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A B S T R A C T   

This paper presents a feature reasoning-based graph convolution network (FR-GCNet) to improve the classifi-
cation accuracy of airborne multispectral LiDAR (MS-LiDAR) point clouds. In the FR-GCNet, we directly assign 
semantic labels to all points by exploring representative features both globally and locally. Based on the graph 
convolution network (GCN), a global reasoning unit is embedded to obtain the global contextual feature by 
revealing spatial relationships of points, while a local reasoning unit is integrated to dynamically learn edge 
features with attention weights in each local graph. Extensive experiments on the Titan MS-LiDAR data showed 
that the proposed FR-GCNet achieved a promising classification performance with an overall accuracy of 
93.55%, an average F1-score of 78.61%, and a mean Intersection over Union (IoU) of 66.78%. Comparative 
experimental results demonstrated the superiority of the FR-GCNet against other state-of-the-art approaches.   

1. Introduction 

The multispectral LiDAR (MS-LiDAR) is demonstrably superior to its 
single-channel counterparts in land-cover/ land-use classification 
(Ekhtari et al., 2018; Morsy et al., 2017). For example, a Titan LiDAR 
system nowadays is able to simultaneously operate at three channels 
with different looking angles and acquire three point clouds, i.e., 
Channel 1 at mid-inferead (MIR) with a wavelength of 1550 nm at 3.5◦

forward looking, Channel 2 at near-infreared (NIR) with a wavelength of 
1064 nm at 0◦ nadir looking, and Channel 3 at Green with a wavelength 
of 532 nm at 7◦ forward looking. MS-LiDAR point clouds collected at 
different channels allow for a higher reliability and accuracy compared 
with the monochromatic channel LiDAR data. Previous studies (Guo 
et al., 2011; Griffiths and Boehm, 2019) have shown that the combined 
use of LiDAR height and intensity data can improve the land cover 
classification accuracy considerably, in comparison with that obtained 
through the combination of height data acquired by the single-channel 
LiDAR with the high-resolution multispectral imagery acquired by 

airborne or satellite-bonre optical imaging sensors. The MS-LiDAR 
technology has attracted increasing attention in many applications, 
such as forest inventory (Lindberg et al., 2021), land-cover classification 
(Ali et al., 2021), building extraction (Li et al., 2020), and coast-line or 
water-body extraction (Shaker et al., 2019). 

Currently, most MS-LiDAR data processing methods refer to those of 
conventional single-channel LiDAR. In terms of input data format, the 
state-of-the-art methods can be grouped into two-dimensional (2D) 
feature image-based and 3D point cloud-based methods. Because an MS- 
LiDAR system with several spectral channels provides the corresponding 
individual point cloud for each band, the volume of MS-LiDAR data is 
considerable. Rasterizing voluminous MS-LiDAR point clouds into 2D 
feature images (height-derived and spectral information) is an efficient 
and effective mean. However, this conversion leads to a certain loss of 
spatial information, degrading the data processing quality. With the 
development of computational hardware and techniques, direct pro-
cessing of MS-LiDAR points of large-scale scenes has drawn significant 
attention. Derived from LiDAR point clouds, some features, such as 
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height, echo, point density, and spectral band, have been investigated by 
various feature descriptors and representation methods. These features 
are then selected according to specific objects of interest and analyzed 
by various classfiers, such as Random Forests (Matikainen et al., 2020), 
Support Vector Machine (Zhang et al., 2013), and Conditional Random 
Field (Niemeyer et al., 2011). Such feature engineering might be suc-
cessful in some circumstances, for example, in small or unsophisticated 
scenes. However, for large-scale, complicated scenes, it is a tedious task 
to select the optimal features. Furthermore, the object recognition and 
classification accuracies might be unreliable due to the subjectivity of 
feature calculation and selection. 

Since 2008, a variety of deep learning models gained much attention 
in 2D image classification and recognition tasks (Chen et al., 2018). 
Recently, an increasing number of scholars have extended deep learning 
models from 2D images to 3D point clouds. Initially, 3D point cloud 
classification or object recognition tasks were performed on 2D feature 
images converted from 3D point clouds by the established deep learning 
methods, mainly developed for 2D image processing (Felix et al. 2017). 
As aforementioned, data conversion leads to the loss of spatial infor-
mation. Based on the encoder-decoder framework in deep learning, 
PointNet, a pioneering method for directly processing unstructured 
point clouds, employed multilayer perceptron (MLP) to extract features 
individually for each point and gave predicted label in an end-to-end 
manner (Qi et al., 2017a). PointNet++, proposed in the same year, 
encoded multiscale features through multi-scale grouping and com-
plemented local features by neighborhood information. Afterward, 
networks improving on PointNet, such as PointCNN (Winiwarter et al., 
2019), have been increasingly developed and popularized for point-wise 
point cloud classification and object recognition. Although inefficient at 
handling massive data, PointNet addresses the permutation and rotation 
invariance of point clouds, which provides a basic framework for MS- 
LiDAR point cloud classification. 

This study explores the feasibility of airborne MS-LiDAR data in 
scene classification. We propose a feature reasoning-based graph 
convolution network (FR-GCNet) framework, which considers the rela-
tive distribution of neighborhood points and enhances the feature 
expression. Before the implementation of the FR-GCNet, a preprocessing 
procedure is first applied to the raw MS-LiDAR data, including data 
fusion and sample generation. Next, to extract locally and globally 
representative features of the class of interest, a feature reasoning 
module is introduced into the graph convolution network. The FR- 
GCNet framework is trained in an end-to-end manner and directly pre-
dicts semantic labels of each point. The main contributions of this paper 
are as follows:  

1) The FR-GCNet framework, proposed for MS-LiDAR point cloud 
classification, is an improved PointNet embedded with a feature 
reasoning module and implemented directly on the irregular, un-
structured 3D points, resulting in no loss of any data or object 
information.  

2) A sampling strategy for sample generation is implemented by a 
combination of the farthest point sampling (FPS) and the k-nearest 
neighbors (KNN), which quickly obtains training samples that meet 
the input requirements of the FR-GCNet framework and provide 
complete coverage of the input scenes.  

3) A feature reasoning module is proposed for feature enhancement. 
This module consists of two units: a local reasoning unit for 
extracting local features by a KNN graph structure and a global 
reasoning unit for extracting global features, strengthening feature 
representation, and further improving classification results. 

2. Related work 

MS-LiDAR point clouds, which include both multi-channel spectral 
information and geometrical structure information of the objects of in-
terest, have increasingly attracted attention in the field of 

photogrammetry and remote sensing. Current studies on MS-LiDAR 
point clouds have proved to be promising in many applications. More-
over, Ekhtari et al. (2018) demonstrated that the classification perfor-
mance of MS-LiDAR data outperformed those of conventional single- 
channel LiDAR data. In terms of input data type, the methods are then 
grouped into two categories: rasterized 2D feature image-based and 3D 
point cloud-based methods. 

The former applied classic image processing algorithms, such as 
maximum likelihood, support vector machine (Ekhtari et al., 2018), and 
random forest (Matikainen et al., 2020; Ghaseminik et al., 2021), to the 
2D feature images converted from 3D point clouds with regard to 
elevation and reflectance information. Specifically, employing multi- 
channel reflectances of MS-LiDAR data, Wallace et al. (2012) derived 
the Normalized Differential Vegetation Index (NDVI) and Photochem-
ical Reflectance Index (PRI) to recover forest structural and biochemical 
parameters. A variety of features, such as texture, elevation, spectral, 
vegetation indices, and water indices, were derived from MS-LiDAR data 
and selected for object-based (Bakula et al., 2016) or pixel-based clas-
sification and object recognition (Lindberg et al. 2021; Bakula et al., 
2016; Chen et al., 2020). However, these conventional image processing 
methods or classifiers achieved unreliable classification or object 
recognition accuracies due to handcrafted feature selection. Deep 
learning methods, increasingly explored and used in point cloud clas-
sification, automatically learn advanced and representative features 
from many representative training data. Pan et al. (2019) compared a 
deep Boltzmann machine (DBM) with two machine learning methods (i. 
e., RF and SVM) and demonstrated that the DBM (for high-level feature 
representation) outperformed the RF and principal component analysis 
(PCA) (for low-level feature extraction and selection) in MS-LiDAR land- 
cover classification. Yu et al. (2020 and 2021) applied a capsule network 
integrated with feature enhancement modules and the capsule-based 
attention modules to the Titan MS-LiDAR data for land-cover classifi-
cation, respectively. 

Although 2D feature image-based methods effectively and efficiently 
processed large-scale MS-LiDAR data, data conversion from 3D point 
clouds brings quantization errors and spatial information loss. Thus, 
directly processing 3D multispectral point clouds becomes much 
attractive and also made great progress. Specifically, Mosry et al. (2017) 
first separated non-ground from ground points and then classified the 
non-ground points into building and tree points and the ground points 
into road and grass points. Sun et al. (2017) explored and classified MS- 
LiDAR data into different targets, including fresh and sere plants. 
Furthermore, to demonstrate the distinguishing capabilities of MS- 
LiDAR systems, Ekhtari et al. (2017) provided finer discrimination for 
ten classes (3 types of asphalt pavements, 2 types of soils, and 2 types of 
rooftop materials). Some studies have proved that 3D multispectral 
point cloud-based methods are superior to the 2D multispectral feature 
images-based methods with 10% higher accuracy in (Miller et al., 2016) 
and 3.8% in (Morsy et al. 2017). As mentioned in the review of 2D 
feature image-based methods, it is tedious to design handcrafted fea-
tures to obtain satisfactory classification results. Some studies have 
applied state-of-the-art deep learning methods to MS-LiDAR data for 
object recognition and point cloud classification. Jing et al. (2021) 
proposed an SE-PointNet++ architecture, where a squeeze-and- 
excitation block was embedded in the PointNet++ architecture, for 
MS-LiDAR point classification with an overall accuracy, mean Inter-
section over Union (mIoU), and F1-score of 91.16%, 60.15%, and 
73.14%, respectively. Li et al. (2020) proposed a hierarchical architec-
ture equipped with graph geometric moments convolution to extract 
buildings from Titan MS-LiDAR data with a correctness of 95.1%, a 
completeness of 93.7%, an F1-score of 94.4%, and an intersection over 
union (IoU) of 89.5%, respectively. However, there are still few deep 
learning studies on MS-LiDAR point cloud classification. 
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3. Study area and data 

The study area is within a typical Canadian town (longitude 
79◦15′00′′, latitude 43◦58′00′′ at the center), located in Whitchurch- 
Stowell, Ontario, Canada, which covers dense vegetation (trees and 
grass), roads, soil, and residential houses. In this area, several power-
lines are overhung through the field. The study area also contains two 
large water regions, Musselman Lake and Windsor Lake, as seen from the 
high-resolution satellite image in Fig. 1. The elevation of this study area 
ranges from 250 m to 325 m. 

The experimental data were acquired on July 2, 2015, by a Teledyne 
Optech Titan MS-LiDAR system, containing three channels with wave-
lengths of 1,550 nm (MIR), 1,064 nm (NIR), and 532 nm (Green), each of 
which produced point cloud with a laser pulse repetition rate of 300 
kHz. The average flying height was about 1000 m − 1100 m. The three 
channels were arranged with an interval of 3.5◦ in deflection angle and 
the average point density for each channel was about 3.6 points/m2. 
This data collection covered an area of 2,052 m × 1,566 m with 19 
stripes perpendicular to each other. 

In this study, we selected a total of 13 sample scenes from the ob-
tained MS-LiDAR data, as shown in Fig. 1. Scenes 1 to 10 (Train 1 to 10) 
were selected as the training dataset and scenes 11 to 13 (Test11 to 13) 

as the test dataset to evaluate our proposed framework. Table 1 shows 
the number of points for each land cover. According to the integrated 
investigation of the collected LiDAR data associated with high- 
resolution satellite images, we mainly considered six classes in this 
classification task, i.e., road, building, grass, tree, soil, and powerline. 
According to our previous study (Pan et al., 2020), this study area 
contains only two large water bodies, which degraded the overall clas-
sification accuracies due to imbalanced class distributions. Therefore, 
we did not include water class in this classification task. Correspond-
ingly, no water points were included in the selected thirteen scenes. As 
shown in Table 1, the road, building, grass, and tree classes contain a 
sufficient number of points in both training and test datasets, while the 
powerline class contains only a tenth of the number of soil points. 

4. Method 

4.1. Data preprocessing 

The data preprocessing consists of data fusion and sample genera-
tion. Data fusion aims to merge the three independent point clouds from 
the three channels of Green, NIR, and MIR into a single point cloud, with 
each point containing three-channel reflectances. As presented in pre-
vious studies (Morsy et al.,2017; Pan et al., 2020), data fusion is realized 
in the following three steps: (1) Each channel point cloud is in turn taken 
as the reference data, where each point is processed to find its neigh-
boring points in the other two channel point clouds using a nearest 
neighbor searching algorithm. The maximum search distance is set to 
1.0 m according to the average point density of 3.6 points/m2; (2) for 
each point in the reference data, the intensities of the other two channels 
are obtained by an inverse-distance-weighted interpolation method. If 
there were no neighboring points in the one of two channels, the in-
tensity value is set to zero; (3) finally, the processed points of all chan-
nels are merged, and the duplicate points are deleted to obtain a single 
point cloud containing the coordinates and three-wavelength intensity 

Fig. 1. Study area and MS-LiDAR data.  

Table 1 
Number of points of each class in the training and test datasets (# represents the 
number of points).  

Class Training dataset/ (Train 1-10) (#) Test dataset/ (Test 11-13) (#) 

Road 596,987 258,942 
Building 415,763 116,085 
Grass 2,577,194 983,724 
Tree 2,623,317 863,519 
Soil 124,566 33,214 
Powerline 12,155 7,545  
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values. Note that the Titan MS-LiDAR data contains no system metadata 
and trajectory data. Thus, absolute radiometric and geometric correc-
tions were not implemented in our study. Moreover, to collect ground 
truth, we manually labeled each point in the selected scenes and 
assigned corresponding digital label according to the specific class. 
Thus, each point contains seven attributes, including 3D coordinates, 
three wavelengths, and labelled class number. 

Sample generation aims to obtain the required sample data that are 
directly input to the FR-GCNet framework. Due to GPU memory limi-
tations, it is impossible to directly input all points of a large-scale scene 
into the framework. Moreover, deep learning-based point cloud methods 
require a fixed number of points as the input data. Therefore, we pro-
posed a sampling strategy, a combination of farthest point sampling 
(FPS) and k-nearest neighbors (KNN) methods, termed as FPS-KNN, to 
quickly obtain training samples with both the correct number of points 
and a full coverage of the scene. Fig. 2 illustrates the diagram of the FPS- 
KNN sampling strategy. 

Data normalization. The input data are firstly normalized to 

improve the convergence speed of network optimization. In this study, 
to reduce structural distortions of the MS-LiDAR data and ensure the FR- 
GCNet learns accurate geometric features, an isotropic normalization 
method is adopted to normalize the coordinates of all points into a range 
of [-1,1]. The data normalization is implemented as follows. 

(Xm,Ym,Zm)=(
max(Xin)+min(Xin)

2
,
max(Yin)+min(Yin)

2
,
max(Zin)+min(Zin)

2
)

δ = max{Xin − Xm,Yin − Ym,Zin − Zm}

(Xout,Yout,Zout) =
(Xin − Xm,Yin − Ym,Zin − Zm)

δ
(1)  

where (Xin, Yin, Zin) denote the coordinates of a raw point cloud. (Xm, 
Ym, Zm) represents the mean values of max and min coordinates. δ refers 
to a scaling factor. (Xout, Yout, Zout) are the coordinates of the normalized 
point cloud. The intensities normalization is also performed on the three 
spectral channels of the MS-LiDAR data, which is also realized by 

Fig. 2. Schematic diagram of the FPS-KNN sampling strategy.  

Fig. 3. Illustration of the proposed FPS-KNN sampling strategy.  
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equation (1). 
FPS-KNN sampling. Fig. 3 shows the proposed FPS-KNN sampling 

strategy. FPS has been actively used for point sampling selection due to 
its robustness to point clouds with different point densities and its full 
scene coverage (Moenning and Dodgson, 2003; Qi et al., 2017b). 
However, the FPS loses some point-wise spatial relations during down- 
sampling. KNN is adopted to obtain a fixed number of neighboring 
points of the FPS points to address this issue. The specific steps of the 
FPS-KNN sampling strategy are detailed as follows:  

1) For an input scene, one point is randomly selected as the seed point, 
and its k nearest neighboring points are then searched from the point 
cloud to form one sample. The vaule of k is determined by the size of 
samples. In this paper, we set the k vaule to 4095. Correspondingly, 
each sample contains 4096 points, and then are removed from the 
input.  

2) The distances from the seed point to the remaining points in the 
reference point cloud are calculated. The farthest point is specified as 
the next seed point. This seed point and its k nearest neighboring 

Fig. 4. Illustration of the proposed FR-GCNet network.  

Fig. 5. Illustration of local reasoning unit, including edge attention and edge convolution.  
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points then form another sample, and also are removed from the 
point cloud.  

3) Step 2 is iteratively performed until all samples contain the input 
scene. These ouput samples with fixed number of points are directly 
input into our FR-GCNet framework. Note that, for the points within 
the overlapped parts, we choose the most predicted label as its final 
classified label. 

4.2. FR-GCNet framework 

The architecture of the proposed FR-GCNet is illustrated in Fig. 4. It 
consists of one encoder, one decoder, and a set of skip link concatena-
tions. The FR-GCNet directly takes the training samples as the input and 
outputs point-wise classification results. The encoder, implemented by 
four down-sampling layers, one global reasoning unit, and three local 
reasoning unit, aims to extract different contextual features at different 
levels and learn multi-dimensional statistical features. The decoder, 
composed by four up-sampling layers and three “PointNet unit” opera-
tions, concentrates on the representative features for specific objects and 
gradually up-sample the points. 

The training sample set generated by the FPS-KNN sampling strategy 
is input to the RF-GCNet network. In the encoder, the contextual features 
of all input points are encoded by a global reasoning unit. Then, four 
successive down-sampling layers gradually reduce the size of the point 
set to N/2, N/4, N/8, and N/16. The new subsampled points generate a 
different graph pyramids and feature dimension in each layer. The local 
reasoning unit is then used three times to extract multiscale local fea-
tures dynamically. In the decoder, four up-sampling layers and three 
“Unit PointNet” operations (Qi et al., 2017b) propagate the learned 
features from the compressed points of the encoder to the input point 
set. The up-sampling operations are achieved by an inverse distance 
weighting (IDW) interpolation, and the “Unit PointNet” operations are 
performed by a 1 × 1 CNN convolution. The number of the points cor-
responding to the interpolated features are gradually up-sampled to N/ 
8, N/4, N/2, and N. To enhance the feature integrity and avoid the 
vanishing gradient, three skip link concatenations are used to integrate 
the encoded features from the down-sampling layers with the high-level 
features from the up-sampling layers. Moreover, the interpolated fea-
tures are then connected to the global feature by an additional skip link 
concatenation, and all features are fed into a 1 × 1 fully connected layer 
to predict the categorical label of each point. 

4.3. Feature reasoning module 

4.3.1. Local reasoning unit  

1) Graph convolution with edge attention weights 

Let denote P = {p1, p2, …, pN} ∈ RN×(3+C) a point set, where N is the 

number of points in the point set P, 3 and C represent the dimensions of 
the spatial coordinates and multiple spectral information, respectively. 
A neighborhood graph structure, G (V, E), is built on the input point set 
P, where V = {v1, v2, …, vN} indicates the set of vertices and E indicates 
the set of edges. 

As shown in Fig. 5, to explicitly exploit the local structural infor-
mation of the MS-LiDAR point clouds, the local reasoning unit, including 
edge attention and edge convolution, is added to the graph convolution 
neural network. According to the spatial dependence of point pairs, edge 
attention strengthens important features to obtain more feature details 
of the objects and suppresses irrelevant information. Edge convolution 
aims to dynamically learn high-dimensional local features from the 
weighted edges of the neighborhood graph, G. The specific imple-
mentation of these two processes is as follows. 

Edge attention. Specifically, in the neighborhood graph, as shown 
in Fig. 5, vertex pi is the central node, pij (j = 1,2,3) are its nearest 
neighboring points, and eij (j = 1,2,3) are the edges between the central 
node and its nearest neighbors. Let denote sij as the edge weight of eij, 
which is defined by sij = (pi − pij). To calculate the attention weights of 
all edges, a linear transformation function, Fw, is defined by 

Fw
(
sij
)
=

∑3

j=1
Wsij*sij + bi (2)  

where, Wsij is the connection coefficient, and bi is the bias parameter. 
To unify the neighborhood attention coefficients across the nodes 

and highlight the weights of important elements in the whole graph 
structure, a softmax function is used to normalize the edge attention 
weights from all neighbors connected to the reference node, which can 
be defined by 

ωsij =
exp(Fw(sij))

∑3
j=1exp(Fw(sij))

(3)  

where ωsij refers to the normalized edge attention weight. As shown in 
Fig. 5, the edge attention weight of a point pair in the graph structure is 
represented by the boldness of the red line, and the lighter relations may 
be shielded. 

Edge convolution. To compute the edge features corresponding to 
the defined edges, we denote the edge function as εij = fσ (pi,pij), where 
fσ : R3+C × R3+C → RC’. The features R3+C of center node pi concatenated 
with the features R3+C of its neighbors pij are taken as the function input 
to map the edge features, which can be defined by: 

εij = fσ
(
pi, pij

)
= f ’

σ
(
pi, pi − pij

)
(4) 

The obtained edge features combine the global structure composed 
of all the vertexes captured by the center pi, and the local shape infor-
mation in each graph, captured by pi − pij. In detail, the operation is 
defined as follows: 

Fig. 6. Illustration of local reasoning.  
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εijm = ReLU
(
θm∙

(
pi − pij

)
+φm∙pi

)
(5)  

where, σ = (θm, φm) is a set of learnable parameters, which encode the 
weight coefficients, and θm and φm have the same dimensionality as pi. 
ReLU is the rectified linear unit activation function. 

The weighted edge features labeled by orange in Fig. 5, Zij (j = 1,2,3), 
are obtained by assigning the edge attention weights and aggregating all 
the weighted edge features Zij to capture local features in the current 
neighborhood graph using a channel-wise symmetric function. The edge 
feature calculation can be expressed by: 

FE
local = max

j:(i,j)∈E
εijm∙ωsij (6)    

2) Local reasoning 

Fig. 6 shows the local feature reasoning unit embedded into our FR- 
GCNet network. Firstly, a sampling layer is applied for down-sampling 
the N × 6 input data to N/2 × 6 subsamples via the FPS. Then, for the 
edge attention (rendered by green), while only considering the spatial 
information, a N/2 × k × 3 graph is built from the N/2 × 3 subsamples 
by searching for the k neighboring points around each central node. The 
edge attention is implemented by a shared MLP (16). For the edge 
convolution (rendered by orange), a N/2 × k × 6 graph is built 
considering the spatial and spectral information of the neighboring 
points. A shared MLP layer (16) is employed to obtain N/2 × k × 16 edge 
features. An element-wise product between the edge attention weights 
and the corresponding N/2 × k × 16 edge features is acquired to produce 
a feature map F1. Finally, to capture deeper feature information, the 
feature map F1 is then input to another two MLP layers (64 and 64). A 
max-pooling layer is used to obtain the N/2 × 64 local features by 
aggregating the N/2 × k × 64 features. 

4.3.2. Global reasoning unit 
Most previous deep learning studies paid much attention to the 

extraction of local features. Although PointNet++, the baseline of our 
framework, obtains global information by accumulating all local fea-
tures via a symmetric function, the spatial relationships of all points in a 
point cloud are still neglected. To further enhance contextual informa-
tion, a global reasoning module is introduced to obtain global attention 
weights from the input point clouds. 

As shown in Fig. 7, based on the spatial coordinates of the training 
dataset, we first build an N × N × 3 distance tensor, D, each of whose 
elements is the Euclidean separation between every two individual 
points in each coordinate direction. Dij = [ pxi − pxj, pyi − pyj, pzi − pzj ], the 
point-wise separation between points pi and pj, is normalized by a 
softmax function as follows: 

dij =
exp(Dij)

∑N
j=1exp(Dij)

(7)  

where dij denotes the normalized distance. 
The final global attention weights, gij, can be obtained by applying 

three shared MLP layers (64,128, and 1024) as nonlinear function to the 
normalized distance. Then, an N × N × 6 graph, built by the full con-
nections among the input point pairs, are input to three shared MLP 
layers (64, 128, and 1024) to obtain an N × N × 1024 high-dimensional 
feature, Fij. 

The global feature map, Fg ∈ RN×N×1024, is generated according to 
the matrix multiplication between the high-dimensional features and 
the global attention weights. Finally, a max-pooling function is 
employed to obtain the global contextual feature, FE

global, which is given 
by 

FE
global = max

j:(i,j)∈E
Fij∙gij (8)  

4.4. Implementation details 

The proposed FR-GCNet was implemented based on the Pytorch1.2 
framework (Mccaffrey, 2019). All experiments in our study were per-
formed on a workstation with a 6-GB NVIDIA GeForce RTX 2060 GPU, 
an Intel Core i7-9700 CPU, and a 16-GB RAM. According to the density 
of the Titan MS-LiDAR point set, when constructing graphs, the number 
of neighbors, k, was set to 32. During the training, the hyper-parameters 
are presented in Table 2. To quantitatively evaluate the performance of 
the proposed FR-GCNet, we adopted the five commonly used metrics, 
including overall accuracy (OA), precision, recall, mean Intersection over 
Union (mIOU), and F1-score. 

5. Results and discussion 

5.1. Classification results 

To demonstrate the MS-LiDAR point classification performance of 
the FR-GCNet, we applied it to the three test datasets (i.e., Test11 to 13). 

Fig. 7. Illustration of global reasoning.  

Table 2 
The network hyper-parameters.  

Hyper-parameters  

Epoch 200 
Batch size 4 
Optimizer Adam 
Learning rate initial rate 0.001 divided by 3 every 2,000 steps 
Loss function Cross-entropy 
Dropout rate 0.55  
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Fig. 8 shows the FR-GCNet classification results and the ground truth 
(GT) on the three test scenes. As shown in Fig. 8, compared with the GT, 
we intuitively observed that the FR-GCNet achieved satisfactory classi-
fication results for most classes, such as road, building, grass, tree, and 
powerline. However, some points belonging to classes soil and road with 
long and narrow shapes were misclassified as grass This was especially 
noticeable for the Test13 scene. Some powerline points sandwiched in 
the middle of trees were misclassified as tree, especially for the Test12 
scene. 

To quantitatively analyze the MS-LiDAR classification performance 
of the FR-GCNet, Table 3 reports the confusion matrix, precision, recall, 
and F1-score of each class. Our FR-GCNet achieved the F1-score of over 
70% for the road, building, grass, tree, and powerline classes, the 
highest F1-score of 97.77% for tree, and the lowest F1-score of 29.72% for 
soil. Although the powerline class, a special corridor-like structure, is 
underrepresented in the dataset, the FR-GCNet achieved the F1-score of 
74.11%. As shown in Table 3, the use of LiDAR elevation information 
easily distinguishes classes with different elevations. For instance, only 
21 and 57 road points were misclassified as building and tree, 

Fig. 8. Visual results of the FR-GCNet on the three test scenes. (a) ground truth of Test11, (b) ground truth of Test12, (c) ground truth of Test13, (d) predicted result 
of Test11, (e) predicted result of Test12, and (f) predicted result of Test13. 

Table 3 
Confusion matrix and assessment metrics of the the proposed FR-GCNet. The 
rows and columns represent the predicted points and reference points of each 
class, respectively.  

Classes road 
(#) 

building 
(#) 

grass 
(#) 

tree(#) soil 
(#) 

powerline 
(#) 

Road 165,819 21 27,522 57 5,634 0 
Building 192 96,954 195 6,024 117 6 
Grass 21,345 198 738,111 2,562 9,771 0 
Tree 237 12,717 4,614 671,769 174 228 
Soil 6,114 36 14,709 39 7,737 0 
powerline 0 114 0 3,966 0 6174 
Precision 

(%) 
85.60 88.11 94.01 98.15 33.02 96.35 

Recall (%) 83.30 93.69 95.61 97.39 27.02 60.21 
F1-score 

(%) 
84.43 90.81 94.80 97.77 29.72 74.11  

Fig. 9. Visual comparison of the FR-GCNet training with the sampling methods: (a) Illustration of the block sampling method, (b) GT, (c) classification results using 
the block sampling strategy, and (d) classification results using the FPS-KNN sampling strategy. 
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respectively. Similarly, 192 building points were misclassified as road, 
195 as grass, and 117 as tree. However, the soil class obtained a poor 
identification performance since one-half of the soil points were incor-
rectly classified as grass, and one fourth as road. 

5.2. Sampling performance 

To verify the performance of the FPS-KNN sampling strategy in data 
preprocessing, we compared it with the commonly-used block sampling 
method (Sheshappanavar and Kambhamettu, 2020) on the Test11 
dataset. The training samples generated from the two sampling methods 
and their FR-GCNet classification results were compared. As shown in 
Fig. 9 (a), with a given grid size, the block sampling method split a point 
cloud into a series of blocks without overlapping, which ensured a full 
coverage of the scene. For a fair comparison, the grids with less than 
4096 points were randomly up-sampled to 4096, and those with more 
than 4096 points were randomly down-sampled to 4096. In this study, 
the grid size was set to 0.12 × 0.12, which was determined by the ranges 
in the X- and Y- directions. Fig. 9 (b) shows a subset of the Test11, which 
mainly includes buildings and trees. Visual inspection demonstrates that 
the FR-GCNet trained with the samples generated by the block sampling 
method achieved unsatisfactory classification results. For example, 
many building roof points were misclassified as tree. The FR-GCNet 
trained with samples generated by the FPS-KNN method achieved bet-
ter performance of visual classification. More specifically, as shown in 
Fig. 9 (c), most building points near the grid boundaries were incorrectly 
classified as tree, whereas, as shown in Fig. 9 (d), most building roof 
points were correctly classified. 

To further analyze the two sampling strategies, the OA and average 

F1-score were calculated as 92.04% and 73.90% for the block sampling 
strategy, and 93.55% and 78.61% for the FPS-KNN sampling strategy. 
Specifically, the FR-GCNet using the FPS-KNN sampling strategy ach-
ieved an improvement of 1.5 % on the OA and 4.5% on the average F1- 
score, which is consistent with the visual inspection. This phenomenon is 
because the block sampling strategy damages the integrity of the input 
scenes, such as the geometrical structure completeness of a building; 
thereby the network trained by this sampling strategy struggles to 
accurately label all the points. Conversely, the FPS-KNN sampling 
strategy can maintain the objects’ completeness and effectively generate 
the samples covering all the scenes. 

5.3. Input features 

To clearly demonstrate the superiority of the MS-LiDAR data in point 
cloud classification, sample data with different input spectral features 
were input to the FR-GCNet. We conducted a series of experiments on 
the Test11 scene with different input data: (1) only geometrical eleva-
tion data (Case-1), (2) geometrical elevation and MIR-channel spectral 
data (Case-2), (3) geometrical elevation and NIR-channel spectral data 
(Case-3), (4) geometrical elevation and Green-channel spectral data 
(Case-4), and (5) geometrical elevation and three-channel spectral data 
(Case-5). Fig. 10 shows the comparative point cloud classification results 
of the trained FR-GCNet on the Test11 scene. As shown in Fig. 10, Case-5 
demonstrates the best classification performance against other input 
data types. Specifically, Case-1 with only the geometrical input data 
achieved poor classification accuracies of the objects with similar 
elevation information. For example, there are many misclassification 
results that occurred between the soil and grass classes, as well as be-
tween the building and tree classes. Compared with Case-1, the 
remaining cases, with the input data integrating elevation with one- or 
multi-channel spectral data, achieved a significant point cloud classifi-
cation performance improvement. Specifically, the aforementioned 
misclassification rates between the building and tree classes and the 
grass and soil classes were greatly reduced due to the spectral differ-
ences of these similarly elevated objects. Among the experiments of 
Case-2 to Case-4, we found that Case-4, the input data with the 
geometrical and Green-channel information, obtained the worst classi-
fication accuracies. Vegetation is poorly reflected in the green and 

Fig. 10. Visual results of the FR-GCNet with different input data. (a) Case-1, (b) Case-2, (c) Case-3, (d) Case-4, (e) Case-5, and (f) GT.  

Table 4 
The quantitative classification results of the FR-GCNet with different input data.  

Experiment 
No. 

OA 
(%) 

average 
Precision (%) 

average 
Recall (%) 

average F1- 
score (%) 

mIOU 
(%) 

Case-1  76.81  57.86  53.83  53.75  49.65 
Case-2  84.74  69.53  63.22  65.53  59.80 
Case-3  89.97  78.21  73.54  75.59  64.52 
Case-4  84.38  65.10  57.47  61.52  55.50 
Case-5  93.55  82.54  76.20  78.61  65.78  
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appears darker, while asphalt roads also appear dark, which increases 
the misclassification rates between the road/soil and grass classes. 
Although Case-5 obtained the best classification accuracies by using all 
three-channel spectral information, the classification of the soil class 
was still problematic. 

To further demonstrate the classification performance of the FR- 
GCNet with different input data, Table 4 lists the quantitative results. 
As shown in Table 4, Case-2 and Case-4 achieved point cloud classifi-
cation improvement by increased OA of about 8%, average F1-score of 
12%, and mIOU of 10%. Case-3 achieved the better classification results 
with an OA of 89.97%, an average F1-score of 75.59%, and a mIOU of 
64.52% due to the 1064 nm-channel spectral data, which provides a 
good reflectance of vegetation. Case-5 achieved the best classification 
accuracies with an OA of 93.55%, an average F1-score of 78.61%, and a 
mIOU of 65.78%, demonstrating that using three-channel spectral in-
formation contributes to the improvement of the MS-LiDAR point cloud 
classification. 

5.4. Ablation study 

A group of ablation experiments were designed to analyze the 
effectiveness of the reasoning module, including the global reasoning 
and local reasoning units, on the upgradation of the point cloud classi-
fication accuracy. To this end, we modified the proposed FR-GCNet to 
construct four networks. First, we removed the feature reasoning mod-
ule from the FR-GCNet, and termed the resultant network as the base-
line. Then, we removed the global reasoning unit and the local reasoning 
unit, respectively, from the FR-GCNet, and named the resultant net-
works as FR-GCNet-GR and FR-GCNet-LR, respectively. Finally, we 
removed edge attention from the local reasoning unit, and named the 
resultant network as FR-GCNet-EA. These modified networks were 
constructed by the same training and testing datasets, as well as the 
same training strategy. 

As shown in Fig. 11, a close view of the Test11 scene demonstrated 
that the proposed FR-GCNet completely recognized the six classes of 
interest and classified them clearly. The other networks failed to classify 
some points of the six classes correctly. The baseline network failed to 
separate the building points from the tree points and completely 
distinguished the road points from the grass points. The FR-GCNet-GR 
and FR-GCNet networks correctly classified the points in the tree-and- 
building adjoining areas. This is because the use of the local reasoning 
unit improved the local neighboring spatial feature representation and 

learned the geometric deep features from spatial relations. The FR- 
GCNet-GR obtained a good identification of the tree and road points. 
However, without the global feature reasoning unit, some classes with 
long structures, such as road, were often misclassified as the others. 
Moreover, compared with the FR-GCNet-EA, the FR-GCNet-GR and FR- 
GCNet more accurately identified the tree points from the building 
points. This is because of the weight difference for different classes by 
the edge attention. 

Table 5 quantitatively records the point cloud classification results 
obtained by the five networks. The proposed FR-GCNet obtained the best 
point cloud classification results with an OA of 93.55%, an average F1- 
score of 78.61%, and an mIOU of 65.78%. The baseline network, without 
integrated with any units or modules, obtained an accuracy degradation 
of about 4%, 7%, and 5% with respect to the OA, average F1-score, and 
mIOU, respectively, compared with the FR-GCNet. This performance 
degradation was mainly caused by the presence of similarly-elevated 
objects. To learn local features and enhance local expression ability, 
the FR-GCNet-GR, integrated with the local reasoning unit, obtained a 
performance improvement by about 3% on the OA, 5% on the average 
F1-score, and 5% on the mIOU. Compared with the FR-GCNet-LR, the 
improvement of the FR-GCNet-EA indicates edge convolution collects 
local features by max-pooling edge features in local neighborhoods. 
Similarly, we also found that edge attention in the FR-GCNet took ac-
count for a large proportion of the performance improvement. This is 
because edge attention provides edge weights for edge convolution and 
distinguishes critical points in the overlapping areas such as trees and 
buildings. We verified that, without the reasoning feature module for 
comprehensively exploring local neighboring and global spatial 

Fig. 11. A close view of the classification results obtained by (a) baseline, (b) FR-GCNet-LR, (c) FR-GCNet-EA, (d) FR-GCNet-GR, (e) FR-GCNet, and (f) GT.  

Table 5 
Ablation study results.  

Networks OA 
(%) 

average 
Precision (%) 

average 
Recall (%) 

average F1- 
score (%) 

mIOU 
(%) 

Baseline  89.49  75.68  67.63  71.72  60.14 
FR-GCNet- 

LR  
90.07  77.29  68.90  72.74  62.08 

FR-GCNet- 
EA  

91.89  78.11  74.27  75.60  64.32 

FR-GCNet- 
GR  

92.94  80.60  73.14  76.82  65.21 

Our FR- 
GCNet  

93.55  82.54  76.20  78.61  65.78  
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structures associated with the six classes of interest, the quality of the 
output features used for classifying point clouds was weakened. 
Consequently, a degradation occurred in the MS-LiDAR point cloud 
classification performance of large-scale, complicated scenes. 

5.5. Comparisons with other methods 

A group of comparative experiments were conducted on the Titan 
MS-LiDAR point clouds to demonstrate the advantages of the FR-GCNet. 
So far, there are few deep learning-based methods developed for directly 
classifying MS-LiDAR point clouds. Therefore, to better estimate our 
network, five widely-used networks were selected for MS-LiDAR point 
cloud classification performance comparisons, i.e., PointNet (Qi et al., 
2017a), PointNet++ (Qi et al., 2017b), DGCNN (Wang et al., 2019a), 
RSCNN (Liu et al., 2019), and GACNet (Wang et al., 2019b). Our pre-
vious study, SE-PointNet++ (Jing et al., 2021) based on PointNet++, 
was also selected for this comparison. In the above netwroks, encoder 
and decoder are specifically implemented by MLP which raises and 
lowers the feature dimensions. Table 6 shows the MLP sizes. 

For a fair comparison, the same samples and hyper-paramters were 
used to construct these models and evaluate their performances. Fig. 12 
shows the MS-LiDAR point classification results obtained by the 
different networks on all the test scenes. Taking Test11 scene as an 
example, visusal inspection indicates that the proposed FR-GCNet ach-
ieved superior overall classification performance by reducing 

misclassification and noise. Prominently, the FR-GCNet, improved by 
the PointNet, correctly predicted the soil and powerline points and 
clearly classified the similarly-elevated classes, such as tree and build-
ing, as well as grass and soil. As shown in Fig. 12, the performances of 
the DGCNN and GACNet were both poor in powerline point classifica-
tion. Although the RSCNN achieved the classification accuracy compa-
rable to that of the FR-GCNet, the former still has many 
misclassifications of the soil points. Notably, the PointNet++ mis-
classified some powerline points as tree but classified soil points more 
accurately than the FR-GCNet. Note that, compared with other methods, 
the SE-PointNet++ correctly recognized most soil points consistent to 
those of the ground truth. 

The seven deep neural networks were used on the Test11 scene for 
MS-LiDAR point cloud classification and quantitative results are re-
ported in Table 7. Among them, the DGCNN, RSCNN, PointNet++, and 
SE-PointNet++ outperformed the other methods with an OA of over 
90.00 %. The GACNet performed modestly and achieved an OA of 
87.59%. The PointNet obtained the worst performance with an OA of 
83.36%. Comparatively, our FR-GCNet achieved promising results on 
the test scenes. A high point cloud classification performance with an OA 
of 93.55% and an average F1-score of 78.61% were obtained. For the 
PointNet, the spatial relations among points were ignored, thereby 
degrading the quality of the output features used for predicting the 
classes of interest. Although the GACNet introduced attention mecha-
nism into the graph convolution network for avoiding features pollution 

Table 6 
The MLP size of the comparative networks.  

Networks Encoder Decoder 

PointNet [64, 64] [64, 128, 1024] [512,256,128] 
PointNet++ [16,16,32] [32,32,64] [64,64,128] [64,96,128] 

[128,196,256] [128,196,256] [256,256,512] [256,384,512] 
[512,512] [512,512] 
[256,256] [128,128] 

SE-PointNet++ [32,32,64] [64,96,128] [128,196,256] [256,384,512] [512,256] [256,256] 
[256,128] [128,64] 

DGCNN [64,64] [64, 64] [192,1024] [512,256] 
RSCNN [64,16,128] [128,131,512] [512,512,256,128,128] 
GACNet [32,32,64] [64,64,128] [128,128,256] [256,256,512] [256,256] [256,128] [128,128,128]  

Fig. 12. Visual comparison of the classification results on test scenes.  

Table 7 
Classification results of the Test11 scene and statistical tests obtained by the comparative networks. The first six columns are F1-score of each class.  

Classes road building grass tree soil powerline OA (%) Average 
F1-score (%) 

PointNet  0.5081  0.7920  0.6861  0.7521  0.1273  0.2256  83.36  51.52 
PointNet++ 0.7108  0.8398  0.9324  0.9645  0.3024  0.5728  90.43  72.05 
SE-PointNet++ 0.7032  0.8564  0.9470  0.9705  0.3702  0.7035  93.01  75.84 
DGCNN  0.7042  0.9025  0.9362  0.9793  0.2197  0.5524  91.19  71.57 
RSCNN  0.7118  0.8900  0.9142  0.9563  0.2643  0.7003  92.44  73.90 
GACNet  0.6451  0.8421  0.9341  0.9666  0.2277  0.3383  87.59  67.65 
FR-GCNet  0.8263  0.9081  0.9533  0.9877  0.2872  0.7411  93.55  78.61  
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of marginal areas, the representative features of abundant points were 
not fully explored. Comparatively, the DGCNN obtained an increase of 
the point cloud classification performance due to the local and global 
shape features considered in the local neighborhood graphs. The RSCNN 
learned contextual shape-aware representation by the geometric priors 
among points, which upgraded the MS-LiDAR point classification 
performance. 

6. Conclusion 

MS-LiDAR systems can quickly and accurately obtain both geomet-
rical and spectral information of ground objects simultanously. In this 
paper, we presented a feature reasoning-based graph convolution 
network (FR-GCNet) for MS-LiDAR point cloud classification. Our 
training sample was generated by the FPS-KNN sampling method during 
data preprocessing. The proposed FR-GCNet is an end-to-end encoder- 
decoder network consisting of the feature reasoning module with a local 
reasoning unit and a global reasoning unit. These two units extract local 
structural features with attention weights and global contextual features 
based on the input data,respectively. Aided by our FR-GCNet, we con-
ducted the classification experiments on the Titan MS-LiDAR data. We 
achieved the OA, average F1-score and mIOU of 93.55%, 78.61%, and 
65.78%, respectively, which shows the excellent performance of our 
network on MS-LiDAR point cloud classification. 

However, we also found that the proposed FR-GCNet performed less 
effectively on soil class. This is because the proposed FR-GCNet based on 
the graph convolution still cannot avoid the characteristic of heavily 
relying on geometric differences. As a result, there were still false de-
tections and misidentifications in the MS-LiDAR point cloud results. In 
our future work, we hope to design a more powerful network architec-
ture to further upgrade the robustness, representativeness, and distinc-
tiveness of the output features, and exploit favorable prior knowledge of 
the scenes to further improve the point cloud classification correctness 
and accuracy. 
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