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Abstract— Neural networks have dominated the research of
hyperspectral image classification, attributing to the feature
learning capacity of convolution operations. However, the fixed
geometric structure of convolution kernels hinders long-range
interaction between features from distant locations. In this article,
we propose a novel spectral–spatial transformer network (SSTN),
which consists of spatial attention and spectral association mod-
ules, to overcome the constraints of convolution kernels. Also,
we design a factorized architecture search (FAS) framework that
involves two independent subprocedures to determine the layer-
level operation choices and block-level orders of SSTN. Unlike
conventional neural architecture search (NAS) that requires a
bilevel optimization of both network parameters and architecture
settings, the FAS focuses only on finding out optimal architecture
settings to enable a stable and fast architecture search. Extensive
experiments conducted on five popular HSI benchmarks demon-
strate the versatility of SSTNs over other state-of-the-art (SOTA)
methods and justify the FAS strategy. On the University of Hous-
ton dataset, SSTN obtains comparable overall accuracy to SOTA
methods with a small fraction (1.2%) of multiply-and-accumulate
operations compared to a strong baseline spectral–spatial residual
network (SSRN). Most importantly, SSTNs outperform other
SOTA networks using only 1.2% or fewer MACs of SSRNs on
the Indian Pines, the Kennedy Space Center, the University of
Pavia, and the Pavia Center datasets.

Index Terms— Factorized architecture search (FAS), spa-
tial attention, spectral association, spectral–spatial transformer
network (SSTN).
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I. INTRODUCTION

HYPERSPECTRAL image (HSI) classification requires
labeling each pixel in the imagery as belonging to

one of the predefined land cover categories. This challeng-
ing task forms the cornerstone of various remote sensing
applications, including object detection, land-cover mapping,
semantic segmentation, and anomaly detection [2]–[5]. The
hundreds of contiguous spectral bands of HSIs separate them
from typical images, and this distinctive property prevents
machine learning methods from being directly transferred
to HSI analysis. Meanwhile, the spatial contexts of HSI
samples provide complementary information to their abundant
spectral signatures for precise recognition. Considering each
HSI dataset contains a limited number of classes, this task
can be regarded as projecting samples from high-dimensional
data space to a compact semantic space. The essence lies in
integrating the characteristics of data into network design.

Traditional HSI classification models involve two inde-
pendent steps: Feature engineering and classifier training
[6]–[10]. Although this two-step paradigm has been adopted
for HSI classification by many pioneering works, the conven-
tional methods suffer from the disadvantages of low general-
izability and limited representational capacity. In recent years,
inspired by the burst of deep learning in addressing various
vision problems [11]–[13], many research groups manage to
transfer the remarkable feature learning capacity of neural
networks to HSI recognition problems [14]–[16]. In these
methods, the tasks of learning features and training classifiers
are integrated in an end-to-end manner. Such advancement
enables practitioners to focus on the design of neural networks
or learning frameworks for achieving better recognition per-
formance. However, two obstacles still hinder the development
of neural networks for HSI classification.

The first shortcoming is the geometric constraints imposed
by convolution kernels, the square structure of which limits
their receptive fields to local contexts. Although conven-
tional convolution extracts spatial features effectively, they
seldom receive information from long-distance positions in
feature maps. Meanwhile, various vision tasks involve spatial
recognition have demonstrated the importance of long-range
interactions between pixels from different locations. However,
the transformer units applied in vision tasks are computed with
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TABLE I

MULTIPLY–ACCUMULATE OPERATIONS (M), NUMBER OF PARAMETERS (K) IN SUBSCRIPT, AND THEIR RESPECTIVE FRACTIONS BETWEEN SSTNs AND
SPECTRAL–SPATIAL RESIDUAL NETWORKS (SSRNs) IN DIFFERENT MODELS ON IN, UP, KSC, UH, AND PC DATASETS

respect to all spatial locations and thus inherently overlook the
ample spectral information of HSIs.

The second drawback originates from the design choices
of network architecture, which is infinite in theory. Although
neural networks have dominated the research of HSI classifi-
cation, their architecture design still largely relies on domain
knowledge from experts. To alleviate such a dilemma, neural
architecture search (NAS) has attracted a lot of scholarly
attention as a potential solution. Since NAS presents a promis-
ing alternative paradigm capable of designing networks auto-
matically. Unfortunately, prohibitive computation expense and
unstable training cost prevent the NAS strategy from being
widely adopted.

Many preceding works have explored practical constraints
in the remote sensing community to regularize HSI datasets for
various tasks. For example, the subspace structure prior [17]
and material-level data distribution [18] are introduced for
hyperspectral unmixing and object detection, respectively.
Also, designing a suitable sampling strategy is discussed for
HSI analysis [19], [20]. Unlike these data-centric methods,
this article focuses on introducing constraints on architecture
spaces to avoid prohibitive costs of NAS.

Recently, the attention mechanism has been adopted
rapidly for addressing remote sensing tasks [16], [21]. For
instance, [22] designed an approach that emphasizes certain
hyperspectral bands for improving HSI classification. How-
ever, these methods adopt attention units as an additional
part to boost backbone models. Contemporarily, the work [23]
proposed the HSI-BERT model that is composed of multiple
attention layers. This method requires the input HSI samples to
be flattened to a sequence of vectors to satisfy the requirements
of natural language processing. Motivated by the pioneering
research, we concentrate on designing transformer networks
composed of novel attention units that account for the char-
acteristics of HSIs.

To this end, we propose an efficient and effective spectral–
spatial transformer network (SSTN), the configurations of
which are searched by a novel factorized architecture
search (FAS) strategy. First, we embed the attention mech-
anism into both spatial and spectral feature learning modules.
These attention modules can capture long-range interactions
by replacing the convolution operations with more flexible
transformer units, thus representing spectral–spatial features
with reduced computational cost. Second, we propose an
FAS framework that uses the innovative transformer units as
building blocks, upon which the architecture settings of SSTN
are searched. Specifically, we introduce six combinations of

four basic operators to explore the optimal layer-level config-
uration. Then, we search for the best block-level order using
the selected operators. Finally, we adopt all network settings
searched from the FAS to configure the SSTN. The finalized
SSTN contains two spatial transformer and two spectral trans-
former units, outperforming state-of-the-art (SOTA) expert-
designed or auto-searched models [1], [24] in four out of five
HSI datasets with a much lower computational cost as shown
in Table I.

The main contributions of this article are threefold and listed
as follows.

1) We introduce the SSTN consisting of spectral and spa-
tial transformer blocks to extract spectral–spatial HSI
features, replacing convolution operations with spatial
attention and spectral association modules.

2) We propose a novel FAS framework that only focuses on
two crucial factors, the layer-level operation choices and
the block-level sequential orders of SSTN, thus enabling
a fast and practical architecture search.

3) The effectiveness and efficiency of SSTNs have been
demonstrated on three challenging HSI benchmarks,
outperforming human-designed as well as NAS-based
networks.

We arrange the remaining part as follows. Section II sum-
marizes related works from three perspectives. Section III
introduces the detailed framework of FAS and describes the
building elements of SSTN. Then, Section IV presents the
hyperparameter configuration, experiment results, and corre-
sponding analysis. We conclude this work in Section V.

II. RELATED WORK

A. Attention Mechanism

Motivated by the attention mechanism used in modeling
various sequential/data [25], [26], multiple works introduce
novel attention modules to overcome the geometric limitations
of convolution kernels for HSI classification [16], [27], [28].
For example, spectral–spatial attention network (SSAN) first
incorporates attention mechanism in spectral and spatial fea-
ture learning units [21]. Spectral gates generated by global
convolution are designed to determine the importance of
different spectral bands [29]. Also, an embedded attention
module is introduced to deprecate interfering HSI pixels [16].
Recently, consecutive channel and spatial attention blocks
are adopted to improve their spectral–spatial residual coun-
terparts [30]. Although obtaining promising mapping results,
these attention-based networks calculate spectral attention as

Authorized licensed use limited to: Jonathan Li. Downloaded on October 10,2021 at 19:25:06 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHONG et al.: SSTN FOR HSI CLASSIFICATION: FAS FRAMEWORK 3

Fig. 1. Framework of FAS framework. The super network Net(X; φ, θ,ω) built for search is partially initialized by the hyperparameters of SSRN. The upper
part shows the searching stage that aims to figure out the two optimal factors φ and θ of network architecture on XDev. The lower part presents the training
stage that follows a standard network training procedure using the hyperparameters φ∗ and θ∗ searched in the previous step on XTra. Finally, we discover an
SSTN that consists of spatial attention and spectral association modules using the FAS strategy.

the correlation between feature channels. Instead, we propose
a novel spectral transformer unit that models the association
between a set of spectral kernels and spatial locations with
marginal computational resources.

B. Neural Architecture Search

NAS has been studied in growing numbers of literature
for automatically designing networks for vision tasks. Zoph
and Le first introduce reinforcement learning to NAS via
adopting an RNN controller, which produces hyperparameters
to search neural networks [31]. Then, differentiable archi-
tecture search (Darts) advocates establishing a differentiable
search space, resulting in efficient network searching [32].
Several recent articles employ the NAS strategy to ana-
lyze remotely sensed data. For instance, Peng et al. [33] put
forward a gradient-based NAS method to search for opti-
mal convolutional networks for classifying remote sensing
scenes. Dong et al. [34] designed a data-specific search space
equipped with a one-shot strategy for differentiable NAS.
Also, Chen et al. [24] introduced automatic network design
using 1-D or 3-D CNNs for HSI classification. However,
these NAS-based methods suffer from heavy computational
burden and memory footprint. In this work, we explore an
FAS framework that enables efficient network searching for
HSI analysis.

C. Expert-Designed Networks

Neural networks have been proven to be more effec-
tive for HSI feature representation compared to conventional
machine learning methods [35]–[37]. For instance, autoen-
coder and convolution neural networks (CNNs) are among
the earliest spectral approaches used for HSI classification
and outperform traditional classifiers like SVM [38], [39].
Zhong et al. [1] proposed spectral convolution to boost the
spectral feature learning capacity of CNN backbones. Inter-
estingly, Mou et al. [40] introduced recurrent neural net-
works (RNNs) to learn spectral features regarding each pixel in
an HSI as sequences. Many recent articles have demonstrated
that spatial features play a crucial role in achieving excellent

HSI classification performance. CNN and its variants are
employed to capture spectral–spatial features for achieving
discriminative HSI representation [15], [41]. Besides, other
learning methods usually exploit inductive biases, such as
sparseness or smoothness constraints. For example, graph
models, such as Markov random fields, are widely used to
refine the classification maps to boost pixel-wise HSI recog-
nition accuracy [42], [43]. Motivated by these enlightening
works, we aim to integrate the edges of NAS and experts’
intuition by designing an FAS strategy using novel spectral–
spatial modules that account for the characteristics of HSI.

III. PROPOSED FRAMEWORK

Fig. 1 shows the FAS framework used to search the
settings of SSTN for HSI classification. Suppose that an
HSI dataset contains a train set {XTra, yTra}, a validate set
{XVal, yVal}, and a test set {XTes, yTes}. Standard learning-
based methods approach the classification task by training a
network Net(·; η,ω) to fit the training set such that the trained
model can generalize to the unseen test set and make decent
predictions. This objective can be formulated as follows:

{η∗,ω∗} = argmin
η,ω

{Ltrain(η,ω),Lval(η,ω)} (1)

where η and ω denote the architecture settings and network
parameters to be learned, respectively. The train loss Ltrain and
the validate loss Lval are defined as follows:

Ltrain(η,ω) = L(
yTra, Net

(
XTra; η,ω

)
(2)

Lval(η,ω) = L(
yVal, Net

(
XVal; η,ω

)
. (3)

The analytical solutions of (1) are nontrivial to obtain due
to the hierarchical architecture of neural networks and the high
dimension of HSI samples, while the settings of these models
are proposed by expert. Thus, NAS is introduced to automati-
cally design network architectures for HSI classification [24].
The NAS strategy involves a bilevel optimization procedure,
which means that it alternately runs both optimization steps via
gradient descent in each training epoch. Therefore, the optimal

Authorized licensed use limited to: Jonathan Li. Downloaded on October 10,2021 at 19:25:06 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 2. Illustration of spatial attention module (left) and spectral association module (right). The attention maps Attn ∈ R
hw×hw in the spatial attention module

is produced by multiplying two reshaped tensors Q and K . Instead, the attention maps M1 and M2 in the spectral association module are the direct output
of a convolution operation. The spectral association kernels Asso ∈ R

k×c represent a compact set of spectral vectors used to reconstruct input feature X.

settings η∗ and parameters ω∗ of a given super network are
approximated by a bilevel optimization as follows:

ω := ω − ξ1∇ωL
(

yTr, Net
(
XTr; η,ω

))
(4)

η := η − ξ2∇ηL
(

yVal, Net
(
XVal; η,ω(η)

))
(5)

where ξ1 and ξ2 are the learning rates of dual optimization
levels, respectively. However, this bilevel optimization process
usually leads to unstable training and expensive computational
costs. To this end, we design a novel and effective FAS frame-
work that replaces network settings η∗ with two independent
architecture factors φ and θ . Then, we build a super network
Net(X; φ, θ ,ω) that is partially initialized by the architecture
settings of SSRN [1]. The upper part of Fig. 1 shows the
searching stage that aims to figure out the optimal settings
of the two factors φ and θ on a develop set {XDev, yDev}
and validate set. The lower part presents the training stage
that follows a standard network training procedure using the
architecture settings φ∗ and θ∗ searched in the previous step
on the train set. Finally, we discover an SSTN that consists
of spatial attention and spectral association modules using
the FAS strategy, which is stabilized by searching disentan-
gled architecture factors progressively while eliminating other
unstable aspects.

A. Spatial Attention

Spatial attention mechanism aims to model the interactions
between different locations of HSI samples [44], [45]. The left
part of Fig. 2 demonstrates the structure of a spatial attention
module. The spatial attention module overcomes the constraint
imposed by the grid structure of convolution kernels and
reduces the high computational costs for processing images
of large spatial sizes. Following previous works [16], [21],
we use the 2-D convolution with 1 × 1 kernels to implement
the spatial attention module. First, we calculate query, key, and
value tensors as follows:

Q = F(
X; W Q

) ∈ R
c′×h×w (6)

K = F(X; W K ) ∈ R
c′×h×w (7)

V = F(X; W V ) ∈ R
c×h×w (8)

where W Q , W K , and W V represent trainable parameters in
the convolution operations of query, key, and value tensors,
respectively. Also, c, w, h, and c′ are channel size, height,

width of input feature X , and the channel size of Q and K ,
respectively. F(·) denotes a 2-D convolution with the kernel
size of c′ × c × 1 × 1. Then, we reshape Q and K to the
size of c′ × hw for the following matrix multiplication. The
attention map is produced as follows:

Attn = sfm−1
(

QT · K
) ∈ R

hw×hw (9)

where sfm−1(·) denotes the softmax function along the last
dimension of input tensor. Finally, the output of the spatial
attention module can be calculated as follows:

Out = V · Attn = V · sfm−1
(

QT · K
) ∈ R

c×h×w (10)

where each location of output feature Out is a reconstruction of
V by summarizing a weighted value tensor V · Attni , where
1 ≤ i ≤ hw. We adopt a skip connection to regularize the
spatial attention module and thus enable smooth training.

B. Spectral Association

The spatial attention module introduced in the above sub-
section establishes the connections between different locations
in an HSI cuboid. However, all positions in the cuboid are
used for reconstructing the input tensor of the spatial attention
module. Therefore, as shown in the right part of Fig. 2,
we design a novel spectral association module that integrates
out and builds back spatial information using masks generated
by 3-D convolution operations. First, we calculate the spectral
association kernels as follows:

M1 = sfm−1(G
(
X; W M1

)
) ∈ R

hw×k (11)

Asso = MT
1 · XT = (X · M1)

T ∈ R
k×c (12)

where G(·) denotes a 3-D convolution using the kernel size of
k × 1 × c × 1 × 1 to produce a tensor of size k × h × w,
on which we impose a softmax function. Then, we adopt the
generated mask W M1 to integrate out the spatial information
of input feature X , resulting in spectral association kernels
of size k × c. Finally, the output of the spectral association
module can be calculated as follows:

M2 = sfm−1(G
(
X; W M2

)
) ∈ R

hw×k (13)

Out = AssoT · MT
2 = (M2 · Asso)T ∈ R

c×h×w (14)

where M2 is the normalized output of another
3-D convolution G(·). In practice, we set G(·; W M1)
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Fig. 3. SSTN and two spaces for searching network hyperparameters. (a) � search space used to determine layer-level units of spectral and spatial feature
learning blocks, where six combinations are presented. (b) � search space adopted to decide block-level sequential order, in which “A” and “E” denote spatial
and spectral blocks, respectively. (c) Final architecture of SSTN has the setting of “AEAE” and is composed of two consecutive pairs of spectral and spatial
transformer blocks. The red checkmarks indicate the searched optimal settings in two factorized spaces. The spatial transformer unit is composed of two
spatial attention modules, and the spectral counterpart contains two spectral association modules.

and G(·; W M2) to be the same, and thus, they share trainable
parameters. We multiply the transformed spectral association
kernels AssoT and the transformed mask MT

2 to enable a
sparse representation of the input feature X . Considering
that usually, k × c � hw × hw, the sparsity derives from
the compact set of spectral vectors Asso ∈ R

k×c. It is
noteworthy that the spectral association module builds the
correlation between spectral kernels and spatial positions,
which complements spatial feature learning modules.

C. Disentangled Search Space

NAS strategy [31], [32] is widely used to search the holistic
network by searching the best combination of basic building
blocks, including various convolution layers, pooling opera-
tion, and skip connection. However, such a granular search
setting inevitably demands high computation costs and large
memory footprints. To this end, we design a novel search
framework to overcome these problems and therefore impetus
a stable training process. Before introducing the proposed FAS
framework, we describe two search spaces as � and � in the
following two paragraphs.

As shown in Fig. 3(a), the � search space is used to
determine layer-level units of spectral and spatial feature
learning blocks. For the spatial block, the left part of Fig. 3(a)
demonstrates three combinations of spatial modules, including
spatial convolution and spatial attention. As to the spectral
block, the right part also shows three compositions of spectral
units, including spectral convolution and spectral association.
We employ “Aac” to indicate a spatial layer consisting of

spatial attention and a spatial convolution for simplicity’s
sake. Similarly, we adopt “Eac” to represent a spectral layer
containing a spectral association and a spectral convolution.
In each combined module, the weighted output feature can be
calculated as follows:

Xout =
∑

φ∈�

exp
{
αφ

}
∑

φ ′∈� exp
{
αφ ′} · φ(X in) (15)

where φ denotes an operation in � and αφ represents the
trainable weight of each unit in a combined module. In (15),
� represents the operator space shown in Fig. 3(a), including
all possible candidate operators. Then, the output tensor Xout

of a layer-level unit in a transformer block is calculated by
the weighted sum of intermediate tensors over all operators
in �. The weight for each operator equals exp{αφ} in which
α is a trainable architecture parameter and is divided by a
normalized term equals

∑
φ ′ exp{αφ ′ }. In this way, we are able

to compare two families of arch settings instead of just two
fixed models.

As shown in Fig. 3(b), the � search space is adopted
to decide block-level sequential order, in which “A” and
“E” denote spatial and spectral blocks, respectively. For
example, SSRN [1] takes the sequential order of “EEAA.”
We limit the block-level search of FAS to operating only
on the six candidates shown in � space. In addition, two
baselines (“AAAA” and “EEEE”) are used in the abla-
tion study for validating the block-level network settings.
In Section III-D, we will describe the proposed FAS strategy
in detail.
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D. Factorized Architecture Search

Previous works have demonstrated that NAS suffers from
unstable training caused by the gap between the super net-
works used in the bilevel optimization and their derived
networks. To avoid this gap, as shown in Fig. 1, we introduce
an FAS strategy that limits architecture search only in the
searching stage, focusing on finding out the optimal setting
of one factor in an FAS subprocedure by fixing other fac-
tors. Specifically, the proposed FAS framework involves two
subprocesses in two factorized spaces introduced in the above
subsection, thus enabling an effective and efficient search in
each space.

First, we use the sequential order of SSRN as the initial
architecture (“EEAA” in �) of super network. Following [1],
we use two consecutive spectral and spatial blocks to learn
discriminative spectral–spatial features. Then, we conduct an
FAS process (FAS1 in Fig. 1) to discover the optimal combina-
tion of operations in � space, which determines the layer-level
setting. The optimization step and the objective of FAS1 can
be formulated as follows:

ω := ω − γ1∇ωL
(

yDev, Net
(
XDev; φ, θ̄ ,ω

))
(16)

φ∗ = argmin
φ̃

L(
yVal, Net

(
XVal; φ̃, θ̄ ,ω

))
(17)

where γ1 represents the learning rate of the FAS1 process,
in which we use a fixed θ̄ which is the same as SSRN.
We search for the optimal spectral and spatial units in � space
to build spectral and spatial blocks, respectively.

Then, we adopt another FAS process (FAS2 in Fig. 1)
to figure out the optimal setting in � space, which decides
the sequential orders of spectral and spatial blocks in SSTN.
Similarly, the optimization step and the objective of FAS2 can
be formulated as follows:

ω := ω − γ2∇ωL(yDev,
(
Net

(
XDev; φ̂, θ ,ω

))
(18)

θ∗ = argmin
θ̃

L(
yVal, Net

(
XVal; φ̂, θ̃ ,ω

))
(19)

where γ2 represents the learning rate of the FAS2 procedure,
in which we use a fixed φ̂ found in (17).

As shown in Fig. 1, both FAS1 and FAS2 processes are
trained on XDev and validated on XVal. We combine the
searched optimal architecture settings φ∗ and θ∗ in these two
disentangled spaces. Using these searched settings, we finally
train a network from scratch on XTra and test the trained
model on XTes. Compared to various NAS methods, the FAS
framework presents a stable searching process by imposing
constraints on the two factorized search spaces and decoupling
the stages of searching and training.

E. Spectral–Spatial Transformer Network

We employ the progressive FAS framework in � and �

spaces to determine network architectures, rather than search-
ing the whole network via a bilevel optimization like NAS.
We determine the settings of SSTN according to empirical
evidence of FAS on three HSI datasets. In the � space,
the spectral and spatial transformer blocks employ spectral

association and spatial attention modules as fundamental build-
ing operations, respectively. Also, we set the block sequential
order of SSTN to be “AEAE” in the � space. This progressive
FAS framework conducted in factorized search spaces avoids
the unstable training of previous NAS methods.

1) Final Architecture: The final architecture follows a block
sequence of “AEAE” as shown in Fig. 3(c), where “A”
and “E” denote spatial transformer and spectral transformer
blocks, respectively. The spatial transformer block comprises
two spatial attention modules with a skip connection that
follows the classic design of the residual block in ResNet [11].
Similarly, the spectral counterpart contains two spectral asso-
ciation units. We use an HSI cuboid from the University
of Pavia (UP) dataset as an input to demonstrate the SSTN
structure. As shown in Fig. 3(c), the input HSI sample has a
size of 103 × 9 × 9. The first Conv layer is used to reduce the
spectral dimensions of input feature X from 103 to 49. The
first pair of spatial–spectral (“AE”) transformer blocks keep
the spectral dimension unchanged and output an intermediate
feature tensor X ′. Then, the second Conv layer reduces the
spectral size from 49 to 18. The second pair of spatial–spectral
transformer blocks function similar to the first one. As for the
hyperparameters, we set the ratio of c/c′ in (7) and (8) in
the spatial attention module to be 8 and spectral association
dimension k in (11) to be 18. Finally, an average pooling layer
and a fully connected layer generate the classification logits
Ypred. In the following section, we describe the implementation
details of FAS and report the qualitative and quantitative
outcomes of experiments.

IV. RESULTS AND DISCUSSION

In this section, we first describe the three HSI benchmark
datasets, then introduce the configurations for both the search-
ing and training stages of FAS, and finally assess the SSTN
using qualitative metrics, including overall accuracy (OA),
average accuracy (AA), kappa coefficient (K), training time,
and testing time. We carry out network searching on two
factorized architecture spaces � and � to demonstrate the
effectiveness of the FAS strategy. In addition, we report the
parameter numbers of SSTN and other SOTA networks used
in comparison experiments to evaluate their computational
expenses.

A. HSI Datasets

We evaluate the proposed SSTN and the FAS framework
using three challenging HSI benchmarks, including the Indian
Pines (IN), the Kennedy Space Center (KSC), UP, the Uni-
versity of Houston (UH), and the Pavia Center (PC) datasets.
Fig. 8 shows the imagery of IN dataset, which includes 16
vegetation categories and has 145 × 145 pixels with 200
hyperspectral bands. Fig. 9 shows the imagery of KSC dataset
that involves 13 wetland classes and has 512 × 614 pixels with
176 hyperspectral bands. Fig. 10 shows the imagery of the UP
dataset that contains nine urban land cover classes and has
610 × 340 pixels with 103 bands. Fig. 11 shows the imagery
of UH dataset that contains 15 urban land cover classes and
has 349 × 1905 pixels with 144 bands [46]. Fig. 12 shows
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the imagery of PC dataset that contains nine classes and has
1096 × 715 pixels with 102 bands. As for the IN dataset,
we ensure that each land cover category contains at least one
sample for all sets to avoid the case that no HSI cuboids are
sampled for rare classes.

We randomly sample 200 develop and 400 validate HSI
cuboids with their annotations in each dataset for architec-
ture searching. Also, we randomly select 200 samples for
network training and use the remaining cuboids for testing.
Besides, all HSI cuboids of three datasets are normalized by
subtracting mean values and then being divided by max values.
Tables II–IV list the sampled numbers of train, develop, and
validate groups in three HSI datasets, respectively.

B. Framework Setting

1) Implementation Details: In the architecture searching
stage, as shown in Fig. 3(a), we set the layer-level contains
two options for each composition setting in the � space. Then,
we employ the warm-up mode for the first 15 epochs and
search for 100 epochs in total. We use the Adam optimizer.
We set the learning rates to 0.01, 0.02, 0.02 in the searching
stage for IN, KSC, and UP datasets. The momentum and
weight decay are set to 0.9 and 3e−4, respectively. In the
network training stage, we adopt the optimal architecture
settings shown in Fig. 3(a) and (b). We also use the Adam
optimizer in this stage with a learning rate equals to 0.002 on
four HSI datasets, except 0.001 for the PC dataset. We train
all methods in comparison experiments for 300 epochs. We set
the batch size to 50 for both the searching and training stages.
We run five times for all experiments and report their mean
values of different metrics.

As shown in Fig. 1, the block-level sequential order of
super network Net(X; φ, θ ,ω) is internalized to “EEAA” that
is the same as that of SSRN [1]. We use the super network
to explore the optimal network settings for learning spectral
and spatial features in the � space. Then, we search for the
optimal block-level sequential order of SSTN in the � space.
Fig. 3 takes an HSI cuboid as input and shows an SSTN with
a sequential order of “AEAE” for HSI classification. To make
a fair comparison, the spatial size of HSI cuboids is 9 × 9 for
all networks on different datasets. In the following paragraphs,
we studied three aspects that affect the FAS framework and
the recognition performance of SSTNs.

First, we focus on the layer-level searching in the �

space, as shown in Fig. 3(a). We restrict the search space to
containing three spatial and three spectral layer-level combi-
nations to avoid the high computational costs of NAS. Using
the block-level sequential order of SSRN, we consider five
combinations of spectral and spatial operations: “AccEcc,”
“AacEcc,” “AaaEcc,” “AaaEac,” and “AaaEaa.” We compare
the searching curves of networks with the five settings on
three HSI datasets in the next subsection. These results are
obtained during a 100-epoch architecture search in a subpro-
cedure of the FAS framework (FAS1) on randomly sampled
200 develop cuboids XDev and 400 validate samples XVal.
Thus, we attain a more robust evaluation of the network
settings than the traditional grid-search strategy by decoupling
architecture searching and network training.

Second, we explore the block-level sequential orders of
SSTN in the � space, as shown in Fig. 3(b). We constrain the
search space to enclose only six sequential settings, including
“AEAE,” “AAEE,” “AEEA,” “EAEA,” “EEAA,” and “EAAE.”
In this way, we extend the search space of conventional NAS
by incorporating the expert knowledge that block-level sequen-
tial order matters for classification performance. We report
the OA of the six block-level configurations to determine
the architecture of SSTN. The classification outcomes are
produced from a 100-epoch architecture search in another
FAS subprocedure (FAS2) using the same hyperparameters as
FAS1. Therefore, we employ FAS as a method to justify the
layer- and block-level settings of SSTN, rather than searching
for network settings without imposing constraints on the
search space.

Third, we carry out an ablation study by comparing net-
works with all spectral or all spatial blocks (“EEEE” or
“AAAA”) to validate the effectiveness of the FAS strategy
and the searched sequential order of SSTN. Also, we adopt
the sequential order of SSRN (“EEAA”) as a strong baseline.
According to the two subprocedures of the FAS framework
introduced in the above two paragraphs, we chose the two best
performing settings of SSTN as our candidates for comparison.
In the following subsection, we reported the OA of networks
with five different block orders on three HSI datasets to
assess the generalizability of SSTN and also validate the FAS
framework.

C. Ablation Studies

We first presented the experiments of two factorized archi-
tecture spaces � and � in the FAS framework on three
datasets to determine the layer- and block-level settings for
SSTN. Based on the searched settings, we then conducted
an ablation study regarding the sequential orders of SSTN to
validate the efficacy of FAS. Next, we compared the SSTN
using searched settings to expert-designed networks, including
CONV [47], spatial transformation network (STN) [48], spec-
tral attention module-based convolutional network (SPA) [29],
SSAN [16], and SSRN [1]. Also, we compared SSTN to
an NAS approach automatic convolutional neural network
(AUTO) [24] for HSI classification to show the generalizability
of FAS. We evaluated these networks qualitatively using their
classification maps. For a fair comparison, we ensure all
models to have two spatial and two spectral blocks. Then,
we trained 200 epochs for all networks and set the input HSI
cuboids with the size of L × 9 × 9, where L represents the
number of hyperspectral bands.

To decide the operations used for spectral and spatial blocks,
we recorded the OA of networks with the same sequential
order as SSRN using different layer-level settings in the
� space. The classification outcomes are calculated on the
validate HSI set from 50 to 100 epochs in an interval of
ten epochs during the first searching stage of FAS (FAS1).
As shown in Fig. 4, the layer setting of “AaaEaa” obtains
comparable accuracy to that of “AaaEcc” in IN dataset and
outperforms other layer-level settings in KSC and UP datasets.
The setting of “AaaEaa” represents that the network adopts
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Fig. 4. OA of networks that have a sequential order of “EEAA” with different layer-level settings in the � space on the validate set from 50 to 100 epochs
in an interval of ten epochs during the FAS1 searching stage. (a) IN dataset. (b) KSC dataset. (c) UP dataset.

Fig. 5. OA of different architecture of SSTN in the � Space on the validate
samples in the FAS2 searching stage on IN, KSC, and UP datasets.

Fig. 6. Ablation study on three HSI benchmarks with different sequential
order settings of SSTN, including “EEEE,” “AAAA,” “EEAA,” “AAEE,” and
“AEAE,” where “E” represents a spectral block and “A” denotes a spatial
block.

spectral association and spatial attention for building spectral
and spatial transformer blocks, respectively. Also, these results
demonstrate the effectiveness of spatial attention and spectral

Fig. 7. Activation maps before the final linear layers the trained SSRN and
SSTN generated by two HSI samples from the UP dataset. (a)–(b) Activation
maps of SSRN and SSTN generated by the first sample. (c)–(d) Activation
maps of SSRN and SSTN generated by the second sample. We highlight
typical maps with green and red boxes.

association modules compared to their convolution counter-
parts for learning discriminant spectral–spatial features.

To determine the block-level settings of SSTN, we reported
the OA of networks using different sequential orders in the
� space. The classification results are also computed using
the validate HSI samples in the second searching stage of
FAS (FAS2). As shown in Fig. 5, the block-level sequential
order of “AEAE” achieves the highest OA (94.75%) on the
validate set of UP dataset, while the “AAEE” setting obtains
the best OA (86.75% and 92.00%) on the validate groups of
IN and KSC datasets. Given that these two block-level settings
clearly outperform other competitors on all three benchmarks,
we adopt both as the network setting candidates of SSTN in
the following ablation study.

Next, we conducted an ablation experiment using different
block-level sequential orders of SSTN on three datasets.
We compared our two candidates (“AAEE” and “AEAE”)
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Fig. 8. Classification results of different models on the IN dataset. (a) False-color map. (b) Ground truth map. (c)–(i) Classification maps of CONV, STN,
SPA, SSAN, SSRN, AUTO, and SSTN.

Fig. 9. Classification results of different models on the KSC dataset. (a) False-color map. (b) Ground truth map. (c)–(i) Classification maps of CONV, STN,
SPA, SSAN, SSRN, AUTO, and SSTN.

searched by the FAS framework to three baselines (“EEEE,”
“AAAA,” and “EEAA”), in which “E” denotes a spectral
transformer block consisting of two spectral association units
and “A” represents a spatial transformer block containing two
spatial attention modules. As shown in Fig. 6, the block-level
setting of “AEAE” yields similar classification performance
compared to the top ones produced by the baseline setting
“AAAA” on both KSC and UP datasets while generating the
best OA on the IN dataset. Therefore, we finalize the SSTN
using the sequential order of “AEAE” because the spatial
attention unit consumes much more computational expense
than its spectral association counterpart.

1) Activation Maps: We add a qualitative experiment to
visualize the activation maps of SSTN and those of SSRN for
justifying the long-range interaction between learned features.
As shown in Fig. 7, we use two different HSI samples from the
UP dataset as inputs to compare the activations maps before

the final linear layers of the trained SSTN and SSRN. In both
cases, we can see relatively bright positions distribute evenly
across the activation maps of SSTN (green boxes) rather than
concentrate on small areas in those of SSRN (red boxes),
which is caused by the grid structure of convolutional kernels.
Also, these findings are in line with the illustrations in Fig. 2,
in which the attention maps (left) are the matrix multiplication
outcome of, and association kernels (right) connect to all
positions in feature maps. Therefore, our proposed modules
can largely address the limitation of standard convolution via
emphasizing the interactions between features regardless of
their spatial distance.

In addition, we have tested SSTNs with different numbers
of training samples, ranging from 200 to 400, on three HSI
datasets and presented the results in Fig. 13. This figure
shows that SSTNs deliver better performance when using
more training samples on all three datasets while consistently
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Fig. 10. Classification results of different models on the UP dataset. (a) False-color map. (b) Ground truth map. (c)–(i) Classification maps of CONV, STN,
SPA, SSAN, SSRN, AUTO, and SSTN.

Fig. 11. Classification results with OA in parenthesis of different models on the UH dataset. (a) False-color map. (b) Ground truth map. (c)–(h) Classification
maps of CONV (87.41%±1.3%), STN (91.93%±0.8%), SPA (87.41%±2.2%), SSAN (90.70%±1.3%), SSRN (92.33%±1.4%), and SSTN (91.95%±1.3%).

outperforming SSRNs. These results justify the efficiency
and robustness of SSTNs, which possesses a small model
size compared to strong baselines. Therefore, according to

empirical results shown in Fig. 13 and Table I, it is reasonable
to extrapolate that SSTNs can be extended to other challenging
scenarios.
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Fig. 12. Classification results with OA in parenthesis of different models on the PC dataset. (a) False-color map. (b) Ground truth map. (c)–(i) Classification
maps of CONV (97.42%±0.3%), STN (98.20%±0.5%), SPA (97.87%±0.4%), SSAN (98.42%±0.3%), SSRN (98.155%±0.2%), AUTO (98.35%±0.2%), and SSTN
(98.96%±0.2%).

TABLE II

CLASSIFICATION RESULTS OF DEEP LEARNING MODELS USING 200 TRAIN, 200 DEVELOP, AND 400 VALIDATE HSI SAMPLES ON THE IN DATASET

D. Comparison With State of the Art

Tables II–IV record the quantitative classification results,
including OA for each class, OA, AA, and Kappa coefficients
for all classes, generated by different networks on three
HSI datasets. On the IN dataset, SSTN achieved the highest
OA (94.39%) that outperforms SSRN by (2.96%). SSTN
also yielded the best OA (97.30%) that surpasses SSRN
by (0.56%) on the KSC dataset. On the UP dataset, SSTN
obtained superior performance to other competing methods

in all three metrics. Figs. 8–10 show the classification maps
generated by all employed networks on three datasets. These
qualitative outcomes are in line with quantitative ones. Given
only 200 samples for training, it is worth noting that SSTN
generates much clearer boundaries for the water class in the
river than other networks, which sheds light on the possible
application of SSTN to other related vision tasks. These
results also demonstrate the effectiveness and generalizability
of SSTNs, depending on the spectral–spatial feature learning
capacity of spectral association and spatial attention modules.
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TABLE III

CLASSIFICATION RESULTS OF DEEP LEARNING MODELS USING 200 TRAIN, 200 DEVELOP, AND 400 VALIDATE HSI SAMPLES ON THE KSC DATASET

TABLE IV

CLASSIFICATION RESULTS OF DEEP LEARNING MODELS USING 200 TRAIN, 200 DEVELOP, AND 400 VALIDATE HSI SAMPLES ON THE UP DATASET

It is worth noting that SSTN outperforms AUTO in three HSI
datasets, which validates the efficacy of the FAS framework.

Furthermore, we use the UH dataset collected in 2013 [46]
and PC dataset with 400 HSI training samples to test the gen-
eralizability of the proposed SSTNs following the architecture
in Fig. 3, respectively. As shown in Fig. 10, the SSTN achieves
comparable OA (91.95%) to SOTA methods (e.g., 92.33%
obtained by SSRN) on the UH dataset. As shown in Table I,
it is noteworthy that the SSTN contains only 1.2% MACs
(5.8 M) compared to those of SSRN (150.9 M). In Fig. 11,
the SSTN obtains the best OA (98.96%) among all methods,
with only 1.2% MACs of SSRN. The classification maps gen-
erated by different methods are in line with quantitative results,
which can be clearly observed with the classes of synthetic
grass and running track in Fig. 10 and bricks in Fig. 11.

In this study, we conducted all experiments with the
PyTorch Framework using an NVIDIA TITAN V100 graphics
card. As shown in Tables II–IV, the training and testing times
of SSTNs are not the fastest among all models. The main

reason is that we adopt naïve implementation using PyTorch
modules or basic operations with no specific computational
optimization. However, as reported in Table I, the computa-
tional complexity and the number of parameters of SSTNs are
much more efficient (possess less or equal than 1.2% MACs
of SSRNs) than other SOTA methods on five HSI datasets,
and this tremendous advantage justifies the efficiency of our
SSTNs. Therefore, we firmly believe that the computational
costs can be furthered reduced if low-level implementations
of spectral association modules are available.

E. Discussion

Inspired by previous pinioning works [16], [21], [23],
we design a transformer network mainly consisting of atten-
tion modules that account for the characterizes of HSI.
The excellent recognition performance of SSTNs on three
datasets challenges the prevalence of spatial and spec-
tral convolution layers for learning spectral–spatial features.
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Fig. 13. OA of SSTNs and SSRNs using varying numbers of training
samples, ranging from 200 to 400 with an interval of 50, on IN, KSC, and
UP datasets.

Spatial convolution connects local regions by aggregating all
channels of input features with trainable weights of spatial
kernels. Instead, the proposed spectral association provides a
solution to overcome the geometric constraints of traditional
grid-structure convolution. As shown in Fig. 2, the spectral
associate kernels are generated by integrating all spatial loca-
tions of masked feature maps.

The FAS strategy is motivated by two reasons. First, typi-
cal NAS methods are memory-intensive and computationally
complex. Thus, we aim to design an efficient FAS strategy
via factorizing its search spaces into independent factors.
This improvement essentially solves the problems of the
time-consuming NAS strategy. Second, the other purpose of
this FAS is to explore a principled mechanism of deciding
meta-parameter network settings instead of relying on human
expertise or a simple grid-search method. Therefore, this work
focuses on designing a lightweight transformer for HSI analy-
sis with an efficient network searching strategy to mitigate the
designing problems of existing deep learning models for HSI
classification.

We gain three insights from the proposed FAS strategy.
First, the success of the FAS strategy lies in decoupling the
stages of searching and training. Specifically, we adopt FAS as
an independent justification method to search and determine
optimal network settings rather than entangling the searching
and training stages. Second, the proposed spectral association
module is complementary to spatial attention as well as spatial
convolution. The spectral association outperforms the spectral
convolution in SSRN and is much more computationally
efficient. Third, the search space � of sequential orders in FAS
enables a constrained but stable space for architecture search,
which is caused by relaxing the differential requirements of
super networks in NAS.

V. CONCLUSION

In this article, we have discovered SSTN using an FAS
framework that combines the wisdom of NAS and experts’
domain knowledge on three HSI datasets. To reduce the

computational burden of NAS, we relax the differentiable
requirements of search spaces to allow only a few layer- and
block-level choices. Therefore, the FAS strategy overcomes
NAS’s shortcomings via factorizing the search space into two
independent discrete subspaces, each of which involves layer-
level operation combinations or block-level sequential orders.

Besides, SSTNs avoid the geometric constraints of convolu-
tion operations by adopting spatial attention and spectral asso-
ciation as basic building elements. The spatial attention models
the pixel-to-pixel interactions of all positions, while the spec-
tral association measures the correlation between a compact set
of spectral vectors to all locations. The experimental results
on three widely studied datasets demonstrate that the SSTN
outperforms SOTA networks, including an automatic searched
model, using much less trainable parameters. We hope that the
discovered SSTN and the novel FAS strategy would facilitate
applying neural networks and learning frameworks on the
Earth observation data.
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