
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022 6500405

A Supervoxel Approach to Road Boundary
Enhancement From 3-D LiDAR Point Clouds

Zhengchuan Sha , Yiping Chen , Senior Member, IEEE, Yangbin Lin , Member, IEEE,

Cheng Wang , Senior Member, IEEE, José Marcato, Jr. , Member, IEEE,

and Jonathan Li , Senior Member, IEEE

Abstract— Rapid and accurate enhancement of road bound-
aries from terrestrial laser scanning (TLS) 3-D point clouds
has been a challenging task in road infrastructure inventory.
To address the challenge with a lack of ability to enhance
object boundaries when the supervoxel number is less, this letter
proposes a novel supervoxel segmentation algorithm framework
for enhancing road boundaries from 3-D point clouds. First,
we utilize radius k nearest-neighbor search method to obtain the
neighborhood information after partitioning points on octrees
with seed points. Second, the iterative weighted least square
algorithm and spatial structure judgment are used to segment
point clouds based on seed points. Finally, an update method
to adjust the supervoxel centroids is applied with surrounding
information in the first part. To verify the excellent performance,
we tested the proposed method on two publicly large-scale point
clouds benchmarks—IQmulus and TerraMobilita (IQTM) and
Semantic 3-D. The experimental results demonstrate that our
approach achieved approximately 48.98% and 68.41% boundary
recall higher than two existing classical methods in the street
scene, and our running time is feasible and effective.

Index Terms— Boundary-enhanced, over-segmentation, point
clouds, spatial structure, supervoxel.

I. INTRODUCTION

SUPERVOXEL segmentation algorithms from point clouds
group voxels into meaningful areas that maximize the

boundary of targets. In the 3-D point cloud information
processing, it is efficient to operate on representative points
regions rather than scattered points for large-scale scenes.
Supervoxel segmentation methods have been used in many
fields, such as line extraction [1], [2], semantic labeling [3],
point registration [4], and object detection [5].
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Supervoxel segmentation methods are designed for 3-D
point clouds scenes. There are many over-segmentation
approaches to generate supervoxels. According to [6], great
supervoxels have three natures.

1) The boundaries of over-segmentation adhere to
ground-truth boundaries as many as possible.

2) The running time of the over-segmentation method is
expected to be efficient.

3) The regions of supervoxels are regular even in sparse
and dense regions.

Voxel cloud connectivity segmentation (VCCS) [7] is an
advanced over-segmentation method to generate supervoxels
based on neighbor relationships of voxels. VCCS uses spatial
and geometric information to make supervoxels confirm to
ground-truth boundaries. A boundary-enhanced supervoxel
segmentation (BESS) to enhance boundaries is presented in
[8]. The method consists of estimating the discontinuity frame
by frame and clustering points on the graph to segment points
into supervoxels. A facet segmentation method to segment
points into facets by region growing is presented in [2]. The
modification of the facet segmentation method to extract road
boundaries by evenly partitioning 3-D space with a fixed size
in [1]. The graph method for oversegmenting point clouds by a
point embedding network and a graph-structured loss function
is first used in [9]. Context-sensitive based on the graph
distance to obtain superpixels and supervoxels is proposed in
[10]. For most over-segmentation methods, the most essential
drawback is that they cannot enhance road boundaries when
the supervoxel number is less because they do not consider the
global scene information and neighborhood information. Our
letter focuses on the problem of road boundaries enhancing by
considering the spatial structures of scenes. Our method can
expand on different tasks and we verify it on road scenes. The
main contributions of this letter are as follows:

1) We consider more surrounding points to express local
features compactly and utilize octrees to voxelize points
for the generation of uniform supervoxels.

2) We propose the spatial structure with angle and height
judgments for the road boundaries enhancement more
effective and avoid over-segmentation invalid.

3) Experiments on IQmulus and TerraMobilita (IQTM)
[11] and Semantics 3-D [12] data sets show that pro-
posed novel supervoxel method outperforms state-of-
the-art methods on urban scenes.

The remainder of this letter is organized as follows.
Section II describes the 3-D road boundary extraction method.
Section III presents the experimental results and discus-
sion. Section IV concludes the letter.
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Fig. 1. Workflow of our proposed over-segmentation method.

II. METHOD

In this letter, we present a three-step framework to over-
segment supervoxels from point clouds data. We first use
the nearest neighbor method to consider spatial neighborhood
information, and then we use the normal vectors and the
judgment condition for 3-D segmentation. Finally, supervoxels
are updated for boundaries regulation. The flowchart of the
process is illustrated in Fig. 1.

A. Spatial Neighborhood Information Selection

Traditional VCCS method [7] is applied on points directly,
which does not consider the neighborhood information. We use
the radius k nearest-neighbor (RkNN) search method to find
each point of neighborhood information given the fixed radius
r and the number of k nearest neighbor, after initiating the
supervoxel seeds based on the octree. If the point number is
smaller than the given radius, the RkNN returns the true points
in the search range. We set k equals 20. For the fixed radius r ,
we synthesize the point scene and neighborhood information.
The r is set as 50 times of point resolution D(p, q) of the
whole scene, which is defined as

D(p, q) = 1

m

∑

q∈Q

� p-q � (1)

where p and q are two points. Q is the k nearest neighborhood
point set of point p. � · � represents the Euclidean distance
between two points. m is 2 for two nearest points. The point
resolution r reflects the adjacent information of the given
point. A scene has only one r similar to [13], which can
be considered as the inherent quality. Thus, we obtain the
supervoxel number because the seed number is equal to the
supervoxel number. Then we utilize neighborhood point sets
of each point to calculate normal vectors for the next updating
supervoxels by using the principal component analysis (PCA)
method.

B. 3-D Segmentation

For the supervoxel generation, the purpose of 3-D segmen-
tation is to label the analogous characters as the same label.
Inspired by the study [2], we consider each supervoxel as
a facet, which is considered as the point coordinate and its
corresponding normal vector.

For each point, we apply the iterative weighted least square
algorithm to obtain its corresponding normal vector. In this
letter, we use the same weight to generate the tangent plane.
For a given point p, the weight is calculated as in the k
neighborhood range of p

w(p) =
⎧⎨
⎩

(1 − (
d(p, T n(p))

ε
)), if d(p, T n(p))<ε

0, otherwise
(2)

Algorithm 1 Calculate Normal Vector

Input: λ1, λ2, λ3, −→v1 , −→v2 and −→v3

Output: −→v
if λ1 = λ2 = λ3 then−→v = (0, 0, 1)
else

if −→v3 = (0, 0, 0) and −→v = −→v1 × −→v2 then
if |−→v | = 0 then−→v = (0, 0, 1)
else−→v = −→v1 × −→v2

end if
else−→v = −→v3

end if
end if

where ε is a threshold of distance to judge if the point is
on the plane. It only depends on the accuracy of laser point
cloud equipment. Hence, the density of point cloud does
not influence on this threshold. ε relates to the supervoxel
resolution (R) [2]. n is the number of iterations. d(·) is the
Euclidean distance operation. Then the tangent plane T (p) is
obtained by solving an iterative equation.

Different from the facet segmentation method [1], we calcu-
late the normal vector based on each point with its correspond-
ing k neighborhood points by the weighted PCA method. For
the 3-D weighted PCA method, we obtain three eigenvalues
λ1, λ2, and λ3 (λ1 ≥ λ2 ≥ λ3) and three corresponding
eigenvectors −→v1 , −→v2 , and −→v3 . The normal vector is calculated
as below.

After calculating all normal vectors, we initiate the number
of facets equal to the number of seed points. Then we obtain
the tangent plane of neighborhood points based on each seed
point. When we assign the points to facets, distance D(p, f )
from i th point p to the facet f is computed as

D(p, f ) = wn(1 − |−→n p · −→n f |) + ws
� p − f p �

S R
(3)

where wn and ws are the normal weight and spatial weight,
respectively. −→n p and −→n f are the normal vector of p and the
normal vector of facet, respectively. f p is the point part of the
facet. SR is the seed resolution value.

Each seed point constructs each initial facet. Then dis-
tances of neighbor points based on each seed point to their
corresponding facets are calculated. This is considered for
maintaining the generated supervoxel number the same as the
seed number. Comparing the distance with the given threshold
(in this letter, the threshold is set to infinity), the points in a
smaller range of threshold are further labeled [14].

We applied judgment conditions to consider the spatial
structure of the whole over-segmentation scene, which are
summarized as

OnPlane(NT) & zNP < TH� zNP > TH (4)

where OnPlane determines whether a plane is coplanar with
standard X OY -plane or not. NT represents neighbor tangent
plane. In OnPlane function, this judgment condition is that
if the angle between the normal of the input plane and
z = (0, 0, 1) is higher than an angle threshold. In this letter,
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TABLE I

TLS DATA SETS OF THE TESTED MODELS

we set the angle threshold θ as 22.5◦, similar to [2]. zNP
and TH mean the z value of the neighbor point and heights
threshold, respectively. According to (4), we cluster the points
into the meaningful regions by considering the relationships
between normal angle differences and heights. After that,
the segmentation processing is accomplished.

C. Update Facets

Similar to [7], we update facets (supervoxels). For the same
label points in the generated regions, the centroid coordinates
are computed for each given region as the new cluster center.
Normal vectors calculated in Section II-A are used to obtain
the new normal vectors as the facets after the normalization
operation of them. Comparing the distances between points
in the segmentation region with its corresponding centroid,
nearest points indexes are acquired and the facets are updated
according to new points and normal vectors.

III. RESULTS AND DISCUSSION

In this section, several experiments are conducted to assess
the proposed method. We compare it with VCCS [7], VCCS-
RNN, Lin’s work [6], and the modified Lin’s work.

A. Data Sets

We used two data sets with various characteristics. The first
is the IQTM data set collected by a Stereopolis II [11] 3-D
mobile laser system (MLS), which is a dense urban scene
in Paris, France. It contains a fully manually annotated street
of 200 m long with 12 million points. Second is Semantic 3-D
data set [12] consisting of urban and rural point clouds with
static terrestrial laser scanning (TLS), as shown in Figs. 5(a)
and 7(a). The large-scale point cloud classification benchmark
has 1 billion points with eight classes manually annotated.
We choose rural (Station) and urban (Street) outdoor scenes.
Due to the limitation of our memory, we down-sample the data
sets to decrease both the computation time and memory. For
both data sets, scenes lowest z coordinate (zmin) is calculated
as

zmin = min
pi ∈P

z pi (5)

where P is the whole point set in the scene. The information
about the data sets is summarized in Table I.

B. Evolution Metrics

Boundary recall (BR) [6] and boundary precision (BP) [9]
measure whether the supervoxels stick to the ground-truth
boundary and minimize overlap. We use the same con-
ception similar to [6]. A high BR and BP indicate that
supervoxels properly follow objects by ground-truth labeled.
Under-segmentation error (UE) measures the amount of
supervoxels leakage across ground-truth boundaries [7], [15].
We adopt the same criterion to evaluate the performance.
A low UE value means fewer supervoxels crossover object
boundaries.

TABLE II

PARAMETERS SETTING IN OUR LETTER

TABLE III

BR OF PROPOSED METHODS ON IQTM (N = 296)

TABLE IV

BR OF PROPOSED METHODS ON THE STREET SCENE (N = 331)

C. Parameters Discussion

Table II shows parameters are set in our letter. We set
wn = 1, and ws = 4 in (3) (only considering the geometric
information), which have been demonstrated as the most ade-
quate weight values [16] for considering both spatial extents
and normal of seed points distance measure in a feature space.
For the k and radius (times (t) of r ) in RkNN, we empirically
choose both randomly by considering the scene size and
complexity of scene structure. Then we use several (k, t) with
different supervoxel numbers (N) in different scenes as shown
in Tables III and IV. (k, t) selection has little effect on BR
results. Hence, our method is general and suitable for many
kinds of tasks.

D. Scene Performance

In our experiment, we refer to the VCCS neighborhood
information obtained from the Radius Nearest Neighbor
(RNN) method as VCCS-RNN. For comparison, the radius of
VCCS-RNN is set to 50r , which is the same as our method.
The TH in (4) influences the enhanced results. To assess the
proposed method, we set two TH values based on the scene
lowest z coordinate TH = zmin + δ. We set δ equals to 0.5 and
3 m, which are donated as Proposed-0.5 and Proposed-3,
respectively. Meanwhile, we add our proposed condition in (4)
to improve Lin’s method, which the TH value is set to 0.5 m
higher than zmin. Different from [6], we set the initial value λ0
in Lin’s work as the point resolution from (1) rather than the
median value of the lowest dissimilarity distances because both
of them are small enough. The final step is to use two different
update methods. If the update method is the k medoids step,
which is the same presented in [6], we donate it as m-Lin1-0.5.
If the update method is the same as that found in Section II-C,
we denote it as m-Lin2-0.5. Next, we compare the above seven
methods with general evolution metrics in the same range of
the supervoxel number (N) for comparison.

For urban scenes (IQTM and the street), road boundaries
are more regular and integrated than these in rural scenes.
As shown in Figs. 2(a) and 6(a), the method of Proposed-3
achieved the highest BR except in Fig. 2(a) with N smaller
than 150. For three figures [Figs. 2(a), 4(a), and 6(a)], the BR
of VCCS and Lin’s method are mostly the lowest values, thus
these two methods both lose their effectiveness.
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Fig. 2. (a) Evaluation of seven supervoxel methods on BR, (b) BP, (c) UE, and (d) running time for IQTM data set.

Fig. 3. Comparison of visualized results using IQTM data set (urban scene). (a) Ground-truth. (b) VCCS. (c) VCCS-RNN. (d) Lin. (e) m-Lin1-0.5.
(f) m-Lin2-0.5. (g) Proposed-0.5. (h) Proposed-3.

Fig. 4. (a) Evaluation of seven supervoxel methods on BR, (b) BP, (c) UE, and (d) running time for station scene of Semantic 3-D data set.

Fig. 5. Comparison of visualized results using the station scene (rural) based on Semantic 3-D data set. (a) Ground-truth. (b) VCCS. (c) VCCS-RNN. (d) Lin.
(e) m-Lin1-0.5. (f) m-Lin2-0.5. (g) Proposed-0.5. (h) Proposed-3.

Meanwhile, the update method in Section II-C cannot be
effective to enhance the boundaries in the same condition
[Fig. 2(a) with the N lower than 200; Fig. 4(a) with the N
lower than 100; Fig. 6(a) with the N lower than 300 with
an exception when N is 260.]. For the evaluation of BP,
it is easy to find BP values of VCCS method are lowest in
three figures [Figs. 2(b), 4(b), and 6(b)]. Moreover, the UE
values of VCCS are the highest with N greater than 193 in
Fig. 2(c) and N greater than 214 in Fig. 4. For both Lin’s
method and m-Lin2-0.5, they are not effective with the N
lower than 140 in Fig. 2(c) and the N lower than 107 in
Fig. 2(c). For VCCS-RNN, the effect of it is always moderate
except in Fig. 4(b) when N is greater than 183. The reason
is VCCS-RNN only considers the neighborhood information
and neighborhood metrics by using (3) without whole spatial

structures when assigning the points to different regions.
Therefore, our proposed method can achieve great BR with
low supervoxel numbers, especially in the urban scene with
whole and regular road boundaries [for Figs. 2(a) and 6(a) on
Proposed-3 method].

The visual results are shown in Figs. 3, 5, and 7. In order
to display our over-segmentation result better, we set seg-
mentation boundaries as black color and different regions
are used different colors generated randomly. As shown
in Figs. 3(h) and 5(h), our over-segmentation results can
follow ground-truth boundaries completely. It is the obvious
advantage of the proposed method. As shown in Fig. 7, our
proposed methods have an adaptive resolution, which means
our methods can generate uniform supervoxels instead of small
resolutions in dense regions vice versa. The reason is our
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Fig. 6. (a) Evaluation of seven supervoxel methods on BR, (b) BP, (c) UE, (d) and running time for street scene of Semantic 3-D data set.

Fig. 7. Visualization results of the street with adaptive resolutions, right
angles and curved lines in nonuniform density.

proposed methods initiate supervoxels on octree and partition
evenly to obtain the seed points in Section II-A. Meanwhile,
our method can segment curved lines and more complicated
structures (e.g., right angles) effectively as shown in Fig. 7.

E. Time Performance

The proposed methods were implemented in C++ and the
experiments were conducted on a PC with Ubuntu 18.04,
Intel Core i5-3470 3.2 GHz CPU, and 16.0 GB memory.
The running time performances are shown in Figs. 2(d), 4(d),
and 6(d). The running time of VCCS is fastest because it
performs on voxels directly, hence, it decreases the scale of
the problem greatly. For the VCCS-RNN method, it performs
on points instead of voxels so its cost time is intermediate
compared with representative methods instead of VCCS as
shown in Figs. 2(d), 4(d), and 6(d). As shown in Figs. 4(d)
and 6(d), m-Lin2-0.5 method in station scene and m-Lin1-
0.5 in street scene cost the longest time in that using our
spatial structure judgment in (4) needs to calculate the normal
vector of each point. Meanwhile, it is also the main reason for
the proposed cost time. Due to voxelizing points on octrees,
the cost time hardly changes when N does not change dramat-
ically because voxels number do not change sharply. Hence,
sacrificing running time for considering more neighborhood
information can yield more effective results.

IV. CONCLUSION

In this letter, we present a novel over-segmentation algo-
rithm to enhance road boundaries. We first use the 3-D
partition on octrees to preserve regular supervoxels, and the
neighbor nearest method (RkNN) to consider more neighbor-
hood information. Second, the adopted iterative weighted least
square algorithm and spatial structure judgment considering
more cluster information are added for 3-D oversegmentation.
Finally, we update facets to preserve the boundaries better.

Our proposed methods have been successfully tested on two
large-scale point clouds benchmarks with several representa-
tive methods (VCCS, VCCS-RNN, Lin’s method, m-Lin1-0.5,
and m-Lin2-0.5). The results prove that our proposed methods
have the ability to greatly enhance the road boundaries in
urban scenes (with about 48.98% and 68.41% BR value higher

than Lin’s method and traditional VCCS) and keep regular
even when the supervoxel number N is low. Meanwhile,
the cost time of our proposed method is only influenced by the
number of points and hardly change with N when N is small.
Future works will be oriented to design various boundaries
enhancement supervoxel methods and optimize the cost time.
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