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Abstract— Deep learning for 3-D point cloud perception has
been a very active research topic in recent years. A current
trend is toward the combination of the semantically strong and
the fine-grained information from different scales of intermedi-
ate representations to boost network generalization power and
robustness against scale variation. One prominent challenge is
how to effectively conduct the allocation of multiple scales of
information. In this letter, we propose a module, named adaptive
pyramid context fusion (APCF), to adaptively capture scales of
contextual information from a multiscale feature pyramid for
the point cloud. The APCF module reweights and aggregates the
features from different levels in the feature pyramid via a softmax
attention strategy. The allocation of information is adaptively
conducted level by level from bottom to up first and then from top
to bottom. To ensure both effectiveness and efficiency, we propose
a multiscale context-aware network APCF-Net through applying
our proposed APCF to the PointConv architecture. Experiments
demonstrate that APCF-Net surpasses its vanilla counterpart by
a large margin both in effectiveness and efficiency. Especially,
APCF-Net outperforms state-of-the-art approaches on 3-D object
classification and semantic segmentation task, with the overall
accuracy of 93.3% on ModelNet40 and mIoU of 63.1% on
ScanNet V2 online test.

Index Terms— Deep learning, feature pyramid, point cloud
perception.

I. INTRODUCTION

RECENTLY, point cloud perception has become an active
research topic in 3-D computer vision, especially for

robotics, augmented reality, and autonomous driving. Due to
the revival of deep learning, a lot of neural network models
have been undertaken for 3-D point cloud processing. Because
of the irregular nature of point cloud, it is hard to directly
apply a convolutional neural network (CNN) on such data.

Manuscript received September 5, 2020; revised October 20, 2020; accepted
November 5, 2020. Date of publication November 19, 2020; date of current
version December 29, 2021. This work was supported in part by the National
Natural Science Foundation of China under Grant 41871380 and Grant
U1605254 and in part by the Natural Sciences and Engineering Research
to Council of Canada under Grant 50503-10284. (Corresponding authors:
Yiping Chen; Jonathan Li.)

Haojia Lin, Zhipeng Luo, Wen Li, Yiping Chen, and Cheng Wang
are with the Fujian Key Lab of Sensing and Computing for Smart
Cities, School of Informatics, Xiamen University, Xiamen 361005, China
(e-mail: linhaojia@stu.xmu.ed-u.cn; zpluo@stu.xmu.edu.cn; liwen777@
stu.xmu.edu.cn; chenyiping@xmu.edu.cn; cwang@xmu.edu.cn).

Jonathan Li is with the Fujian Key Lab of Sensing and Computing for
Smart Cities, School of Informatics, Xiamen University, Xiamen 361005,
China, and also with the Department of Geography and Environmental
Management, University of Waterloo, Waterloo, ON N2L 3G1, Canada
(e-mail: junli@uwaterloo.ca).

Digital Object Identifier 10.1109/LGRS.2020.3037509

A straightforward way to address this issue is to convert point
clouds into images [1]–[4] or voxels [5]–[7] before utilizing
CNNs. However, such representation conversion will unavoid-
ably lead to memory inefficiency and a loss of geometry
information.

As a pioneering method of processing point cloud directly,
PointNet [8] learns per-point representation by applying a
shared MLP on each point individually. This work has inspired
many methods that develop local aggregation operators to
encode the context in a local region into the pointwise fea-
ture [9]–[16]. By alternating farthest point sampling (FPS)
with features grouping, PointNet++ [9] extends PointNet to
a hierarchical architecture that captures the local dependence
layer by layer. In addition, several works borrow the idea of
graph CNN [17]. DGCNN [10] constructs a KNN graph for
each point and proposes an EdgeConv to exploit the local
dependence in the dynamic feature space. PointASNL [11]
uses the nonlocal [18] operation locally to ease the biased
effect of the outliers in the subsampled points. Besides, many
works develop convolution operations available for a point
set. By learning an X-transformation from the input points,
PointCNN [12] transforms the points into a latent and poten-
tially canonical space and then applies standard convolution
to these transformed points. PointConv [13] proposes a novel
formulation for learning continuous filters to perform convolu-
tion efficiently. PatchCNN [15] proposes a PointPatch module
to explicitly model geometric relationships among points.
PosPool [16] proposes a deep residual network architecture
and a simple local aggregation operator without learnable
weights, which is able to perform similarly or slightly bet-
ter than existing sophisticated operators. In these networks,
local feature extraction units are repeatedly applied during
the feature learning process. Due to the local nature of
the aggregation operators, however, the features learned by
these networks usually have limited receptive fields, which
is difficult to keep consistent with the scale variation of the
objects across the point clouds.

To address this problem, we propose a novel module
adaptive pyramid context fusion (APCF) and an improved
network APCF-Net to adaptively generate representations with
multiscale contextual information. Compared with the exist-
ing methods, the representation generated by APCF has an
adaptive context, which enables it to meet the challenge of
scale variation across point clouds. Our contributions are
summarized as follows.

1) We propose an APCF module that conducts a bidirection
information communication and a dynamic selection
mechanism across levels in the feature pyramid to
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Fig. 1. (a) Framework of APCF-Net. The backbone network (PointConv) produces the initial feature pyramid that is composed of features from different
network layers. After a bidirection communication, the information at each level in the pyramid is updated and mixed. Finally, the mixed feature pyramid is
input to the representation head for producing the final fusion that is followed by the MLP classifier. (b) Selection unit.

combine the semantically strong and the fine-grained
information effectively.

2) We propose a multiscale context-aware network named
APCF-Net, which achieves large gains of effectiveness
and efficiency over its vanilla counterpart.

3) Experiments on ModelNet40 [6] and ScanNet v2 [19]
show that APCF-Net outperforms state-of-the-art meth-
ods for classification and semantic segmentation.

The rest of this letter is organized as follows. Section II details
the proposed method. Section III presents the experiments.
Section IV concludes this letter.

II. METHOD

Fig. 1(a) shows the architecture of our proposed APCF-Net,
which consists of a backbone network, APCF, and the MLP
classifier. Let P ∈ RN×(3+c) be the input set of unordered
points, where N is the number of points and 3 + c denotes
the dimensions of coordinates and additional input signals
(e.g., color or normal information). Through the backbone
neural network PointConv [13], the features generated at
different layers in the network are collected to construct a
feature pyramid

{
Fl ∈ RNl ×Cl | 1 ≤ l ≤ L

}
, where l denotes

the level index in the pyramid (corresponds to the layer index
in the network), Nl denotes the number of points in L level,
Cl denotes the channel number of Fl , and L denotes the
number of levels in the pyramid. In APCF, to generate a
more effective multiscale feature, we conduct a bidirection
information communication among layers of the pyramid.
After this communication, a representation head subnetwork
combines these representations in different levels into the final
fusion, which is followed by the classifier. In this section,
we detail the structure of our APCF that is composed of
bidirection information communication, selection unit, and
representation head.

A. Bidirection Information Communication
As shown in Fig. 1, the input of the APCF module is the fea-

ture pyramid from the backbone neural networks. Considering
the correlation of information between adjacent levels in the
pyramid, we adopt a bidirection information communication
scheme, according to which the communication can be divided
into two stages: top-to-down stage and bottom-to-up stage.
Inside the APCF, the upsampling U(◦) and downsampling
D(◦) operations stride across every two adjacent levels,

followed by the selection unit S(◦). At the top-to-down stage,
for level l in the feature pyramid

{
Fl ∈ RNl ×Cl | 1 ≤ l ≤ L

}
,

feature Fl is fused with feature in level l + 1, i.e., F �
l =

S(U(Fl+1), Fl). Before communication, a feature at each level
in the pyramid contains only the information belonging to
itself. Through each upsampling and selection unit, feature
Fl at level l contains information not only from itself but also
from adjacent higher level l + 1. By repeating upsampling and
selecting, we obtain the bottom fusion F �

1 = S
(
U

(
F �

2

)
, F1

)
.

Then, we conduct a similar process from bottom to up but
replace U(◦) with the downsampling operation D(◦). After
this bidirection information communication, we obtain a fea-
ture pyramid, in which multiscale contextual information is
adequately mixed together. In this letter, we use the Point-
Conv and PointDeconv operators [13] as our D(◦) and U(◦),
respectively.

B. Selection Unit
Inspired by the SKNet [20] and SENet [21], we develop

a dynamic mechanism that can adaptively reweight the infor-
mation from different levels based on the multiscale input.
Fig. 1 (b) shows the selection unit. Let Fl and Fl+1 denote
the low-level feature and the upsampled high-level feature,
respectively. First, we concatenate them

Fcat = concat(Fl, Fl+1). (1)

Second, we squeeze Pcat into a joint global descriptor by
average pooling

zc = squeeze(Fcat ) = 1

N

N∑

i=1

Fcat (i) (2)

where N is the number of points. Third, we use a two-layer
bottleneck MLPs to transform zc into an attention mask

s = MLP(zc) = σ(W2δ(W1zc)) (3)

where σ refers to the Sigmoid function, δ refers to the ReLu
function, W1 ∈ RC×(C/r) , and W2 ∈ R(C/r)×C . r is the
reduction ratio, which is used to adjust the model complexity
of the MLPs. Finally, the generated attentions are leveraged
to conduct soft selection on the input representations and
are mixed by a 1 × 1 convolution layer. Following SENet,
we adopt the residual strategy to prevent from conducting the
feature selection overly:

Ffinal = δ(W3(s � Fcat)) + Fcat (4)
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Fig. 2. Structure of (a) classification head and (b) segmentation head.

where � refers to a channelwise multiplication. Different from
the SKNet focused on selecting the scales and ignored the
soft selection across channels, our selection unit can generate
attention against both the scales and channels, which exploits
more comprehensive dependence for the input representations.

C. Representation Head
After the bidirection information communication, we acqu-

ire a mixed feature pyramid, in which feature at each level
contains multiscale contextual information. In this section,
we mainly investigate how to transform this feature pyramid
into an informative representation according to the down-
stream task. The key to 3-D object classification is to learn
a global descriptor, which should focus more attention on
the high-level representations. Unlike classification, semantic
segmentation for point clouds aims at assigning a class label to
each point, which has urgent demand in high-/full-resolution
representations, corresponding to the low levels in the feature
pyramid. Therefore, as shown in Fig. 3, we propose two
kinds of representation fusion head for classification and
segmentation, respectively.

1) Classification Representation Head: The output is the
representation from the two high levels. Other low-level
representations are ignored. This is illustrated in Fig. 2(a).
As mentioned earlier, Nl and Cl denote the number of points
in level L and the channel number of features, respectively.

2) Segmentation Representation Head: We rescale the spa-
tial size and the number of channels of the high-level rep-
resentations to the lowest level and then concatenate all the
representations. The rescaling on the dimension is to prevent
the upsampled high-level representations from dominating in
the final fused representations, which disobeys our intention
of preserving the detailed information. This is illustrated
in Fig. 2(b).

III. RESULTS AND DISCUSSION

We conducted several experiments to evaluate our pro-
posed method. Sections III-A and III-B, respectively, eval-
uate the effectiveness of our methods for classification and
segmentation task on ModelNet40 [6] and ScanNet v2 [19].
Section III-C analyzes the efficiency of APCF. Section III-E
performs the ablation studies. In all experiments, we imple-
ment the models with Tensorflow on one Nvida Tesla
V100 GPU.

A. Classification on ModelNet40
We evaluate our method on ModelNet40 [6] for object

classification. ModelNet40 consists of 12311 CAD mod-
els in 40 classes. Following the official split, we use
9843 objects for training and 2468 objects for testing.

TABLE I

OVERALL ACCURACY ON MODELNET40 DATA SET

We sample 1024 points randomly and compute the normal
vectors from the mesh surface. We adopt the augmentation
strategy as follows: random anisotropic scaling in the range
[−0.8, 1.25], random translation in the range [−0.1, 0.1],
and random dropout 20%. As shown in Table I, APCF-Net
outperforms almost all state-of-the-art methods, including the
previous state-of-the-art PoinASNL [11]. In particular, our
result is 0.8% higher than PointConv [13], with which we
share the same local feature extractor.

B. Sematic Segmentation on ScanNet V2
We use ScanNet v2 [19] to evaluate the effectiveness of our

APCF-Net. ScanNet data set contains 1513 scanned indoor
point clouds for training and 100 test scans. The labels of
the test scans are publicly unavailable. Each point has been
labeled with one of 21 categories. For comparison with other
approaches, we submitted our results to the official evaluation
server. For training, we randomly sample 1.5 m × 1.5 m ×
3 m cube with 8192 points from the indoor rooms to generate
training data. For evaluation, we use a sliding window with
a 0.5-m stride over the entire rooms for five voting tests.
The input of our model is pure 3-D coordinates without RGB
values. We will show that the additional RGB information may
not favor the prediction results on this data set in Section IV.
The intersection over union (IoU) is used as our main measure.

We compare our APCF-Net with other state-of-the-art
methods under the same training and testing strategy (ran-
domly chopping cubes with a fixed number of points),
e.g., PointNet++ [9], PointCNN [12], PointConv [13],
HPEIN [24], and PointASNL [11].

As shown in Table II, APCF-Net outperforms all methods,
including the previous state-of-the-art PoinASNL [11]. In par-
ticular, our result is 8% higher than PointConv [13], with
which we share the same local feature extractor and upsam-
pling operation. This huge performance gap demonstrates the
superiority of our multiscale context fusion scheme.

Some example semantic segmentation results are visualized
in Fig. 3. Due to the well-designed multiscale context fusion
scheme, our APCF-Net performs better recognition of fine-
grained details: for instance, the door in the first column,
the picture in the wall in the second column, and the chair
at the top left corner in the third column.

C. Efficiency
In this section, we evaluate the efficiency of our APCF-Net

on ScanNet V2 from three aspects: 1) model complexity;
2) inference time; and 3) training time. For the model com-
plexity, we use the parameter number of the network as the
evaluation metric. For the inference time, we measure the total
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TABLE II

SEGMENTATION RESULTS ON SCANNET V2 DATA SET IN
MEAN PER-CLASS IOU(MIOU, %)

Fig. 3. Examples semantic segmentation results on ScanNet v2. We visualize
and compare our segmentation results with PointConv [13]. Different colors
denote different categories of the object in the real scene.

TABLE III

EFFICIENCY COMPARISON BETWEEN POINTCONV AND APCF-NET

time consumption of the prediction process on Scene 568,
which has three scans of point clouds in total. For the training
time, we measure the total training time consumption for one
epoch. Note that our APCF-Net shares the same local feature
extractor and upsampling operation with PointConv [13]. For a
fair comparison, we also evaluate the efficiency of PointConv.

As shown in Table III, our APCF-Net is able to surpass
PointConv with almost 8% margin and enjoys a much higher
computation and parameter efficiency. This is due to the
effective multilevel representations’ fusion scheme that we
adopt, which enables us to use a simple representation head
instead of an enormous decoder to rescale the multiple features
to one resolution.

Fig. 4. Robustness evaluation on (Left) classification and (Right)
segmentation.

D. Robustness

We also evaluate the robustness of our model compared
with PointConv [13]. We add pointwise Gaussian perturba-
tion to the input points. For classification, we evaluate the
robustness of the whole test set. For segmentation, we add
this Gaussian noise to a subset of the ScanNet validation
set (19 out of 312 scans). We fix the mean of the Gaussian
noise and tune its variance to control the perturbation strength.
As shown in Fig. 4, APCF-Net has little difference with its
baseline [13] against the Gaussian noise for both classification
and segmentation.

E. Ablation Study

In this section, we conduct the following ablation studies for
APCF. All ablated networks are trained by using the standard
training/validation split provided by ScanNet [19].

(1∼2) Remove Fusion With the Highest/Lowest Level
Feature in APCF: We, respectively, remove the fusion
with the highest level representations and the lowest
level to study their effect on the effectiveness of APCF.
(3∼6) Remove Bidirection Communication or Each
Component of it: By removing top-to-down communi-
cation or bottom-to-up communication, the information
can be transmitted only from top to bottom or bottom
to up. After removing the selection unit, the remained
upsampling and downsampling tend to hard combine the
representations from different levels.
(7) Add RGB Input: Following PointConv [13], we com-
pare the result of the model with and without RGB input.
(8) Stack More Bidirection Communication Modules:
Inside APCF, we try to conduct bidirection communi-
cation one, two, and three times.

Tables IV and V show the compared mIoU scores of all
ablated networks. We can observe the following.

1) The removal of the highest/lowest level representations
has a significantly negative impact on the performance
of the model. This suggests the rationality of our idea
that exploiting multiscale context from different layers
in the network can benefit the downstream task a lot.

2) The bidirection information communication module is
necessary to effectively exchange information across
different levels in APCF.

3) The respective removal of the top-to-down and bottom-
to-up communications shows that the high- and low-
level features are complementary with each other.

4) The selection unit favors the fusion of multiple
representations.

5) Similar to PointConv [13], RGB information does not
favor to the segmentation results.
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TABLE IV

MEAN PER-CLASS IOU OF ALL ABLATED NETWORKS BASED
ON OUR FULL APCF-NET

TABLE V

STACK MORE BIDIRECTION COMMUNICATION MODULES

6) Stacking more communication modules can bring about
slightly higher generation power but at a much higher
cost of efficiency. Therefore, we recommend the config-
uration with single communication for APCF to achieve
a good balance between effectiveness and efficiency.

IV. CONCLUSION

We presented a novel module APCF that can adaptively
capture scales of contextual information from features at
different layers in the neural network. Experimental results
on two challenge benchmarks demonstrate the effectiveness
and efficiency of our methods. However, our APCF does not
have a significant improvement in noise robustness, which
is an orientation to be explored in our future work. Fur-
thermore, our APCF module can be easily embedded into
various neural networks for point cloud feature learning and,
thus, has the potential to be applied to other downstream
tasks, such as instance segmentation [27] and point cloud
reconstruction [28]–[30], which heavily relies on fine-grained
representation. We will explore such applications in the
future.
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