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Abstract
Multispectral satellite imagery is the primary data source for 
monitoring land cover change and characterizing land cover 
globally. However, the consistency of land cover monitoring is 
limited by the spatial and temporal resolutions of the ac-
quired satellite images. The public availability of daily high-
resolution images is still scarce. This paper aims to fill this 
gap by proposing a novel spatiotemporal fusion method to 
enhance daily low spatial resolution land cover mapping us-
ing a weakly supervised deep convolutional neural network. 
We merge Sentinel images and moderate resolution imaging 
spectroradiometer (MODIS)-derived thematic land cover maps 
under the application background of massive remote sens-
ing data and the large spatial resolution gaps between MODIS 
data and Sentinel images. The neural network training was 
conducted on the public data set SEN12MS, while the valida-
tion and testing used ground truth data from the 2020 IEEE 
Geoscience and Remote Sensing Society data fusion contest. 
The proposed data fusion method shows that the synthesized 
land cover map has significantly higher spatial resolution 
than the corresponding MODIS-derived land cover map. The 
ensemble approach can be implemented for generating high-
resolution time series of satellite images by fusing fine images 
from Sentinel-1 and -2 and daily coarse images from MODIS.

Introduction
Remotely sensed satellite imagery is the primary data source 
for monitoring land cover change and characterizing land cover 
on a global scale (Song et al. 2017). Satellite images with daily 
coverage and fine spatial resolution are highly desired for Earth 
observation and related environmental applications (Sun and 
Zhang 2019). However, the consistency of daily land cover mon-
itoring is often constrained by the spatial and temporal resolu-
tions of the acquired satellite images freely available. For in-
stance, Landsat satellites capture images with a moderate spatial 
resolution of 30 meters but with a long revisit period of 16 days. 
On the contrary, the moderate resolution imaging spectroradi-
ometer (MODIS) can provide images daily, with coarser spatial 
resolutions of 250 m, 500 m, and 1 km. Hence, it is important to 
understand how to jointly leverage complementary data sources 
efficiently to conduct land cover classification. To have up-to-
date land cover monitoring with a fine spatial scale, increasing 
the spatial resolution of coarse satellite imagery represents a 

continued advancement in remote sensing research. The avail-
ability of the MODIS data set has driven global-scale land cover 
mapping at coarse resolution. Previous works have conducted 
spatiotemporal fusion to blend MODIS and Landsat data to obtain 
improved classification results with a higher spatial resolu-
tion of 30 m (Gevaert and García-Haro 2015; Wang et al. 2015; 
Chen et al. 2017). Sentinel-1 and Sentinel-2 today can provide 
higher temporal resolution (three to five days) and higher spatial 
resolution (10 to 20 m) than Landsat satellites. However, these 
images are frequently unavailable for land cover mapping due 
to the presence of clouds. Hence, it is necessary to develop a 
feasible method to integrate remote sensing data from different 
sensors and time phases to acquire geospatial data with high 
spatial and temporal resolutions.

Recently, deep learning frameworks have enhanced the 
classification performance by automatic extraction of in-depth 
features. Therefore, deep learning-based land cover classifica-
tion has become a current hotspot in the remote sensing re-
search community. One of the significant advantages of using 
deep learning algorithms is that it is a learning-based method, 
which automatically learns an end-to-end mapping between 
coarse resolution images and fine resolution images. Previous 
research indicates that semantic segmentation classification 
with deep learning methods at the pixel level is promising in 
land cover mapping (Huang et al. 2018; Kemker et al. 2018).

To the best of our knowledge, no deep learning-based 
model has yet been introduced to conduct spatiotemporal 
fusion to blend MODIS data and Sentinel satellite images. The 
novelty is emphasized by the proposal of a weakly supervised 
approach. With the aim of providing enhanced land cover 
mapping through the fusion of multi-source satellite data, this 
paper extends one of the current state-of-the-art semantic seg-
mentation networks, DeepLabV3+ (Chen et al. 2018), and then 
employ it to enhance the spatial resolution of MODIS-derived 
land cover maps, by integrating the maps (with an original 
spatial resolution of 500 m), synthetic-aperture radar (SAR) 
images derived from Sentinel-1, and multispectral images 
derived from Sentinel-2. The outputs of the model are high-
resolution (10 m) land cover thematic maps. Technically, this 
is a task of supervised semantic segmentation of the Sentinel 
images since the MODIS maps are utilized as the target ground 
truth labels, and the model assigns one of the label classes to 
each pixel in the Sentinel images. However, due to the coarse 
resolution of MODIS maps, the Sentinel images only contain 
partial observations of the target ground truth labels, which 
makes the task become a weakly supervised semantic segmen-
tation. To deal with weakly annotated ground truth labels, an 
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additional module was embedded in the model, and it auto-
matically updates the coarse labels based on the intermedi-
ate predictions on the training sets. The contributions of this 
paper can be summarized as follows.

First, a deep learning-based method was developed for 
an effective fusion of the MODIS and Sentinel data. Second, a 
deep learning semantic segmentation network, DeepLabV3+, 
was comprehensively evaluated given that the ground truth 
labels are noisy and unreliable. Third, more challenging land 
cover types can be classified using the proposed method.

The rest of this paper is organized as follows. Section 
“Related Works” reviews some previous studies regarding 
spatiotemporal fusion and the use of DeepLabV3+ on remote 
sensing images. Section “Method” introduces the technical 
information about DeepLabV3+ and the modifications added 
to its original architecture. The section “Experiments and 
Discussion” describes the experimental setup, including the 
implementation detail of our proposed model and the data 
set used in this study. Finally, the last section concludes the 
paper with remarks and expectations.

Related Works
Spatiotemporal Fusion of Remote Sensing Images
In the field of remote sensing, many key application domains 
stand to benefit from data fusion techniques. For example, 
the increase of spatial resolution contributes to land cover 
classification and ground object identification. Recently, many 
remote sensed data fusion methods have been proposed to 
deal with the specific problems that arise from the trade-off 
between spatial resolution and temporal frequency. In gen-
eral, they can be categorized into image pair-based and spatial 
unmixing-based methods (Ghamisi et al. 2019).

The image pair-based method utilizes the relationship 
between the available coarse/fine image pairs to guide the 
prediction of fine images from coarse images on other days. 
Image paired-based methods can be further classified into a 
filter-based algorithm and learning-based algorithm (Song et 
al. 2018)

Among existing image pair-based spatiotemporal data fu-
sion algorithms, the spatial and temporal adaptive reflectance 
fusion model (STARFM) (Gao et al. 2006) was the first model 
developed. It has been widely applied for fusing Landsat and 
MODIS to monitor environmental changes (Chen et al. 2015; 
Gevaert and García-Haro 2015). It uses one known pair of 
Landsat and MODIS images and one MODIS image at the predic-
tion date. STARFM assumes that for a pure coarse pixel where 
only one land cover type exists, the changes in fine pixels 
within that coarse pixel can be implied directly by the coarse 
pixel changes. For heterogeneous coarse pixels with two or 
more land cover types, a weighted function is used for predic-
tion, which assigns higher weights to the neighboring fine 
pixels where they are physically closer and spectrally similar 
to the coarse pixels (Gao et al. 2006).

Since STARFM assumes that the temporal changes of all 
land cover classes within a coarse pixel are consistent, it is 
thereby suitable for homogeneous landscapes (Ghamisi et 
al. 2019). However, it is sensitive to high heterogeneity and 
abrupt land cover changes (Sun and Zhang 2019). Subse-
quently, several algorithms have been developed to improve 
the accuracy of STARFM. For instance, Hilker et al. (2009) pro-
posed the spatial-temporal adaptive algorithm for mapping re-
flectance change, designed to detect reflectance changes using 
Tasseled Cap transformations of both Landsat and MODIS data. 
Zhu et al. (2010) developed enhanced spatial and temporal 
adaptive reflectance fusion model to deal with heterogeneous 
landscapes specifically. It requires two coarse/fine image pairs 
to estimate the temporal change rate of each land cover class 
separately and assumes the change rates to be consistent. To 

summarize, these methods are different mainly in modeling 
the relationship between the paired pixels. These methods, 
including STARFM, can be considered filter-based methods 
because each pixel is predicted from a filtering model, a 
weighted sum of spectrally similar neighboring pixels from 
the input images (Song et al. 2018).

Recently, some learning-based spatiotemporal fusion algo-
rithms have been proposed, such as support vector machine 
(Wang et al. 2018), Hopfield neural networks (Fung et al. 
2019), and deep convolutional neural network (Song et al. 
2018). These models directly take image pairs as inputs and 
automatically learn the relationship between coarse/fine im-
age pairs. The results indicate that learning-based algorithms 
are more robust than the traditional spatiotemporal fusion 
algorithm (Sun and Zhang 2019). However, it usually requires 
abundant data for training the mapping relationship between 
fine and coarse satellite images.

The spatial unmixing-based methods are applied to com-
pute the endmember (i.e., label) of coarse pixels and estimate 
the fined pixels using weighted endmembers (Zurita-Milla et 
al. 2008). According to Gevaert and García-Haro (2015), there 
are four steps in a spatial unmixing-based fusion model: (1) 
clustering the high-resolution data set to define the end-
members, (2) calculating the fractions of each endmember 
within each coarse spatial resolution pixel, (3) unmixing the 
medium-resolution pixel, and (4) assigning reflectance spectra 
to the high-resolution pixels. The unmixing can be applied 
using only one land cover thematic map with a fine spatial 
resolution (i.e., prior classification results). The thematic map 
can be produced by interpreting the available fine spatial 
resolution data (e.g., land use database). For example, Zurita-
Milla et al. (2008) produced a 30 m Landsat-like time series 
by integrating one 30 m thematic map obtained by the clas-
sification of an available Landsat image and 300 m medium 
resolution imaging spectrometer time series. Furthermore, 
recent research illustrates that image pair-based and spatial 
unmixing-based methods can be combined (Zhu et al. 2016; 
Xie et al. 2016). Gevaert and García-Haro (2015) combined 
the advantages of STARFM and unmixing-based algorithms 
to propose a novel spatial and temporal reflectance unmix-
ing model, which directly estimates the land cover changes 
between two coarse images.

In summary, traditional spatiotemporal fusion methods are 
mostly based on fusing each fine-coarse image pair in a pixel-
wise process, which is not suitable for large-scale remote 
sensing data sets as the prediction is very time-consuming. In 
recent years, a variety of deep learning networks and large-
scale remote sensing data sets have been published. The po-
tential of deep learning-based spatiotemporal fusion methods 
needs to be further investigated, and novel methods should be 
proposed, mainly based on weak supervision.

Semantic Segmentation of Remote Sensing Image Using DeepLabV3+
Several studies have been carried out on using DeepLabV3+ 
for land cover classification tasks for aerial images. In a com-
parison study by Pashaei et al. (2020), the authors evaluated 
the performances of multiple semantic segmentation architec-
tures on unmanned aircraft vehicle images for efficient land 
cover mapping. The experimental results demonstrate that 
DeepLabV3+ has a great potential for accurate land cover pre-
diction tasks on a limited labeled image. On the other hand, 
some researchers extend the original DeepLabV3+ network to 
be more applicable for land observation images. For instance, 
Chen et al. (2019) proposed an improved network-based on 
DeepLabV3+ for semantic segmentation of high-resolution 
remote sensing images. The authors adopt dilated convolu-
tion by adding an augmented atrous spatial pyramid pool 
layer and a fully connected fusion path layer. As a result, 
dilated convolution enlarges the receptive field of feature 
points while the feature map resolution remains unchanged. 
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In addition to general land cover classification, DeepLabV3+ 
has been utilized for specific land cover mapping applications 
such as agricultural mapping (Du et al. 2019) and vegetation 
mapping (Ayhan and Kwan 2020). Here, we proposed its us-
age in a weakly supervised deep learning-based data fusion 
method.

Method
The workflow of the proposed approach to weakly supervised 
deep learning-based data fusion is shown in Figure 1. Details 
about each stage are presented in the next subsections.

Semantic Segmentation
The basic framework of our data-fusion model is the semantic 
segmentation network developed by Chen et al. (2018), name-
ly DeepLabV3+. It is the latest version of DeepLab semantic 
segmentation architecture, which utilizes an atrous spatial 
pyramid pooling (ASPP) module. It extends the previous 
version (DeepLabV3) by adding a decoder module to refine 
the segmentation results, especially along object boundaries 
(Chen et al. 2018). The framework achieves a state-of-the-art 
mean intersection-over-union of 89% on the PASCAL VOC 2012 

test. The ASPP mechanism improves the segmentation perfor-
mance by exploiting the multi-scale contextual information 
of the features. The encoder part of the network structure 
enables DeepLabV3+ to reduce the feature maps and capture 
semantic information, while the decoder part recovers the 
spatial information.

Preprocessing of Sentinel-1 SAR Images
The presence of speckle noise in the Sentinel-1 SAR images 
makes the interpretation of the contents difficult, thereby 
degrading the quality of the image. Therefore, an efficient 
speckle noise removal technique needs to be applied to the 
Sentinel-1 SAR images. In this study, SAR images are processed 
by the Enhanced Lee Filter (Lee 1981) to deal with the com-
mon problem of noisy edge boundaries. The filter algorithm 
operates by using edge directed windows. The local mean 
and local variance are computed using only the pixels in the 
edge directed window. After the speckle filtering, the images 
are enhanced by 2% of the linear stretch. The lowest and the 
highest 2% values are set to 0 and 255, respectively. Values 
in between are distributed from 0 to 255. As shown in Figure 
2, the noise in the high contrast areas is effectively removed, 
and the edges are enhanced.

Figure 1. The workflow of the proposed approach.

Figure 2. Example of raw Sentinel-1 SAR image (left) and the processed counterpart (right).
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Data Augmentation
Several augmentation techniques have been added to the 
data-loader module of the model network to improve the 
performance by enlarging the training data set. These include 
geometric transformations (e.g., flip, rotation, warp) and 
linear transformations (e.g., 2%–98% contrast stretch). All 
geometric transformations are randomly selected and applied 
to images, each with a probability of 0.5. The linear stretch is 
assumed to be useful as applying to images with low contrast 
(e.g., image taken during nighttime).

Label Refinement
In essence, the major task of this study is semantic segmenta-
tion on weakly-supervised training, in which the annotation 
(i.e., MODIS labels) is noisy and unreliable. To further improve 
the performance of the model, additional strategies were 
adopted to deal with noisy labels specifically. In the SEN12MS 
data set, images of each scene were selected and cropped to 
be relatively homogenous. Noises (or incorrect labels) nor-
mally exist at the edges of land cover parcels. For example, 
shorelines are not clearly shown on the MODIS maps. For that 
matter, an additional module was added to the model, which 
updates the labels every five epochs (an epoch refers to one 
cycle through the full training data set). Hence, only for the 
first five epochs, the model is trained on original MODIS labels. 
After the fifth epoch, the model outputs the intermediate pre-
dictions on all training samples and then obtains the updated 
labels by comparing the intermediate predictions with the 
original MODIS labels. The differences would be covered with 
an ignore mask, and only the intersection of the MODIS labels 
and the predictions are used for the next five epochs. Figure 3 
shows the label refinement steps.

Implementation Details
Our model was implemented on PyTorch and worked on one 
graphics processing unit (NVIDA 2070-super). The weights 
of a pretrained model on the ImageNet data set are used for 
the initialization of our model. It is worth mentioning that 
the number of land covers in the training data set is differ-
ent from the number of classes in the ImageNet data set, so 
the logit weights in the pretrained model are excluded. In 
this work, several modifications were made to the original 
DeepLabV3+ network. Preprocessing of Sentinel-1 SAR images 
and data augmentation were added to the data-loader module 
of the network, and the structure of the network was altered 

to update the label during the training process. In addition, 
the original DeepLabV3+ is used as the baseline model to 
compare with our model. Both models were trained for 50 
epochs, and the average time per epoch is around one hour. 
The training parameters of our model and the baseline are 
presented in Table 1.

Table 1. Training parameters used for the  
baseline model and our proposed model.

Baseline Ours

Pretrained on ImageNet True True
SAR image preprocessing False True
Data augmentation True True
Label refinement False True
Backbone network ResNet-101
Momentum 0.9
Initial learning rate 0.001
Number of epochs 50
Batch size 16
Output stride 16
Weight decay 0.00005

Experiments and Discussion
Data Set
The model is trained on a public satellite imagery data set, 
SEN12MS, which was published by Schmitt et al. (2019). This 
data set contains globally distributed scenes, covering inhab-
ited continents during all meteorological seasons. SEN12MS 
includes 180 662 triplets of Sentinel land cover maps (see 
Figure 4), dual-polarized (VV and VH) SAR Sentinel-1 image 
patches, and Sentinel-2 multispectral image patches. Each 
image is cropped to a size of 256 × 256 pixels. While all data 
are oversampled to be at a ground sample distance of 10 m, 
the Sentinel images have a native resolution of about 10 to 60 
m per pixel, and the MODIS-derived land cover has a native 
resolution of 500 m per pixel.

The Sentinel-1 SAR images were provided in the original 
form with no preprocessing (e.g., speckle filtering). For the 
Sentinel-2 multispectral images, a sophisticated mosaicking 
workflow was implemented to avoid the impacts of cloud-
covered images. On the other hand, the MODIS land cover maps 
were created based on calibrated MODIS reflectance data in 

Figure 3. Label refinement process (the ignored mask is in white).
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2016. The raw reflectance data was classified following the 
International Geosphere-Biosphere Programme (IGBP) classifica-
tion scheme (Loveland and Belward 1997) and land cover clas-
sification system (LCCS) scheme (Di Gregorio 2005). Moreover, 
sophisticated postprocessing is carried out for class-specific re-
finement, which integrates prior knowledge, auxiliary informa-
tion, and temporal regularization based on a Markov random 
field (Schmitt et al. 2019). For different classification schemes, 
the provided MODIS maps have overall accuracies of approxi-
mately 67% under IGBP, 74% under LCCS land cover, and 81% 
under LCCS land use (Sulla-Menashe et al. 2019). For this study, 
a simplified version of IGBP was chosen to be the classification 
scheme. It means that the coarse label used in this study can 
only correctly annotate at most 67% of the image pixels.

The data set of the 2020 IEEE Geoscience and Remote 
Sensing Society Data Fusion Contest (DFC2020) was used 
to validate and test the performance of our deep learning 
spatiotemporal fusion model. The DFC2020 data set contains 
scenes with undisclosed geolocation and not contained in the 
SEN12MS data set, with semimanually derived high resolution 
(10 m) land cover maps as the ground truth labels. In addition 
to the high-resolution ground truth labels, the validation and 
testing images are provided in the same triplet format as the 
training data set (i.e., corresponding Sentinel-1, Sentinel-2, 
and MODIS labels). The validation set contains 986 quadru-
plets, and the testing set has 5128 quadruplets (see Figure 5).

Classification Scheme and Evaluation Metric
A simplified version of the IGBP classification scheme is used 
for this project. As shown in Table 2, the original IGBP scheme 
has 17 classes in total. The simplified scheme has 10 classes.

The fusion results were evaluated using the classification 
accuracy as the quantitative indicator. The higher the accura-
cy is, the training model has a stronger ability to classify land 
cover features. The accuracy is defined by

 
Accuracy = ==[ ]

=
∑1

0m
f y

i

m

i i ,
 

(1)

where m is the number of samples, fi and yi are the true and 
predicted pixel label values, and [.] is the Iverson bracket 
operator, which evaluates to 1 when the labels match, and to 
0 when labels mismatch.

Quantitative Results
It took about 25 minutes for the trained model to predict the 
5128 images of the testing set. The results on the validation 
set and the testing set for the baseline and the proposed mod-
els are shown in Tables 3 and 4, respectively. The overall per-
formances were assessed using average class accuracy (AA), 
which indicates the mean of the accuracies of all land cover 
classes in the simplified IGBP scheme. It is worth mention-
ing that the validation and testing data set does not include 
savanna (Class 3) and snow/ice (Class 8).

Figure 4. An example of SEN12MS triplets.

Figure 5. An example of DFC2020 quadruplets.

Table 2. Original and simplified IGBP land cover classification 
schemes.

Simplified 
Class No.

Simplified 
Class Name IGBP Class Name

IGPB 
Class No.

1 Forest

Evergreen Needleleaf Forest 1
Evergreen Broadleaf Forest 2

Deciduous Needleleaf Forest 3
Deciduous Broadleaf Forest 4

Mixed Forest 5

2 Shrubland
Closed Shrublands 6
Open Shrublands 7

3 Savanna
Woody Savannas 8

Savannas 9
4 Grassland Grasslands 10
5 Wetlands Permanent Wetlands 11

6 Croplands
Croplands 12

Cropland/Natural  
Vegetation Mosaics

14

7
Urban/

Built-Up
Urban/Built-Up 13

8 Snow/Ice Permanent Snow and Ice 15
9 Barren Barren 16
10 Water Water Bodies 17
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From the comparative analysis between the baseline model 
and our model, it can be observed that our model achieves 
51.95% on the validation set and 50.18% on the testing set, 
which outperforms the baseline model that obtains 41.34% 
and 41.12%, respectively. Additionally, for each class, the 
proposed model reaches higher performance than the baseline 
model on most land cover classes, except grassland (Class 4). 
The highest accuracies are related to forest (Class 1), urban/
built-up (Class 7), and water (Class 10). Considering the spec-
tral characteristics of these classes, the high accuracies are 
the results of the effectiveness of the model to extract distinct 
pixel values. On the contrary, the model performs poorly on 
identifying shrubland (Class 2) and barren (Class 9). Neither 
of the two classes reaches 5% accuracy. It could be the results 
of the relatively high textural and spectral similarities be-
tween grassland and shrubland and that of urban and barren.

According to the normalized confusion matrix shown in 
Table 5, the deep network was successful in predicting pixels 
belonging to the forest, urban, and water. Compared to the 
other classes, water represents the least confused class. Only 
a small portion of water pixels was misclassified as a wetland. 
However, real wetland pixels are mostly confused with water 
pixels, while barren pixels are most likely confused with 
urban. Pixels belonging to shrubland, grassland, and cropland 
are more likely to be confused with each other. It is notice-
able that these confused classes exhibit very high interclass 
similarities. The heterogeneity of urban areas also resulted in 
confusing urban pixels and all other classes.

Qualitative Comparison
In addition to the accuracy evaluations, the visualization 
of the predicted maps was also presented for a qualitative 
overview of the spatial resolution enhancement of the land 
cover mapping. Enhanced land cover maps obtained by our 
model are shown in Figures 6a and 6b to demonstrate how 
the model performs on predicting different land covers. Each 
example includes the input Sentinel-2 multispectral image, 
the input Sentinel-1 SAR image, the original MODIS label/map, 
the enhanced map from the prediction of our model, and the 
DFC2020 ground truth label/map. As shown in Figure 6, the 
detection of shorelines and beaches are well recognized on 
the enhanced land cover map, with smoothed boundaries 
between land cover parcels.

Figure 6b shows that the model successfully reduced the 
impact of the misclassified label of grassland on the cor-
responding MODIS land cover map. Moreover, by visually 
analyzing the input image and the DFC ground-truth label, we 
can find that the DFC map underestimates the area of urban/
built-up in this image. In contrast, the enhanced map cor-
rectly detects the presence of buildings. It indicates that even 
the ground truth label could still contain minor misclassifica-
tions. Additionally, Figure 6c shows that the model poorly 
identifies narrow rivers or small ponds despite the significant 
spectral differences. Both Figure 6c and 6d show that our 
model tends to misclassify cropland, wetland, and grassland.

The incorrect MODIS label certainly misleads the predic-
tion, but the misclassification could also result from spectral 
similarities between the three land covers. For example, the 
paddy field is one type of cropland, but it is very similar to 
wetland (a mix of water and vegetation) as it contains a lot of 
water. Additionally, irregular cropland can also be confused 
with natural grassland. Our study demonstrated that the 
proposed model has difficulties in separating shrubland from 
cropland or grassland, see Figure 6d, and difficulties in the 
segmentation of barren, see Figure 6e.

In summary, the proposed model tends to be biased toward 
high represented classes such as forest, grassland, and urban. 
This is probably related to the fact that those classes exhibit 
more general textural and spectral characteristics, confus-
ing the model prediction. In any case, our model presented 
results superior to the baseline with a significant margin.

Conclusion
In this paper, a weakly supervised deep learning-based ap-
proach was proposed for the fusion of satellite data at high 
spatial resolution (Sentinel-1 and Sentinel-2) with satellite-
derived land cover maps at high temporal resolution (MODIS) 
to perform the enhanced land cover mapping. Considering the 
large spatial resolution gap between Sentinel and MODIS im-
ages, the fusion was conducted through a weakly supervised 
semantic segmentation. We modified the original DeepLabV3+ 
segmentation architecture by adding a label-update module to 
update the coarse label throughout the training automatically. 

Table 3. Performances on the validation set.

Baseline (%) Ours (%)

Average class accuracy (AA) 41.34 51.95
Pixel-wise accuracy (PA) 50.17 62.99

Forest (Class 1) 62.61 85.67
Shrubland (Class 2) 1.07 13.58
Grassland (Class 4) 48.21 26.23
Wetlands (Class 5) 14.02 29.98
Croplands (Class 6) 43.54 75.04

Urban/built-up (Class 7) 66.35 84.51
Barren (Class 9) 0.21 3.74
Water (Class 10) 94.72 96.87

Table 4. Performances on the testing set.

Baseline (%) Ours (%)

Average class accuracy (AA) 41.12 50.18
Pixel-wise accuracy (PA) 49.93 62.57

Forest (Class 1) 60.04 74.53
Shrubland (Class 2) 2.31 14.17
Grassland (Class 4) 50.05 46.75
Wetlands (Class 5) 12.45 28.48
Croplands (Class 6) 41.59 64.29

Urban/built-up (Class 7) 69.26 77.78
Barren (Class 9) 0.37 1.20
Water (Class 10) 92.92 94.22

Table 5. Normalized confusion matrix for our model on DFC2020 testing set.

Class Forest Shrubland Grassland Wetland Cropland Urban/Built-Up Barren Water

Forest 0.75 0.11 0.07 0.01 0.05 0.01 0.00 0.00

Shrubland 0.23 0.14 0.45 0.02 0.14 0.01 0.01 0.00

Grassland 0.12 0.15 0.47 0.01 0.23 0.02 0.00 0.00

Wetlands 0.05 0.03 0.03 0.28 0.14 0.00 0.00 0.47

Croplands 0.01 0.07 0.13 0.10 0.64 0.00 0.00 0.05

Urban/built-up 0.06 0.02 0.04 0.02 0.03 0.78 0.01 0.04

Barren 0.07 0.14 0.05 0.00 0.05 0.62 0.01 0.06

Water 0.00 0.00 0.00 0.05 0.01 0.00 0.00 0.94
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The experiment results have validated the effectiveness and 
potential of deep learning-based semantic segmentation archi-
tecture in the fusion of multi-source satellite data, improving 
land cover mapping.
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