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A B S T R A C T   

As the optical remote sensing techniques keep developing with a rapid pace, remote sensing images are positively 
considered in many fields. Accordingly, a great number of algorithms have been exploited for remote sensing 
image interpretation purposes. Thereinto, object recognition acts as an important ingredient to many applica-
tions. However, to achieve highly accurate object recognition is still challengeable caused by the orientation and 
size diversities, spatial distribution and density variations, shape and aspect ratio irregularities, occlusion and 
shadow impacts, as well as complex texture and surrounding environment changes. In this paper, a sparse 
anchoring guided high-resolution capsule network (SAHR-CapsNet) is proposed for geospatial object detection 
based on remote sensing images. First, formulated with the multibranch high-resolution capsule network ar-
chitecture assisted by multiscale feature propagation and fusion, the SAHR-CapsNet can extract semantically 
strong and spatially accurate feature semantics at multiple scales. Second, integrated with the efficient capsule- 
based self-attention module, the SAHR-CapsNet functions promisingly to attend to target-specific spatial features 
and informative channel features. Finally, adopted with the capsule-based sparse anchoring network, the SAHR- 
CapsNet performs efficiently in generating a fixed number of lightweight, high-quality sparse region proposals. 
Quantitative assessments and comparative analyses on two challenging remote sensing image datasets demon-
strate the applicability and effectiveness of the developed SAHR-CapsNet for geospatial object detection 
applications.   

1. Introduction 

Employing the bird-view surveying means, optical remote sensing 
imaging sensors have the superiorities of large perspectives, less ground 
condition restrictions, and convenience in data acquisition. They can 
rapidly and cost-effectively acquire high-quality, varying-resolution 
remote sensing images reflecting the details and changes of the land 
covers. Consequently, remote sensing images are widely and intensively 
used in many applications ranging from environmental monitoring 
(Rishikeshan and Ramesh, 2018), land use mapping (Xu and Somers, 
2021), agricultural management (Sagan et al., 2021) to intelligent 
transportation systems (Lu et al., 2021). To date, intensive attentions 
have attracted to conduct intelligent interpretation of remote sensing 
images aiming at promoting the automation level, the processing effi-
ciency, and the accuracy of the output products (Ma et al., 2019). Among 
the various researches, geospatial object detection is a hot topic and 

behaves as important prerequisite to many applications. In the litera-
ture, numerous algorithms and techniques have been developed for 
geospatial object detection tasks, especially the recent breakthroughs 
achieved by the deep learning models (Li et al., 2020). The output of 
geospatial object detection pipelines usually involves the accurate 
localization parameters and the correct object category labels. 

Unlike the upright features of the objects exhibiting in ground- 
shooting images, geospatial objects in remote sensing images usually 
demonstrate top views with arbitrary orientations (Cheng and Han, 
2016). A typical issue is that some geospatial objects exhibit severe 
incompleteness resulted in by the occlusions of nearby high-rise land 
covers. In addition, the illumination condition changes often generate 
different-level and different-area shadow covers on the geospatial ob-
jects. Furthermore, the size variations, shape irregularities, spatial dis-
tribution diversities, texture inconsistencies, and inter-category 
similarities of the geospatial objects are also common phenomena in the 
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remote sensing images. In fact, to achieve highly accurate recognition of 
geospatial objects on a par with human-level identification qualities is 
still challengeable, especially for the small-size, irregular-shape, 
densely-distributed, and severely-contaminated objects. Therefore, 
exploiting advanced solutions to further promote the detection effi-
ciency and accuracy is significantly necessary. 

In this paper, a novel two-stage anchor-free architecture is presented 
to detect oriented geospatial objects based on remote sensing images. 
This architecture comprises a high-resolution capsule network for mul-
tiscale feature extraction, a sparse anchoring network for lightweight 
region proposal generation, and a multi-category classification network 
for object detection. On account of the formulation of the high- 
resolution capsule network as the feature extraction backbone, the 
integration of the efficient self-attention module as the feature promo-
tion mechanism, and the development of the sparse anchoring network 
as the region proposal generation strategy, the proposed architecture 
behaves competitively to detect geospatial objects of varied sizes and 
orientations, different densities and distributions, diverse shapes and 
aspect ratios, and complex surface and environmental conditions. The 
main contributions are embodied in the following aspects: (1) A multi-
branch high-resolution capsule network architecture functioned with 
multiscale feature propagation is designed to extract semantically strong 
and spatially accurate feature representations for well encoding geo-
spatial objects of varying sizes. Compared with the high-resolution 
network (HRNet) (Sun et al., 2019; Wang et al., 2021b) made of scalar 
neurons, the proposed high-resolution capsule network with capsule 
primitives and modified multiscale feature fusion strategy performs 
better in high-quality entity-aware feature representation. (2) A capsule- 
form efficient self-attention module composed of spatial feature and 
channel feature attention units is designed to well attend to target- 
specific spatial features and informative channel features for further 
boosting the feature encoding quality and robustness. Specifically, the 
channel feature attention unit serves positively to emphasize geospatial 
objects of different sizes and the spatial feature attention unit functions 
excellently to suppress the impacts of the background features. (3) A 
capsule-based sparse anchoring network is designed to automatically 
produce a set of lightweight, high-quality sparse region proposals for 
highly efficient object recognition. Without the burdensome regression 
and selection of high-quality region proposals from the numerous can-
didates, the sparse anchoring guided implementation effectively accel-
erates the processing efficiency. 

The rest of the paper has the following section organizations. Section 
2 reviews the deep learning models for geospatial object recognition 
tasks. Section 3 details the implementation of the sparse anchoring 
guided high-resolution capsule network. Section 4 presents the experi-
mental analyses and comparisons. Section 5 provides the conclusions. 

2. Related works 

2.1. One-stage models 

The one-stage models are formulated with a single network archi-
tecture, which directly conduct object recognition and regression based 
on the extracted feature maps. Yao et al. (2021b) proposed a multiscale 
convolutional neural network (CNN) architecture to alleviate the 
detection accuracy degradation of small-size objects by exploiting 
multiscale features and contextual cues. Courtrai et al. (2020) combined 
the super-resolution technique with a generative adversarial network 
(GAN) to enlarge the small-size objects, thereby improving the object 
details. Lei et al. (2020) designed a region-enhanced CNN model 
directed with a saliency map aiming at enhancing the object region 
saliencies to achieve better detections. Shi et al. (2021) integrated a 
geometric transform module and a global contextual feature fusion 
module into a one-stage model to, respectively, capture the rotation and 
flip transformations and boosted the feature semantics via a spatial 
attention mechanism. Hou et al. (2021) proposed a self-adaptive aspect 

ratio anchor formulation to depict the orientations of objects. In this 
formulation, each category of objects was determined with appropriate 
aspect ratios for regressing objects of varying orientations. Liu et al. 
(2021b) developed a center-boundary dual attention network (CBDA- 
Net) for detecting oriented objects with an anchor-free strategy. The 
dual attention mechanism served positively for attending to the center 
and boundary regions of objects, thereby suppressing the influence of 
the background. In addition, you only look once (YOLO) models (Pham 
et al., 2020), part-based CNN (Sun et al., 2021), Siamese graph 
embedding network (Tian et al., 2021), and fisher vectors (Wang et al., 
2021a) were also exploited for geospatial object detections. 

2.2. Two-stage models 

An important component in two-stage object recognition architec-
tures is the region proposal network (RPN), which functions to produce 
numerous dense object candidates for assisting object recognition and 
localization. On the issues of size and spatial distribution variations of 
objects, Zhang et al. (2019) designed a scale-sensitive proposal gener-
ation network, which comprised multilayer RPNs for generating object 
proposals at multiple scales. Jiang et al. (2020) combined the misplaced 
localization strategy into an encoder-decoder architecture to adapt to 
the identification of elongated-shape and small-size objects. For pro-
moting the quality of the generated region proposals, Zhong et al. (2018) 
designed a location-aware balancing network for alleviating the position 
shift caused by convolution operations. Wang et al. (2021c) proposed a 
feature-reflowing pyramid network (FRPNet), which was integrated 
with a nonlocal block for between-region relevance exploitation, to 
detect multiscale, multiclass objects. Aiming at boosting the feature 
representation robustness at different scales, Cheng et al. (2021) 
developed a multiscale feature augmentation strategy, which compre-
hensively took into account the feature semantics from different scales. 
Differently, Zheng et al. (2020) constructed a hyper-scale object detec-
tion network to exploit hyper-scale feature semantics at different reso-
lutions. Considering the image capturing height, Jin and Lin (2020) 
constructed a scale-aware network with the assistance of adaptive an-
chors. The height-based preset of the anchor scales effectively reduced 
the scale searching space. To enhance the feature representation quality, 
Chen et al. (2020b) embedded the spatial and channel attention mech-
anisms into the feature extraction backbone to, respectively, concentrate 
on the spatial regions related to the foreground and strengthen the 
useful feature channels. 

2.3. Oriented bounding box based models 

To effectively handle arbitrarily-oriented objects, some researches 
improved the RPN to generate more accurate region proposals by using 
oriented anchors. Fu et al. (2020) developed an orientation-aware CNN 
for enclosing objects with oriented bounding boxes. In this network, the 
RPN augmented the anchors with different orientations. Liu et al. 
(2021a) developed a multidirectional RPN, which can generate oriented 
region proposals based on a three-side formulation. Li et al. (2019) 
designed a residual network functioned with rotatable region proposals 
to detect vehicles of varying orientations. This network adopted a 
rotatable RPN to produce oriented anchors with a batch averaging 
rotatable anchor initialization strategy. Aiming at improving the anchor 
matching efficiency and quality, Xiao et al. (2021) suggested a self- 
adaptive anchor selection strategy. In their implementation, an adap-
tive thresholding module and a coordinate regression module were 
applied to regress accurate rotated bounding boxes. To exploit contex-
tual properties of objects and suppress the background interferences, Ye 
et al. (2020) developed a feature aggregation and filtering network, 
where a feature filtering module was used to weaken the background 
impacts. As for the issue of coarsely labelled data, Shin et al. (2020) 
suggested a hierarchical multi-label object detection pipeline by using a 
clustering-guided cropping scheme. 
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2.4. Anchor-free models 

With the purpose of improving the processing efficiency and 
reducing the task-dependent anchor design, some anchor-free strategies 
have been recently exploited to produce region proposals. Fang et al. 
(2020) proposed a semi-anchor-free detector (SAFDet) to handle ori-
ented objects with the assistance of the region of interest (ROI) trans-
former and attention models. In the SAFDet, an anchor-free-based 
branch was integrated for highlighting the foreground properties. Yu 
et al. (2020) developed an orientation guided anchoring (OGA) mech-
anism for automatically generating lightweight, high-quality oriented 
region proposals. Through orientation ROI (OROI) pooling, arbitrarily- 
oriented objects can be recognized in a consistent way. To solve the 
orientation diversity issue of ships in complicated environments, Yang 
et al. (2021) presented a one-stage anchor-free architecture, which 
comprised a detection head for bounding box regression and a center 
localization head for detection result augmentation. Wang et al. (2019) 
designed a deconvolutional object detection network, which leveraged a 
deconvolutional RPN to generate reference boxes. By considering the 
multilevel feature semantics to guide the region proposal generation, Xu 
et al. (2020) presented a hierarchical feature propagation architecture 
for upgrading the object recognition accuracy. Chen et al. (2020a) 
designed a two-phase pipeline by using a couple of spatial density 
building nets (SDBNs), which functioned for region proposal generation 
and object categorization, respectively. In addition, weakly supervised 
model (Yao et al., 2021a), attention mask R-CNN (Nie et al., 2020), deep 
hash assisted network (Wang et al., 2020), and global density fused CNN 
(Zhang et al., 2020) were also designed to detect geospatial objects. 

3. Methodology 

The architecture of the proposed sparse anchoring guided high- 
resolution capsule network (SAHR-CapsNet) is presented in Fig. 1, 
which employs a two-stage processing pipeline to detect arbitrarily- 
oriented geospatial objects with the assistance of sparse region pro-
posals. The SAHR-CapsNet involves three components: a feature 
extraction backbone network, a sparse anchoring network, and a geo-
spatial object detection network. The feature extraction backbone 
network is formulated with a multibranch, high-resolution capsule 
network architecture, which follows the HRNet architecture (Sun et al., 
2019; Wang et al., 2021b) and can provide semantically strong and 
spatially accurate feature representations at multiple scales. The sparse 
anchoring network can automatically output a set of sparse and oriented 
region proposals at each feature scale. The object detection network 
converts the different-size, varying-orientation region proposals into a 
consistent representation to conduct object recognition and fine-grained 
bounding box regression. 

3.1. Revisit of capsule network 

Capsules are structurized as a one-dimensional tensor formulation, 
which consists of a set of instantiation parameters. A significant property 
is that, by using the tensor-form capsules, capsule networks can simul-
taneously encode the feature existence probability based on the capsule 
length and the inherent properties through the instantiation parameters. 
More importantly, such a tensor formulation enables a capsule to 
recognize a feature and adapt to its variants by adjusting its instantiation 
parameters. Therefore, due to the advantageous characteristics, capsule 
networks are positively leveraged in different remote sensing applica-
tions, including object detection (Yu et al., 2019), object segmentation 
(Ren et al., 2020), change detection (Xu et al., 2021), and land cover 
mapping (Jiang et al., 2021). 

In the capsule networks, a capsule takes the following transformed, 
weighted sum of the predictions from the prepositive capsules as the 
input: 

Cj =
∑

i
aijWijUi (1) 

where Cj denotes the input to a capsule j; Ui represents the output of a 
prepositive capsule i; Wij acts as a transformation matrix; aij denotes a 
contribution coefficient reflecting the amount of prediction cast by 
capsule i. These coefficients can be computed by an improved version of 
the dynamic routing process (Rajasegaran et al., 2019). 

Since the feature saliency is encoded by the capsule length, longer 
capsules should contribute more to the predictions, whereas shorter 
capsules should be considered less to the predictions. In this regard, the 
following squashing function (Sabour et al., 2017) is used to transform 
the aggregated predictions to a capsule: 

Uj =

⃦
⃦Cj

⃦
⃦2

⃦
⃦Cj

⃦
⃦2

+ 1
⋅

Cj⃦
⃦Cj

⃦
⃦

(2) 

where Cj and Uj denote the input and output of the capsule, 
respectively. Following this transformation, the lengths of long capsules 
are augmented to contribute more, whereas the lengths of short capsules 
are suppressed to contribute less. 

3.2. Feature extraction backbone network 

Differing from the common deep learning models that usually follow 
a cascaded pattern to mine multiscale/multilevel features, the HRNet 
opens up a new design pattern by paralleling multiple branches to 
simultaneously extract high-level features at different scales. Thus, 
taking advantage of the powerful high-order feature encoding capability 
of capsules and the superior multiscale feature representation property 
of the HRNet architecture, the feature extraction backbone network is 
designed with a high-resolution capsule network (HR-CapsNet) archi-
tecture aiming at extracting multiscale high-level feature 

Fig. 1. Architecture of the proposed sparse anchoring guided high-resolution capsule network.  
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representations for effective multiscale object detection. As shown in 
Fig. 1, the HR-CapsNet backbone comprises multiple parallel branches 
of different resolutions, each of which dedicates to extracting high-level 
and strong feature semantics at a particular scale. An important property 
of the multibranch parallel architecture is that high-resolution feature 
representations can be maintained through the entire network to grad-
ually achieve high-level feature encodings. 

The HR-CapsNet backbone starts with a high-resolution branch for 
maintaining the identical spatial resolution to the input image. This is 
the key component to realize spatially accurate feature extraction. Then, 
high-to-low resolution branches are gradually added in a parallel 
manner to access larger feature contexts with the gradual enlargement 
of the receptive fields. In our architecture, the scaling factor is set as 0.5. 
Note that, the feature maps in the same branch maintain the same spatial 
resolutions and sizes, which is beneficial to avoiding the localization 
accuracy loss at a particular scale. Specifically, the initial high- 
resolution branch starts with two scalar convolutional layers for 
extracting low-level features, which are further leveraged to construct 
high-order capsule formulations. 

To facilitate capsule feature computation, the high-to-low resolution 
branch addition and the multiscale feature fusion processes are modi-
fied. As shown by Fig. 2(a), to add a new lower-resolution branch, the 
different-resolution feature maps from the established branches are first 
downscaled to the same spatial size as configured by the newly added 
branch for facilitating feature concatenation. Then, the concatenated 
feature maps are operated by a 1 × 1 capsule convolution for feature 
fusion, resulting in the primary lower-resolution feature map. Mean-
while, multiscale feature propagation is carried out among the previ-
ously established branches to comprehensively take into account the 
multiscale, multiresolution features to promote the feature semantics at 
each scale. Concretely, as shown by Fig. 2(b) to (d), when propagating 
features from a higher-resolution branch, a feature map is downscaled to 
the spatial size as configured by the target branch. In contrast, when 
propagating features from a lower-resolution branch, a feature map is 
upscaled to the spatial size as configured by the target branch. Then, the 
feature map from the target branch is directly copied and concatenated 
with the scale-adjusted feature maps from the other branches. Finally, 
the concatenated feature maps are operated by a 1 × 1 capsule convo-
lution for feature fusion, resulting in a feature map with strong seman-
tics at the target branch. This multiscale feature propagation process is 
the key technique of the HR-CapsNet, which effectively boosts the 
feature semantics to achieve high-level feature representations at 
different scales. 

As illustrated by Fig. 1, this multiscale feature propagation and 
fusion mechanism is carried out several times to continually boost the 
feature quality at each scale. Finally, the HR-CapsNet backbone outputs 
a group of multiscale semantically strong and spatially accurate feature 
maps, which perform excellently to characterize geospatial objects of 
varying sizes. 

Note that, for each branch of the HR-CapsNet backbone, the capsule 

convolutions operate almost equally on the feature maps towards 
capsule feature extraction. On one hand, the informativeness of different 
feature channels are characterized weakly, thereby unfavorable to get 
high-quality feature representations. On the other hand, the spatial 
features covering the foreground areas are not well focused on to 
weaken the influences of the background areas, thereby not helpful to 
obtain class-specific feature encodings. Therefore, aiming at further 
boosting the quality of the multiscale feature semantics extracted by the 
HR-CapsNet backbone to emphasize the informative feature semantics 
and suppress the useless ones, we construct a capsule-based efficient 
self-attention (ESA) module. As illustrated by Fig. 3, the ESA module 
comprises a spatial feature attention (SFA) unit and a channel feature 
attention (CFA) unit for modulating the spatial and channel features, 
respectively. 

In the CFA unit, the input multi-dimensional feature map is first 
operated by a 1 × 1 capsule convolution to get a one-dimensional 
feature map FA ∈ RH×W×64 (H and W denote the height and width of 
the input feature map) that reflects the channel-wise feature saliencies. 
That is, the capsules with higher responses have more salient features in 
the corresponding channel. Considering the size variations of geospatial 
objects, the CFA unit is designed with two parallel branches for, 
respectively, exploiting the global and local channel-wise in-
terdependencies with the purpose of effectively and simultaneously 
emphasizing the large-size and small-size objects. Concretely, the first 
branch starts with a global average pooling (GAP) operated on feature 
map FA for collecting the channel-wise informativeness with a global 
perspective for emphasizing large-size objects; whereas, the second 
branch starts with a local average pooling (LAP), having the stride of 1 
and the kernel size of n × n, performed on feature map FA to collect the 
channel-wise informativeness with a local perspective for emphasizing 
small-size objects. Then, for each branch, two point-wise convolution 
(PConv) based convolutional layers, with the kernel size of 1 × 1, are 
connected up for exploiting cross-channel interdependencies. The two 
branches produce two feature maps CG ∈ R1×1×64 and CL ∈ RH×W×64, 
which can be treated as two attention maps and reflect the significance 
of the feature channels of the input feature map with global and local 
perspectives, respectively. To be specific, each element of CG encodes 
the informativeness of the corresponding channel of the input feature 
map and the element in each channel of CL encodes the significance of 
the feature at the corresponding position of the input feature map. 
Finally, these two attention maps are added in a channel-wise manner 
and activated with the sigmoid function for obtaining the channel 
attention map that is used as weight factors to promote the contributions 
of the useful feature semantics. The channel attention map AC ∈

RH×W×64 is computed as follows: 

AC(i, j, c) = sigmoid(CG(c) + CL(i, j, c)) (3) 

where AC(i,j,c) is the element at position (i, j) in the c-th channel of 
AC, CG(c) is the c-th element of CG, CL(i,j,c) is the element at position (i, j) 
in the c-th channel of CL, and sigmoid(⋅) denotes the sigmoid function. 

Fig. 2. Illustrations of (a) adding a new lower-resolution branch and multiscale feature propagation for generating (b) high-, (c) medium-, and (d) low-resolution 
feature maps. 
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Eventually, the channel-wisely recalibrated feature map FC is obtained 
by multiplying the input feature map with the channel attention map AC 
channel-wisely and element-wisely. 

In the SFA unit, the input feature map is first operated by three 1 × 1 
capsule convolutions to get the value feature map FV ∈ RH×W×64×16, the 
key feature map FK ∈ RH×W×64, and the query feature map FQ ∈

RH×W×64, where W and H denote the input feature map’s width and 
height. Specifically, each capsule of FV represents a response at a posi-
tion in the input feature map. That is, the longer the length of a capsule, 
the more the feature responses of the capsule. Each channel in FK can be 
viewed as a spatial attention map that encodes a kind of spatial semantic 
property about the responses in each channel of FV. The weights in the 
spatial attention map reflect the contribution levels of the corresponding 
capsules for calculating the spatial semantic property. The elements at 
each position of FQ represent the spatial attention coefficients for the 
spatial semantic properties at that position. These coefficients cooper-
atively determine the feature saliency at the corresponding position of 
the input feature map. To facilitate computation, we channel-wisely 
flatten these three feature maps and reshape them to constitute the 
value matrix V ∈ RN×64×16, the key matrix K ∈ R64×N, and the query 
matrix Q ∈ RN×64, where N = W × H denotes the number of positions of 
the input feature map. Next, a global context matrix G ∈ R64×64×16 is 
produced by performing matrix multiplication between K and V (i.e., 
KV). Here, K acts as weight factors covering all the positions of V to 
aggregate the responses to generate a set of spatial semantic properties. 
Therefore, a spatial semantic property is encoded in each row of G. To be 
specific, each row of K is activated by a softmax function before carrying 
out matrix multiplication. Afterwards, matrix multiplication is per-
formed between Q and G (i.e., QG) to comprehensively and weightedly 
take into account the spatial semantic properties to obtain a spatially 
modulated feature at each position. Eventually, by rearranging each 
column of the product matrix into a feature channel, we obtain a 
spatially recalibrated feature map FS. Note that, by adopting such a 
spatial feature attention mechanism (i.e., following the calculation 
sequence of Q(KV)), the computation complexity and the number of 
parameters are significantly reduced compared with the non-local block 
formulation (Wang et al., 2018), which adopts the calculation sequence 
of (QK)V to conduct spatial feature recalibration. As illustrated by Fig. 3, 
the feature maps FS and FC produced by the SFA and CFA units are 
concatenated for fusion by performing a 1 × 1 capsule convolution, 

resulting in a quality-boosted feature map that explicitly attends to both 
the channel-wisely informative and spatially class-specific features. 

As illustrated by Fig. 1, the ESA module is integrated into each 
branch of the HR-CapsNet backbone to promote the feature represen-
tation quality at each scale. Concretely, for each branch, before carrying 
out feature propagation, the feature map is first fed into the ESA module 
to conduct feature recalibration. Then, the quality-boosted feature map 
output by the ESA module is used for cross-branch feature propagation 
and fusion. 

3.3. Sparse anchoring network 

As shown in Fig. 4, to characterize geospatial objects of arbitrary 
orientations, we leverage the following five-tuple representation: (x, y, 
h, w, α), where (x, y) represents the center of an object, h and w represent 
the height and width of the oriented bounding box of the object, and α 
represents the orientation of the bounding box. Specifically, h is defined 
as the bounding box’s short side, w is defined as the bounding box’s long 
side, and α ∈ [0,π) is defined as the angle included between the direction 
parallel to the bounding box’s long side and the positive direction of the 

Fig. 3. Structure of the proposed efficient self-attention (ESA) module. H and W are the height and width of the input feature map.  

Fig. 4. Illustration of the five-tuple representation of an arbitrarily- 
oriented object. 
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x-axis along clockwise direction. 
The RPN-based models generally deploy several predefined anchors 

having different aspect ratios and scales at each position of the feature 
map to direct the generation of object region proposals. The deficiency 
of the anchor-based strategy lies in the following two aspects: First, in 
most cases, the anchor design is task-dependent. That is, a new set of 
anchors are usually required to be designed for different detection tasks. 
Second, the processing efficiency is degraded caused by the regressions 
and selections of the large-volume anchors. Therefore, exploiting an 
effective technique to automatically produce a small quantity of region 
proposals of high qualities completely covering foreground regions with 
an anchor-free manner without the predetermination of anchors is 
significantly favorable to enhance the two-stage object recognition 
efficiency. 

In this paper, we develop a sparse anchoring network (SAN) to 
conduct object region proposal generation based on the above five-tuple 
representation. The novelties of the SAN are embodied in the following 
two aspects: First, the generation of region proposals is task-independent 
and anchor-free without the predesign of anchors. Second, a small, fixed 
number of high-quality region proposals are automatically generated to 
encapsulate the objects of interest. Therefore, the object detection effi-
ciency can be dramatically promoted and the detection accuracy can be 
well maintained in the meantime. As shown in Fig. 5, the SAN is 
designed with a lightweight capsule fully-connected network with a 
fixed number of outputs. Concretely, two capsule fully-connected layers 
are mounted on the input feature map to access the feature contexts with 
a global perspective. The output layer involves M sets of fully-connected 
layers, each of which contains five one-dimensional capsules for pre-
dicting the five parameters of an oriented region proposal. That is, only 
M region proposals distributing on the input feature map are generated 
rather than the selected ones from hundreds of thousands of candidates 
in the RPN. Note that, since the object sizes might vary greatly in a 
feature map, instead of directly predicting the large-range parameters 
(x, y, h, w), we adopt the following transformations to restrain them to a 
small range: 

x = dxHF (4)  

y = dyWF (5)  

h =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

W2
F + H2

F

√

2
edh (6)  

w =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

W2
F + H2

F

√

2
edw (7) 

where HF and WF denote the height and width of the input feature 
map. The SAN only requires to predict the small-range parameters (dx, 
dy, dh, dw) and the parameter α. 

The SAN can be constructed using the set matching loss function as 
follows: 

LSAN = μ1Lcls + μ2Lreg + μ3LGIoU (8) 

where μ1, μ2, and μ3 are the regularization factors for adjusting the 
significances of the loss terms. Specifically, Lcls is formulated as the focal 
loss (Lin et al., 2017) between the ground-truth category and the clas-
sification prediction of the region proposal. Lreg is formulated as the 
smooth-L1 loss (Girshick, 2015) between the regressed parameters of the 
region proposal and the ground-truth parameters of its matched 
bounding box. LGIoU is defined by the generalized intersection over 
union (GIoU) loss (Rezatofighi et al., 2019) between the generated re-
gion proposal and its matched ground-truth bounding box. 

3.4. Object detection network 

As illustrated by Fig. 1, the SAN is mounted on the multiscale feature 
maps provided by the HR-CapsNet backbone to produce a fixed quantity 
of region proposals at each scale. These region proposals, along with the 
feature semantics enclosed by the region proposals, are leveraged to 
recognize objects. Noteworthily, the shapes, sizes, and orientations of 
these region proposals vary greatly in different feature maps, even in the 
same feature map, which brings difficulties to carry out object identi-
fication in a consistent manner. Thus, in this paper, we adopt the OROI 
pooling strategy (Yu et al., 2020) to eliminate the orientations of the 
arbitrarily-oriented region proposals and convert the varying-shape and 
varying-size region proposals into a fixed size. The transformed region 
proposals with the same size are input to the object detection network to 
conduct object identification. 

As illustrated by Fig. 1, the object detection network is designed with 
a lightweight capsule network, which comprises some capsule con-
volutional and fully-connected layers, as well as two parallel task- 
specific output layers used for, respectively, region proposal categori-
zation and fine-grained object bounding box determination. The softmax 
classification layer involves V + 1 outputs, representing the background 
and the V categories of objects, respectively. When an object is 
confirmed to be enclosed in a region proposal, the regression layer 
outputs the fine-tuned five-tuple parameters of the object’s bounding 
box. 

The object detection network can be constructed by the multitask 
loss function as follows: 

Ldet = λ1Lcls + λ2Lreg (9) 

where λ1 and λ2 are the regularization factors for adjusting the sig-
nificances of the loss terms. To be specific, the classification loss term Lcls 
is computed by the focal loss (Lin et al., 2017) of the softmax probability 
prediction output by the ground-truth category neuron. 

To further refine the object bounding box associated with a region 
proposal, we leverage the following scale-insensitive parameterization 
strategy to regress the offset, rotation, and height and width shifts 
related to a region proposal: 

dx = (x − xr)/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

w2
r + h2

r

√

, dy = (y − yr)/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

w2
r + h2

r

√

dh = log(h/hr), dw = log(w/wr)

dα = α − αr

(10)  

d*
x = (x* − xr)/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

w2
r + h2

r

√

, d*
y = (y* − yr)/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

w2
r + h2

r

√

d*
h = log(h*/hr), d*

w = log(w*/wr)

d*
α = α* − αr

(11) 

where (dx, dy, dh, dw, dα) denote the predicted regression parameters 
of a region proposal, (d*

x, d*
y, d*

h, d*
w, d*

α) denote the ground-truth 
Fig. 5. Architecture of the sparse anchoring network for object region pro-
posal generation. 
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parameters to regress the region proposal, (xr,yr,hr,wr,αr), (x,y,h,w,α), 
and (x*, y*, h*, w*, α*), respectively, represent the region proposal, the 
predicted bounding box, and the ground-truth bounding box. According 
to the above parameterization representations, the regression loss term 
Lreg is computed by the smooth-L1 loss (Girshick, 2015) between (dx, dy, 
dh, dw, dα) and (d*

x,d*
y,d*

h,d*
w,d*

α). 

4. Results and discussions 

4.1. Datasets 

In this paper, two large-scale remote sensing image datasets were 
examined to assess the detection effectiveness of the developed SAHR- 
CapsNet. The first dataset is the GOD218 dataset (Yu et al., 2020). 
This dataset consists of 22,000 images, including 4000 aerial images 
collected by a UAV system and 18,000 satellite images collected using 
the Google Earth service. A total of 69,207 instances covering four 
categories of geospatial objects are annotated by both oriented bounding 
boxes and horizontal bounding boxes. The images in the GOD218 dataset 
have the same size of 800 × 600 pixels. The second dataset is the DOTA 
dataset (Xia et al., 2018). This dataset includes 2086 satellite images 
covering fifteen categories of geospatial objects. In total, 188,282 in-
stances are annotated with arbitrary quadrilaterals. The images in the 
DOTA dataset have different sizes ranging from about 800 × 800 pixels 
to about 4000 × 4000 pixels. 

4.2. Network training and parameter configuration 

The SAHR-CapsNet was trained with the Adam optimizer using a 
cloud computing environment configured with a 16-core CPU, ten 16- 
GB GPUs, and a 128-GB memory. The parameter volume of the SAHR- 
CapsNet is about 19 M. As for the SAHR-CapsNet, the SAN and the ob-
ject detection network share the HR-CapsNet backbone. Furthermore, 
the object detection network relies on the region proposals generated by 
the SAN to proceed object identification. To solve this issue, we adopted 
a “divide-and-conquer” strategy to train them separately. Concretely, 
first, we trained the SAN along with the HR-CapsNet backbone based on 
the loss function in Eq. (8). The number of region proposals was set as M 
= 400, and the regularization factors μ1, μ2, and μ3 were configured as 
1.0, 0.2, and 1.0, respectively, after intensive performance evaluations. 
We configured 800 training epochs and distributed two images per batch 
to a GPU. Specifically, in the first 600 epochs, we configured the 
learning rate as 0.001, then, in the rest 200 epochs, decreased it to 
0.0001. When the SAN was constructed, the parameters of the HR- 
CapsNet backbone and the SAN were fixed, and the object detection 
network was trained based on the loss function in Eq. (9). After intensive 
performance evaluations, the regularization factors λ1 and λ2 were 
configured as 1.0 and 0.2, respectively. For each training image, the 
region proposals produced by the SAN along with the feature maps 
extracted by the HR-CapsNet backbone were used to construct the object 
detection network. We configured 600 training epochs and distributed 
50 region proposals per batch to a GPU. Specifically, in the first 400 
epochs, we configured the learning rate as 0.001, then, in the rest 200 
epochs, decreased it to 0.0001. Finally, the SAN and the object detection 
network were jointly optimized to refine the network parameters of the 
entire SAHR-CapsNet with the combination of the loss functions in Eqs. 
(8) and (9). For joint optimization, we configured the learning rate as 
0.0001 and trained the SAHR-CapsNet for 200 epochs. 

4.3. Parameter sensitivity analysis 

In the proposed SAHR-CapsNet, there are two important parameters 
having great impacts on the object detection performance: the number 
of sparse region proposals M generated by the SAN and the size of the 
global context matrix G. To determine the optimal configurations for 

these two parameters, we conducted a set of experiments to analyze the 
sensitivities of their configurations to the object detection performance. 

In our experiments, we tested the following seven configurations for 
M: 50, 100, 200, 300, 400, 500, and 600, and tested the following seven 
configurations for the size of G: 32, 48, 64, 96, 128, 256, and 512. The 
performances of different configurations of these two parameters were 
reported and analyzed using the precision-recall curves. As shown by 
Fig. 6(a), when the value of M increased from 50 to 400, the object 
detection accuracy enhanced dramatically. This is because, initially, the 
objects of interest in some images cannot be completely covered with a 
small number of region proposals, thereby leading to a low recall value. 
Then, as the number of region proposals increased, the objects of interest 
in the images can be better and better covered, thereby resulting in a 
promotion of the object detection accuracy. However, when the value of 
M exceeded 400, the improvement of the object detection accuracy was 
quite slight. The reason is that the number of 400 region proposals 
performed promisingly to well encapsulate the objects of interest in the 
images. Thus, the addition of more region proposals helped slightly to 
the promotion of the object detection accuracy. Furthermore, more re-
gion proposals would increase the computation overhead of the SAHR- 
CapsNet. Thus, by balancing the object detection accuracy and the 
computational performance, we configured the value of M as 400. 

As shown by Fig. 6(b), the object detection accuracy kept upgrading 
as the size of G increased from 32 to 64. As a matter of fact, the size of G 
implies the amount of the spatial semantic properties encoded. Theo-
retically, the larger the size of G, the more the spatial semantic prop-
erties. Thus, with the enlargement of the spatial semantic properties 
encoded in G as the size of G increased, the feature representation 
quality was gradually promoted, thereby leading to the enhancement of 
the object detection accuracy. However, when the size of G was greater 
than 64, the object detection accuracy was improved quite slightly. This 
is because, a very large size of G might produce redundant and insig-
nificant spatial semantic properties, which helped less to the promotion 
of the feature encoding quality. Moreover, the increase of the size of G 
also brought dramatic increase of the computation overhead. Thus, by 
trading off between the object detection accuracy and the computational 
performance, we configured the size of G as 64. 

4.4. Geospatial object detection 

To quantitatively examine the proposed SAHR-CapsNet in geospatial 
object detection tasks, the following three assessment measures were 
leveraged: precision, recall, and F1-score. To be specific, precision and 
recall evaluate the capability of an object detection model in dis-
tinguishing the true targets and the false alarms. F1-score provides an 
overall accuracy evaluation by comprehensively taking into consider-
ation the precision and recall metrics. These assessment measures are 
formulated in the following forms: 

precision =
TP

FP + TP
× 100\% (12)  

recall =
TP

FN + TP
× 100\% (13)  

F1 - score =
2 × precision × recall

precision + recall
× 100\% (14) 

where the quantities of true positives, false positives, and false 
negatives are, respectively, denoted by TP, FP, and FN. The object 
detection performances evaluated on the two datasets by using these 
three evaluation metrics are reported in Table 1. 

As Table 1 reports, the proposed SAHR-CapsNet performed effec-
tively in detecting geospatial objects from these two datasets. 
Concretely, for the GOD218 dataset, a detection accuracy with the pre-
cision, recall, and F1-score of 98.23%, 94.16%, and 96.15%, respec-
tively, was achieved. For the DOTA dataset, the SAHR-CapsNet obtained 
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a detection accuracy with the precision, recall, and F1-score of 96.95%, 
93.04%, and 94.95%, respectively. Comparatively, a better performance 
was obtained on the GOD218 dataset due to the more challenging sce-
narios of the DOTA dataset. Specifically, for the GOD218 dataset, the 
degradation of the recall was mainly caused by the densely-distributed, 
shadow-covered, and tree-occluded vehicles, resulting in the increase of 
the missing detections. In contrast, for the DOTA dataset, the recall 
degradation was mainly caused by the densely-distributed and varying- 
size ships parked along the harbors, leading to a failure in correctly 
separating some ships. Moreover, the false alarms were caused by the 
land covers showing extremely similar textural and geometrical prop-
erties to the objects of interest. As a whole, the proposed SAHR-CapsNet 
showed quite promising and competitive object detection performance 
on the two challenging datasets with a small quantity of missing de-
tections and false identifications. Specifically, an average detection ac-
curacy with the precision, recall, and F1-score of 97.59%, 93.60%, and 

95.55%, respectively, was obtained with respect to these two datasets. 
The remarkable challenges of the GOD218 and DOTA datasets reflect 

in the following cases: (1) instances with various orientations due to the 
bird-view image capturing mode; (2) intra-class size variations of the 
instances; (3) interclass size variations of the instances; (4) instances 
with diverse spatial distributions and densities; (5) instances having 
different textural properties; (6) instances having different aspect ratios; 
(7) instances having arbitrary shapes; (8) instances suffering from 
different-level occlusions caused by overhead objects; (9) instances 
covered by different-level shadows caused by nearby high-rise objects; 
(10) similarities between the objects of interest and the non-targets; (11) 
differences in image qualities and exposure conditions caused by 
different imaging sensors and illumination condition changes; and (12) 
complicated surrounding environments of the objects of interest in the 
images. All of the above cases might cause the degradation of the object 
detection accuracy due to the failure in correctly locating and identi-
fying some instances. However, the proposed SAHR-CapsNet still 
behaved competitively with low false detection rates and high recog-
nition rates in handling the geospatial objects of diverse self-conditions 
and different surrounding environments. The advantageous perfor-
mance was embodied in the following aspects. First, constructed with a 
capsule network architecture, the SAHR-CapsNet can abstract advanced 
high-order capsule representations to well encode entity features, which 
serves for promoting the feature saliencies and distinguishabilities. 
Second, formulated with a multibranch HR-CapsNet backbone assisted 
by the multiscale feature propagation and fusion technique, the SAHR- 
CapsNet can extract semantically strong and spatially accurate feature 
semantics at multiple scales, which favors significantly to the detection 
of varying-size objects. Third, assisted by the ESA module to recalibrate 
the spatial and channel features, the SAHR-CapsNet can focus on the 
target-specific spatial features and the informative channel features, 
which positively boosts the feature encoding capability and robustness. 
Last but not least, designed with the SAN for automatically generating 
high-quality oriented region proposals, the SAHR-CapsNet can perform 
effectively in detecting geospatial objects of arbitrary orientations and 
different aspect ratios. 

For qualitative evaluations, Figs. 7 and 8 also present two subsets of 
the geospatial object detection results from the GOD218 and DOTA 
datasets. Overall, the majority of the geospatial objects exhibiting 
different sizes and orientations, varying densities and spatial distribu-
tions, diverse aspect ratios and shapes, and complex surface and envi-
ronmental conditions were correctly located and identified. Specifically, 
as shown in Figs. 7 and 8, the vehicles parked in the parking lot and the 
ships parked along the harbor distributed closely in a parallel manner 
and exhibited high densities. Generally, horizontal bounding box based 

Fig. 6. Precision-recall curves of (a) different configurations of the number of sparse region proposals and (b) different configurations of the size of the global 
context matrix. 

Table 1 
Geospatial object detection performances of different models.  

Models Dataset Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

Speed 
(images/s) 

SAHR- 
CapsNet 

GOD218 98.23 94.16 96.15 11 
DOTA 96.95 93.04 94.95  

SAHRNet GOD218 97.25 93.12 95.14 12 
DOTA 95.92 91.96 93.90  

SAHR- 
CapsNet-N 

GOD218 98.24 94.16 96.16 9 
DOTA 96.96 93.06 94.97  

SAHR- 
CapsNet-A 

GOD218 97.94 93.82 95.84 11 
DOTA 96.41 92.79 94.57  

RPNHR- 
CapsNet 

GOD218 98.27 94.22 96.20 5 
DOTA 96.97 93.11 95.00  

GTGCF-Net GOD218 96.65 92.51 94.53 13 
DOTA 95.40 91.57 93.45  

SARA-Net GOD218 92.74 90.12 91.41 11 
DOTA 91.95 89.36 90.64  

CBDA-Net GOD218 91.52 88.86 90.17 50 
DOTA 90.65 88.47 89.55  

RM-CNN GOD218 96.93 92.79 94.81 4 
DOTA 95.71 91.83 93.73  

SAS-Net GOD218 93.36 90.93 92.13 4 
DOTA 92.62 89.91 91.24  

OGA-Net GOD218 96.48 92.32 94.35 8 
DOTA 95.22 91.38 93.26  
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approaches might fail to guarantee the integrity of the detected in-
stances. However, due to the use of oriented bounding boxes, our pro-
posed SAHR-CapsNet showed high quality in handling such challenging 
scenarios. In addition, the instances showed extremely large size vari-
ations in the images, especially the existence of very small-size instances 
(e.g., vehicles, ships, storage tanks, etc.). Accurately recognizing the 
small-size instances is a difficult task due to the lack of informative and 
sufficient feature presence in the feature maps. Fortunately, benefitting 
from the design of the multibranch HR-CapsNet backbone for main-
taining the high-resolution feature semantics through the entire network 
and the integration of the ESA module for highlighting the foreground 
features, our proposed SAHR-CapsNet performed competitively in 
detecting the varying-size instances. Furthermore, some instances not 
severely occluded by the nearby overhead land covers (e.g., vehicles 
parked under trees) and some instances contaminated by the shadows 
cast by nearby high-rise objects were also correctly identified due to the 
robust, high-order, and task-oriented capsule feature encodings extrac-
ted by the HR-CapsNet backbone. Last but not least, owing to the design 
of the SAN to automatically generate independent and oriented region 
proposals based on the multiscale high-quality feature maps, the in-
stances of diverse aspect ratios and the overlapped instances (e.g., the 

roundabouts and the vehicles) were also accurately detected. 
To evaluate the computational performance of the proposed SAHR- 

CapsNet, the processing time was also recorded on the test datasets at 
the detection stage. On average, the SAHR-CapsNet achieved a pro-
cessing speed of about 11 image patches per second on a GPU. The 
computational performance gain benefitted from the sparse anchoring 
network by generating a fixed set of lightweight region proposals 
without the extra time cost in dense anchor regression and high-quality 
region proposal selection. 

4.5. Ablation studies 

For the purpose of verifying the effectiveness and efficiency of the 
proposed network architecture and the designed modules, a set of 
ablation studies were conducted for performance comparisons. First, to 
compare the performance between capsule formulation and scalar 
neuron formulation, we redesigned the model by replacing only the 
capsules with scalar neurons, leaving the entire network architecture 
unchanged. As a result, the feature extraction backbone was formulated 
as the HRNet architecture. We termed the modified model as SAHRNet. 
Second, to compare the efficiency between the proposed SFA unit and 

Fig. 7. Sample geospatial object detection results from the GOD218 dataset.  

Fig. 8. Sample geospatial object detection results from the DOTA dataset.  
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the non-local block architecture, we replaced only the SFA unit with a 
capsule-based non-local block formulation and kept the other parts of 
the network architecture unchanged. We termed the modified model as 
SAHR-CapsNet-N. Third, to compare the performance between the 
concatenation operation and the addition operation in the ESA module 
for fusing the features from the CFA and SFA units, we replaced only the 
concatenation operation with the addition operation in the ESA module 
and kept the rest parts of the ESA module unchanged. We termed the 
modified model as SAHR-CapsNet-A. Finally, to compare the efficiency 
between the proposed SAN and the commonly used RPN architecture 
that deploys dense anchors at each position to direct region proposal 
generation, we replaced only the SAN with the rotatable RPN (Li et al., 
2019), leaving the remaining parts of the network architecture un-
changed, to generate region proposals. We termed the modified model 
as RPNHR-CapsNet. To provide fair assessments, both of the GOD218 
and DOTA datasets were used to optimize these models with the same 
parameter configurations and training strategies and used to evaluate 
the performances of these models. 

The quantitative evaluation results and the computational perfor-
mances of these modified models are reported in Table 1. Apparently, 
the SAHRNet behaved less effectively than the SAHR-CapsNet on both of 
the two datasets. Specifically, an accuracy degradation by about 1.05% 
appeared on the DOTA dataset with respect to the F1-score. It confirmed 
that the capsule formulation showed superior performance than the 
scalar neuron formulation in extracting high-quality feature represen-
tations. Note that, the SAHR-CapsNet-N obtained similar performance to 
the SAHR-CapsNet on both of the two datasets. Thus, it demonstrated 
that the SFA unit was effective and showed competitive performance 
with the non-local block formulation. However, the SAHR-CapsNet-N 
exhibited significantly lower computation performance than that of 
the SAHR-CapsNet with an average processing speed of about 9 image 
patches per second on a GPU. The computation performance degrada-
tion was mainly caused by the burdensome matrix computations and the 
large set of parameters. As a result, the SFA unit performed more effi-
ciently than the non-local block architecture. As shown in Table 1, the 
SAHR-CapsNet-A exhibited a slight performance decline compared with 
the SAHR-CapsNet. Although the difference was not very significant, it 
still proved that the concatenation operation performed better than the 
addition operation. This is because, compared with the concatenation 
operation, the addition operation might mix up the distinguishing 
capsule properties from the CFA and SFA units. Consequently, the 
feature representation quality might be slightly influenced. In addition, 
the RPNHR-CapsNet showed no significant performance gain on the test 
datasets compared with the SAHR-CapsNet. However, a significant ef-
ficiency decline was obtained by the RPNHR-CapsNet with an average 
processing speed of about 5 image patches per second on a GPU. This 
was caused by the extra time cost in regressing the large numbers of 
dense anchors and the selection of the high-quality region proposals. In 
conclusion, the SAN performed equally with the RPN in detection ac-
curacy, but behaved superiorly to the RPN in processing efficiency. 

4.6. Comparative studies 

Aiming at further examining the feasibility and effectiveness of the 
developed SAHR-CapsNet, a group of intensive experiments were con-
ducted with the recently proposed deep learning based models for per-
formance comparisons. The selected models include the following: 
geometric transform and global contextual feature fusion network 
(GTGCF-Net) (Shi et al., 2021), self-adaptive aspect ratio anchor 
network (SARA-Net) (Hou et al., 2021), center-boundary dual attention 
network (CBDA-Net) (Liu et al., 2021b), rotation-aware and multiscale 
CNN (RM-CNN) (Fu et al., 2020), self-adaptive anchor selection network 
(SAS-Net) (Xiao et al., 2021), and OGA network (OGA-Net) (Yu et al., 
2020). Specifically, the GTGCF-Net, SARA-Net, and CBDA-Net are one- 
stage object detection models and the RM-CNN, SAS-Net, and OGA- 
Net are two-stage object detection models. In addition, the CBDA-Net 

and OGA-Net are anchor-free models and the others are anchor-based 
models. To provide reasonable comparisons, both of the GOD218 and 
DOTA datasets were used to optimize the network parameters and 
evaluate the performances of these models. Specifically, the optimal 
parameters and training strategies were leveraged to construct these 
models. Concretely, for the GTGCF-Net, the learning rate of 0.001 was 
configured for the first 50 epochs. In the rest 350 epochs, the learning 
rate was initially configured as 0.0001 and decayed by 10 at epochs 120 
and 240. For the SARA-Net, a total of 12 epochs were trained with the 
learning rate, momentum, and weight decay of 0.001, 0.9, and 0.001, 
respectively. For the CBDA-Net, a total of 140 epochs were trained. The 
learning rate was initially configured as 0.000125 and decayed by 10 at 
epochs 90 and 120. For the RM-CNN, the momentum and weight decay 
were configured as 0.9 and 0.0001, respectively. The learning rate was 
set as 0.0002 for the first 200,000 iterations and changed as 0.00002 for 
the last 100,000 iterations. For the SAS-Net, a total of 90,000 iterations 
were trained with the weight decay and momentum of 0.001 and 0.9. 
The learning rate was initially configured as 0.01 and decayed by 10 at 
iterations 60,000 and 82,500. For the OGA-Net, the anchor generation 
subnetwork and the object detection subnetwork were separately 
trained for 1000 and 800 epochs with the initial learning rate of 0.01 
and a decayed learning rate of 0.001. 

Likewise, the object detection results of these models were also 
evaluated based on the precision, recall, and F1-score metrics and re-
ported in Table 1, as well as the processing speeds of these models 
measured by the number of image patches being processed each second 
on a GPU. As Table 1 reports, the RM-CNN, GTGCF-Net, and OGA-Net 
showed superior performances than the other models. In contrast, the 
SARA-Net and the CBDA-Net achieved relatively lower accuracies than 
the other models. Overall speaking, depending on the pre-generated 
dense region proposals, the two-stage object detection models (i.e., 
the RM-CNN, SAS-Net, and OGA-Net) behaved better than the one-stage 
object detection models (i.e., the SARA-Net and CBDA-Net). However, 
the one-stage model GTGCF-Net also achieved compatible performance 
with the two-stage model RM-CNN, even higher performance than the 
two-stage models SAS-Net and OGA-Net. Therefore, we can conclude 
that, without the assistance of dense region proposals for pre-locating 
candidate object regions, the one-stage models can also obtain 
competitive accuracy by designing powerful and advantageous feature 
extraction network architectures or highly effective object identification 
and regression techniques. In addition, we found that the anchor-free 
models also performed as effectively as the anchor-based models. For 
example, the one-stage anchor-free model CBDA-Net showed a 
compatible performance with the one-stage anchor-based model SARA- 
Net. Even, the two-stage anchor-free model OGA-Net demonstrated 
higher quality than the two-stage anchor-based model SAS-Net. Thus, it 
indicated that, without the assistance of anchors for object regression, 
the anchor-free models can be still on a par with the anchor-based 
models in providing promising object detection accuracies. However, 
compared with the above models, our proposed SAHR-CapsNet showed 
distinctly advantageous performance owing to the novel HR-CapsNet 
formulation, as well as the effective feature attention mechanism. For 
qualitative comparisons, Fig. 9 presents some sample object detection 
results obtained by these models. Specifically, as shown by Fig. 9(c)-(h), 
some ships of extremely small sizes and some ships parallelly and closely 
distributed were not successfully detected by the compared models. In 
contrast, all the ships of different conditions were correctly recognized 
by the proposed SAHR-CapsNet. Through comparative analyses, we 
confirmed that the SAHR-CapsNet proposed in this paper offered a 
reliable and highly effective solution to oriented geospatial object 
detection tasks. 

5. Conclusion 

This paper has proposed an effective two-stage anchor-free model, 
named SAHR-CapsNet, for arbitrarily-oriented geospatial object 
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detection from remote sensing images. The SAHR-CapsNet involved a 
feature extraction backbone network, a sparse anchoring network, and a 
multi-category object detection network. Specifically, formulated with a 
multibranch HR-CapsNet architecture boosted by multiscale feature 
propagation and fusion, the backbone network can extract semantically 
strong and spatially accurate feature semantics at multiple scales, 
thereby favoring the detection of varying-size objects. Designed with the 
capsule-based ESA module for focusing on the target-specific spatial 
features and the informative channel features, the feature encoding 
capability and robustness are significantly promoted, thereby effectively 
improving the region proposal quality and the object identification ac-
curacy. Constructed with the SAN for producing a fixed quantity of 
sparse, high-quality region proposals, the SAHR-CapsNet can avoid the 
predesign and dense deployment of task-oriented anchors and reduce 
the computation overhead in anchor matching and regression, thereby 
well accelerating the processing efficiency. Quantitative examinations 
on two challenging remote sensing image datasets showed that a 
competitive average accuracy with the precision of 97.59%, the recall of 
93.60%, and the F1-score of 95.55%, respectively, was achieved on the 
recognition of geospatial objects with varied self-conditions in diverse 
environmental scenarios. In addition, comparative analyses also 
demonstrated the promising applicability and advantageous perfor-
mance of the proposed SAHR-CapsNet for oriented geospatial object 
detection applications. 
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