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Abstract— Periodically conducting land cover mapping plays
a vital role in monitoring the status and changes of the land use.
The up-to-date and accurate land use database serves importantly
for a wide range of applications. This letter constructs an
efficient self-attention capsule network (ESA-CapsNet) for land
cover classification of multispectral light detection and ranging
(LiDAR) data. First, formulated with a novel capsule encoder–
decoder architecture, the ESA-CapsNet performs promisingly in
extracting high-level, informative, and strong feature semantics
for pixel-wise land cover classification by using the five types of
rasterized feature images. Furthermore, designed with a novel
capsule-based attention module, the channel and spatial feature
encodings are comprehensively exploited to boost the feature
saliency and robustness. The ESA-CapsNet is evaluated on two
multispectral LiDAR data sets and achieves an advantageous
performance with the overall accuracy, average accuracy, and
kappa coefficient of over 98.42%, 95.15%, and 0.9776, respec-
tively. Comparative experiments with the existing methods also
demonstrate the effectiveness and applicability of the ESA-
CapsNet in land cover classification tasks.

Index Terms— Capsule feature attention, capsule network,
land cover classification, land use mapping, multispectral light
detection and ranging (LiDAR).

I. INTRODUCTION

W ITH the continuous urban sprawl, the frequent
rural land planning, and the massive human activ-

ities, the status of land use is always keeping changing.
Comprehensively and precisely mastering the current status
of land use in a local region or the whole country is greatly
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important to promote the integrated management of the urban
and rural cadastre, conduct the evaluation and analysis of the
land use and management, and facilitate the macroeconomic
regulation and control of the land. Moreover, the up-to-date
and accurate land use database also serves for a variety of
environmental, agricultural, and social applications [1]. Thus,
periodically carrying out land cover mapping can assist in the
rapid updating of the land use database. A traditional way
for land cover information collection is manually performed
based on field surveys, which, however, cost a great amount of
labor and time expenditures. In recent decades, the advances of
remote sensing techniques have provided a promising solution
to land cover mapping tasks. The collection of varying-grained
and different-range remote sensing data can be efficiently
accomplished by using imaging sensors or light detection and
ranging (LiDAR) sensors. Generally, remote sensing images
captured by imaging sensors have rich spectral information,
whereas point clouds collected by LiDAR sensors retain actual
3-D properties. Both the spectral and geometrical information
behave significantly for enhancing the land cover mapping
accuracy. Fortunately, recent development of multispectral
LiDAR systems, which can collect multichannel LiDAR data
covering different spectra simultaneously, has broken new
ground for land cover mapping tasks due to their superior
advantages of providing both abundant spectral and geometri-
cal features.

Existing approaches for land cover mapping of multispectral
LiDAR data generally adopt two processing strategies: image-
based strategy and point cloud-based strategy. The image-
based strategy converts the 3-D multispectral LiDAR data
into a set of feature images according to the multichannel
geometrical and spectral properties. In contrast, the point
cloud-based strategy directly operates the multichannel 3-D
LiDAR point clouds. Comparatively, the image-based strategy
can achieve high efficiency in processing large scenes, while
the point cloud-based strategy can well maintain the geomet-
rical properties of land covers. Ekhtari et al. [2] designed
a two-step method to, respectively, handle the single-return
and multireturn LiDAR points. The single-return points were
classified based on the multichannel intensity and elevation
information, and the multireturn points were categorized using
a rule-based (RB) method. Morsy et al. [3] tested two tech-
niques to classify multispectral LiDAR data: image-based clas-
sification and point-based classification. The former trained
a maximum likelihood (ML) classifier with the input of the

1558-0571 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Jonathan Li. Downloaded on December 30,2021 at 01:31:52 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7204-9346
https://orcid.org/0000-0003-3691-8721
https://orcid.org/0000-0001-7899-0049
https://orcid.org/0000-0002-8826-3889


6501505 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

intensity and elevation images, whereas the latter was based on
ground filtering and normalized difference vegetation indices
calculation. Matikainen et al. [4] proposed an object-based
random forest analysis method for land cover classification.
First, homogeneous regions were segmented for computing
features. Then, the random forest classifier and histogram
analysis were applied for land cover type determination. Like-
wise, Karila et al. [5] leveraged multispectral LiDAR data for
road mapping by using object-based random forest analysis.
Dai et al. [6] investigated the application of tree delineation by
using multispectral LiDAR data. In their work, mean shift and
support vector machine (SVM) were used to, respectively, seg-
ment tree crowns and classify undersegmentations. Differently,
Naveed et al. [7] presented an improved multiscale treetop
detection method, cooperated with a region-based segmenta-
tion approach, to extract individual tree crowns. Via linear dis-
criminant analysis, Kukkonen et al. [8] explored the feasibility
of multispectral LiDAR data to predict tree species. Wang
and Gu [9] constructed a discriminative tensor representation
model to characterize the spatial, spectral, and geometrical
features of multispectral LiDAR points. The classification was
finalized using an SVM classifier. In addition, multispectral
LiDAR data were also considered for virtual outcrop geol-
ogy [10], land–water classification [11], and surface fuel load
estimation [12].

Due to the advanced characteristics of abstracting multilevel
and multigrained features in an end-to-end manner without
manual interferences, deep learning techniques have boosted
great achievements in a wide range of remote sensing applica-
tions. Consequently, deep learning techniques have also been
investigated for land cover mapping of multispectral LiDAR
data. Pan et al. [13] proposed an optimized convolutional
neural network (CNN) model for land cover classification of
multispectral LiDAR data. Specifically, four sets of feature
images were rasterized based on the intensity and elevation
properties for labeling pixel categories. In addition, a deep
Boltzmann machine (DBM) model was also presented by
Pan et al. [14] to carry out land cover classification by using
multispectral LiDAR data. Yu et al. [15] designed a hybrid
capsule network (HCapsNet) architecture, which consisted
of a capsule convolutional branch for mining local feature
encodings and a fully connected capsule branch for character-
izing global feature representations. The classification of land
cover types was conducted with the combination of the local
and global features. Li et al. [16] trained a graph geometric
moments CNN to extract buildings from multispectral LiDAR
data. In this model, first, a farthest point sampling-k nearest
neighbors sample generation strategy was applied to obtain
operable samples. Then, a graph convolutional network was
leveraged to obtain the point-wise labeling of the multispectral
LiDAR points. Furthermore, multisource data fusion strategies
by integrating multispectral LiDAR data and remote sensing
images have also been exploited for land cover mapping
purposes [17], [18].

In this letter, we design an effective capsule network
integrated with capsule attention mechanisms for land cover
classification of multispectral LiDAR data. This network takes
five types of feature images interpolated from the multispectral
LiDAR data as the input and outputs a pixel-wise land
cover labeling result. The contributions include the following:
1) an effective capsule encoder–decoder architecture is

investigated to extract high-quality features for pixel-wise land
cover classification and 2) an efficient capsule-based self-
attention module is designed to boost the feature encoding
semantics.

II. MULTISPECTRAL LIDAR DATA AND

DATA PREPROCESSING

A. Multispectral LiDAR Data

In this letter, two study areas located in Ontario, Canada
were surveyed to collect the multispectral LiDAR data for the
land cover classification task. The multispectral LiDAR data
were collected using an airborne Titan multispectral LiDAR
system manufactured by the Teledyne Optech. This system
was configured with three active spectral channels that worked
in intermediate infrared (1550 nm), near infrared (1064 nm),
and visual (532 nm) wavelengths, respectively. The three
channels emitted laser beams with separate forward angles
(3.5◦, 0◦, and 7◦) to produce independent scan lines, thereby
resulting in an independent point cloud for each channel.
The first data set was collected in Whitchurch-Stouffville
(WS) covering an area of about 3.21 km2. It was composed
of 19 flying strips. The second data set was collected in
Tobermory (TB) covering an area of about 1.99 km2. It was
composed of ten flying strips.

B. Data Preprocessing

Instead of directly processing the 3-D multispectral LiDAR
data, we rasterize them into a set of feature images according
to the multichannel geometrical and spectral properties to
improve the processing efficiency. Concretely, first, the three
sets of multichannel LiDAR points are registered and merged
into a single LiDAR point set based on their geographical
coordinates. Then, vertical gridding along the Z axis is
performed to structurize the merged LiDAR points into a
grid representation with a grid size (spatial resolution) of
rg = 0.5 m. Finally, a single pixel is interpolated for the
LiDAR points within each grid to form a feature image.
The gray value of a pixel is interpolated according to the
properties of the LiDAR points in the corresponding grid by
using the inverse distance weighted interpolation method [19].
In this study, we rasterize five types of feature images by
fully considering the elevation, number of returns, and three
channels of spectral intensities. Specifically, all the merged
LiDAR points in a grid are leveraged to generate the elevation
and number of returns images, whereas only the LiDAR points
from the related channel are considered for obtaining the
spectral intensity images.

III. METHOD

A. Revisit of Capsule Network

The basic components constituting the capsule networks are
vectorial capsules, which can be viewed as a kind of 1-D tensor
representation. Such a capsule formulation can simultaneously
encode both the existence probability and the instantiation
property of a feature by, respectively, using its length and
parameters. Furthermore, it can also enable a capsule to self-
adaptively identify a feature and its variants. In a capsule
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Fig. 1. Architecture of the ESA-CapsNet. The number 16 denotes the dimension of a capsule.

network, the input to a capsule is a weighted aggregation over
the predictions from the prepositive capsules as follows:

C j =
∑

i

ai j U i j (1)

where C j is the aggregated input to capsule j ; ai j is a coupling
coefficient reflecting the contribution degree of capsule i to
activate capsule j , which is dynamically determined by the
improved dynamic routing process [20]; U i j is the prediction
cast from capsule i and is computed as follows:

U i j = Wi j U i (2)

where U i is the normalized output of capsule i and Wi j a
feature mapping matrix.

As for the capsule length-based feature probability encoding
mechanism, the longer a capsule is, the higher the probability
prediction should be. To this end, a squashing function [21] is
specially designed as the activation function to normalize the
aggregated input of a capsule as follows:

U i = ‖C i‖2

1 + ‖C i‖2 · C i

‖C i‖ . (3)

As a result, a long capsule is restrained to a length close to one
to cast a high prediction, whereas a short capsule is weakened
to almost a zero length to contribute quite few.

B. Efficient Self-Attention Capsule Network

To make full use of the advanced properties of the capsule
representations in high-order feature encoding, we design an
efficient self-attention capsule network (ESA-CapsNet) for
carrying out land cover classification by using the rasterized
feature images of the multispectral LiDAR data. To facilitate
processing, we fuse the five types of feature images into a
multispectral image structure, each of whose pixels contains
five channels of intensities made of the corresponding values
from the five feature images. As shown in Fig. 1, the input of
the ESA-CapsNet is an image patch of n × n pixels centered
at a position. The output of the ESA-CapsNet is the predicted
class label of the central pixel of the image patch.

The architecture of the ESA-CapsNet involves an encoder
for patch feature extraction and classification and a decoder
for reconstructing the input patch to enhance the feature
encoding capability of the encoder. The encoder consists of a
set of conventional convolutional layers, capsule convolutional
layers, and capsule fully connected layers. The low-level scalar
features extracted by the conventional convolutional layers are
further fed into the capsule convolutional layers to abstract
high-level capsule features. This is achieved by performing
conventional convolutions on the second conventional con-
volutional layer, followed by feature channel grouping and
capsule vectorizing, resulting in a multidimensional capsule

Fig. 2. Architecture of the capsule-based efficient self-attention (ESA)
module.

at each position of the feature map. By collecting the local
capsule features with a global perspective, the capsule fully
connected layers finally predict a class label for the cen-
tral pixel of the input patch. Specifically, the conventional
convolutional layers are activated using the rectified linear
unit (ReLU) and the capsule layers are activated using the
squashing function. The last layer of the encoder is a softmax
layer constituted by a set of class-specific capsules, each of
which represents a land cover type to be predicted. Thus, the
softmax function is applied to the capsule lengths to produce
a one-hot prediction.

To enhance the feature representation quality and the model
robustness of the ESA-CapsNet, we design a capsule-based
efficient self-attention (ESA) module and integrate it into the
encoder (Fig. 1). The architecture of the ESA module is shown
in Fig. 2. The ESA module involves two parallel branches
named channel feature attention (CFA) unit and spatial feature
attention (SFA) unit for, respectively, recalibrating the channel
features and spatial features. The output feature map of the
ESA module has the identical size to the input feature map.
For the CFA unit, first, a 1 × 1 capsule convolution is
performed on the input multidimensional capsule feature map
to convert it into a 1-D capsule feature map FA, which
encodes mainly the feature probability properties. Then, global
average pooling (GAP) is applied to obtain the channel-
wise statistics, generating a channel descriptor A. Next, two
sibling branches are mounted on A to exploit channel-wise
interdependencies in a global manner and a local manner,
respectively. To exploit global channel-wise interdependencies,
two convolutional layers with point-wise convolutions (PConv)
having a kernel size of 1 × 1 across the channels are appended.
In contrast, to exploit local channel-wise interdependencies,
two convolutional layers with 1-D convolutions (1-DConv)
having a kernel size of k = 5 sliding along the channels are
connected. The outputs CG and CL of these two branches

Authorized licensed use limited to: Jonathan Li. Downloaded on December 30,2021 at 01:31:52 UTC from IEEE Xplore.  Restrictions apply. 



6501505 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

are added and normalized by the sigmoid function to form
a channel attention descriptor, which encodes the channel-
wise feature informativeness. Finally, the input feature map
is multiplied by the channel attention descriptor in a channel-
wise manner to produce a recalibrated feature map FC , where
the informative features are effectively highlighted.

For the SFA unit, first, three 1 × 1 capsule convolutions are
performed on the input feature map to obtain a query feature
map FQ ∈ RH×W×128, a key feature map FK ∈ RH×W×128, and
a value feature map FV ∈ RH×W×128×16, where H and W are
the height and width of the input feature map, respectively.
To facilitate computation, these feature maps are channel-
wisely flattened to form the query matrix Q ∈ RN×128, the key
matrix K ∈ R128×N , and the value matrix V ∈ RN×128×16,
where N = H × W . Then, multiplication is conducted on K
and V to generate a global context matrix G ∈ R128×128×16.
Here, each row of K functions as a single-channel spatial
attention map, which reflects a semantic property of the entire
input and acts as a weight regulator over all the positions
to aggregate the value features from V . Thus, each row
of G summarizes a global, semantic property of the input
feature map. Specifically, a softmax function is applied to
K in a row manner before multiplication. Next, regarding
each row of Q as the spatial attention coefficients of a
position, G is multiplied to Q to produce a recalibrated feature
for each position. Finally, through reshaping, the SFA unit
outputs a recalibrated feature map FS , where the class-specific
features are effectively emphasized. As shown in Fig. 2, the
recalibrated feature maps FC and FS from the CFA and
SFA units are concatenated and fused through a 1 × 1
capsule convolution to obtain the output feature map, which
is significantly promoted by taking into consideration both the
channel and SFAs.

As shown in Fig. 1, the decoder takes the output of the
second capsule fully connected layer P of the encoder as the
input and reconstructs the input image patch through a series
of capsule fully connected layers. The decoder, appearing
only at the training stage, functions to force the encoder
to extract strong and representative feature semantics toward
high-quality classification.

C. Loss Function
The loss function is designed as the following multitask loss

function to direct the training of the encoder and decoder:

L =
M∑

i=1

Lcls + λ

M∑

i=1

L rec (4)

where Lcls and L rec are the classification and reconstruction
loss terms, respectively; M is the number of training image
patches; λ is a regularization factor to balance the two loss
terms. Lcls is formulated as the focal loss of the target
output of the encoder. L rec is computed as the mean-squared
error loss between the reconstruction of the decoder and the
corresponding input.

IV. RESULTS AND DISCUSSION

A. Land Cover Classification
At the training stage, 60% of the labeled data were randomly

selected from each of the two data sets for constructing the
ESA-CapsNet. At the test stage, the remaining 40% of the

TABLE I

LAND COVER CLASSIFICATION RESULTS ON THE WS DATA SET

TABLE II

LAND COVER CLASSIFICATION RESULTS ON THE TB DATA SET

Fig. 3. Illustration of the land cover classification results on (a) WS data set
and (b) TB data set.

labeled data were applied to assess the land cover classification
performance. The surveyed areas of the two data sets were
labeled into six types of land covers: 1) water; 2) vegetation;
3) road; 4) soil; 5) building; and 6) other impervious sur-
face. To provide quantitative evaluations on the classification
accuracy, the following metrics were computed: overall accu-
racy (OA), average accuracy (AA), and kappa coefficient (κ).
The land cover classification results obtained on the two data
sets are quantitatively reported in Tables I and II, respectively.
The results were obtained by conducting ten Monte Carlo
runs and calculating the mean and standard deviation of these
metrics. For visual inspection purpose, Fig. 3 also presents the
land cover classification results on the two data sets. The six
types of land covers are rendered with different colors.

As detailed in Table I, the OA, AA, and κ values obtained on
the WS data set are 98.42% ± 0.14%, 95.15% ± 0.15%, and
0.9776 ± 0.0013, respectively. Specifically, the ESA-CapsNet
achieved a superior accuracy in identifying the land cover
type of water. In contrast, a relatively lower classification
accuracy was achieved on the land cover type of building.
Furthermore, similar classification accuracies were achieved
on the land cover types of vegetation and other impervious
surface. As reflected in Table II, an overall classification
performance with the OA, AA, and κ values of 98.91% ±
0.09%, 95.73% ± 0.12%, and 0.9837 ± 0.0009, respectively,
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was obtained on the TB data set. Likewise, the best and
worst classification accuracies appeared on the land cover
types of water and building, respectively. The reason caus-
ing the classification accuracy difference is that, compared
with the homogeneous and unique features of the water bodies,
the building regions exhibited great diversities in geometrical
structures and spectral properties. The classification errors
mainly appeared at the border areas of two land cover types.
For example, some pixels of the roads were falsely recognized
as the soil or other impervious surface. Moreover, structure
incompleteness was generated for some building and road
regions occluded by high-rise trees. In the whole, benefitting
from the design of the capsule network architecture integrated
with the ESA modules for capsule feature promotion, the
ESA-CapsNet behaved promisingly on land cover classifica-
tion of multispectral LiDAR data.

B. Comparative Study
To further prove the effectiveness of the ESA-CapsNet in

land cover classification of multispectral LiDAR data, a group
of comparative tests were also conducted with the following
five methods: RB method [2], ML classifier [3], CNN [13],
DBM [14], and HCapsNet [15]. For fair comparisons, the same
training and test data were used to construct these models and
evaluate their performances. The quantitative evaluation results
obtained on the two data sets are detailed in Tables I and II,
respectively. Apparently, the CNN and HCapsNet performed
superiorly over the RB and ML, and obtained a slightly
better performance than the DBM. Specifically, the HCap-
sNet achieved the highest accuracy among the five methods,
whereas a relatively lower performance was obtained by the
RB. Compared with the low-level features or rules adopted
in the RB and ML, the advanced performance of the CNN,
HCapsNet, and DBM was due to the exploration of high-
level, deep, and semantically strong feature representations by
using deep learning models. Note that capsule features were
intensively exploited in the HCapsNet, thereby effectively
enhancing the classification accuracy. Comparatively, designed
with the effective encoder–decoder capsule network architec-
ture boosted by the ESA modules to recalibrate the channel
and spatial features to upgrade the feature encoding quality and
robustness, the proposed ESA-CapsNet outperformed the com-
pared methods with respect to the overall classification accu-
racies. In conclusion, the proposed ESA-CapsNet provided a
promising and feasible solution to land cover classification of
multispectral LiDAR data.

V. CONCLUSION

This letter has presented a novel capsule network, named
ESA-CapsNet, for land cover classification of multispectral
LiDAR data. Input with the rasterized feature images of the
multispectral LiDAR data, the encoder–decoder architecture
of the ESA-CapsNet can generate high-level, informative, and
strong feature representations to provide pixel-wise land cover
predictions. Integrated with the ESA modules for channel and
spatial feature recalibrations, the feature quality and semantics
were further upgraded to promote the classification capability
of the network. Quantitative evaluations on two data sets
showed that an overall classification performance with the
OA, AA, and κ values of over 98.42%, 95.15%, and 0.9776,
respectively, has been achieved. Comparative studies with five

existing methods also proved the effectiveness and feasibility
of the ESA-CapsNet in the land cover classification tasks.
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