the training 
process resulting in improved accuracy. Using relative weights to 
compute the total loss improved the network performance since the 
main loss contributes more to the final prediction. When the network is 
trained using the same weights for all losses, the accuracy is dropped by 
0.11%. We observe that integrating deep supervision at the intermediary 
layers can improve gradient flow, reduce the vanishing gradient prob-
lem and improve network convergence. 

5.4.3. Evaluating the impact of the CRD module 
Ablation experiments results without the CRD module show a drop in 

AO by 0.43% while incorporating the CRD module in the proposed 
network recorded improvement on the OA in all classes. In addition, the 
CRD module demonstrates improvement in the visual classification 

Fig. 5. Classification results for test images of Potsdam RGB data tiles 4_15, 2_12, and 6_15, respectively. (a) input image tile, (b) ground truth, and (c) prediction.  
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results in extracting pixel-level information effectively. By harnessing 
the capability of dilated convolution in enlarging RF to harness rich 
multi contextual information, the proposed network can delineate small 
objects precisely and capture large objects. 

5.4.4. Combining the different components to form a hybrid network 
Our proposed framework comprises of components collectively 

forming a hybrid network to handle the intricate task of land cover 
mapping. Since RS data contains many different sized objects whose 
features and settings are critical for land cover classification, classifying 
RS images becomes more challenging when some key objects are 

Fig. 6. Classification results for test images of Vaihingen IRRG image tiles 2, 27, and 38 respectively. (a)input image tile, (b)ground truth, and (c) prediction.  

Table 3 
Comparison of OA and per class mF1(in percentage %) between CRD-Net and other published methods on ISPRS Potsdam land cover dataset.  

Models OA Road Surface Buildings LowVeg Trees Cars mF1 

SegNet (Badrinarayanan et al., 2017)  82.9  86.2  88.3  77.2  80.0  54.2  77.0 
DeepLabV3+ (Chen et al., 2018)  85.2  88.5  90.0  80.2  80.1  68.9  81.5 
RefineNet (Lin et al., 2017)  83.4  87.3  86.9  78.3  79.6  75.9  81.6 
SCAttNet V2 (Li et al., 2021)  85.5  91.2  90.3  80.0  80.3  70.5  82.1 
DST 2 (Sherrah, 2016)  90.3  92.5  96.4  86.7  88.0  94.7  91.8 
Ours  90.7  92.9  96.7  87.4  88.6  94.8  92.1  
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invisible, or suppressed due to their size, shadow, occlusion from the 
surrounding objects, or where the background suppresses the objects of 
interest. Besides, most RS data contains superfluous objects which can 
affect the accurate classification of land cover classes. 

Since spatial information is indispensable for correct pixel-level 
classification, the proposed hybrid exploits the power of encoder- 
decoder to recover and restore spatial details suffered from down-
sampling operations. Furthermore, the attention mechanism helps the 
network focus on key discriminative regions in the images by according 
such areas higher weights while suppressing redundant and less 
important regions such as backgrounds. Additionally, by utilizing 
intermediary loss functions, the model improves the learning process, 
where intermediate loss guides the backpropagation process, by 
defining how badly the network performs at the intermediary layers of 
the network as opposed to using a single loss function at the end of the 
network. 

Finally, since rich and multi-scale contextual representation plays an 
essential role in correct classification of objects, especially with varied 

sizes such as in the case of VHRS images, we employ cascaded dilated 
convolutions to cause enlargement of the RF to obtain multi-contextual 
details without loss of spatial information. 

The results in Table 5 shows that combining different components for 
the complex task of land classification can result in improved classifi-
cation results. The hybrid network can learn more discriminative fea-
tures progressively in each stage as complementary features are 
integrated, thus harnessing the benefits of each component. 

However, models accuracy is greatly affected by the shadows cast by 
elevated objects such as buildings, trees, and vegetation thus causing 
great difficulty in VHR image classification tasks. The classification ac-
curacy gets compromised if the objects’ shadows are not detected and 
delineated during the classification process. Shadow detection, align-
ment, and correction for land cover classification using VHRS aerial 
imagery remains a great area of interest requiring further attention to 
mitigate shadow-prone errors. 

Although the proposed hybrid network attained competitive classi-
fication results, obtaining optimum results by blending several compo-
nents requires further attention on how best to integrate the sub- 
components for better prospects. 

6. Conclusion 

In this work, a hybrid network named CRD-Net is presented to tackle 
the challenging task of land cover classification with VHSR images. The 
proposed architecture harnesses short-range, mid-range, and long-range 
semantic information at different stages of the network while preserving 
the spatial details to generate a robust feature descriptor. The attention 
mechanism with intermediary loss at the encoder subnet assists in 
refined feature learning and attaining intermediary layers’ deep super-
vision. Moreover, the network harnesses rich global multi-contextual 
information using the CRD module without falling into the gridding 
problem caused by dilation. Future experiments are necessary to vali-
date the proposed framework for land cover mapping in other RS 
datasets and related tasks. 

Table 4 
Comparison of OA and per class mF1 (in percentage %) between CRD-Net and other published methods on ISPRS Vaihingen land cover dataset.  

Models OA Road Surface Buildings LowVeg Trees Cars mF1 

SegNet (Badrinarayanan et al., 2017)  80.3  81.1  86.4  78.0  73.9  85.7  81.0 
DeepLabV3+ (Chen et al., 2018)  86.8  89.3  92.8  83.4  78.4  88.2  86.4 
RefineNet (Lin et al., 2017)  84.4  87.6  88.5  81.9  79.1  87.9  85.0 
G-FRNet V2 (Islam et al., 2017)  86.8  89.2  92.7  82.8  79.0  86.3  86.0 
DDCM (Liu et al., 2019)  90.4  92.7  95.3  83.3  89.4  88.3  89.7 
Ours  90.5  92.7  95.4  83.4  89.6  88.7  90.0  

Table 5 
Comparison of per class OA and mF1 (in percentage %) of CRD-Net with 
different configurations on ISPRS Vaihingen land-cover dataset.  

Method OA Road 
Surface 

Buildings LowVeg Trees Cars mF1 

CRD-Net  90.5  92.7  95.4  83.4  89.6  88.7  90.0 
Without 

Auxilliary 
Loss  

90.4  92.8  95.0  83.3  89.7  88.2  89.8 

Without 
Spatial 
attention  

90.2  92.4  95.0  83.3  89.4  86.8  89.3 

Without 
CRD 
module  

90.1  92.3  94.9  82.7  89.3  88.3  89.7 

CRD-Net 
With 
ResNet50  

90.2  92.4  94.8  83.2  89.6  87.5  89.5  

Fig. 7. Classification results for test images of Vaihingen IRRG image tiles 4 and 25, respectively, using different network configurations.  
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