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Abstract— Effective object extraction plays an important role
in many point cloud-based applications. This letter proposes a
3-D feature matching framework for point cloud object extrac-
tion. To determine the optimal affine transformation parameters
for each template feature point, a convex dissimilarity function
and the locally affine-invariant geometric constraints are designed
to construct the overall objective function. The 3-D feature
matching framework is integrated into a point cloud object
extraction workflow. Extraction results on six test data sets show
that average completeness, correctness, quality, and F1-measure
of 0.96, 0.97, 0.93, and 0.96, respectively, are obtained in extract-
ing light poles, vehicles, and palm trees. Comparative studies
also confirm that the proposed method performs effectively and
robustly, and exhibits superior or compatible performance over
the other compared methods.

Index Terms— Feature matching, light pole extraction, mobile
light detection and ranging (LiDAR), object extraction, point
cloud, vehicle extraction.

I. INTRODUCTION

L IGHT detection and ranging (LiDAR) technology has
provided an efficient and cost-effective solution to per-

forming 3-D measurement of land features. To date, a variety
of LiDAR systems, offering different levels of accuracies
and measurement rates, have been manufactured for different
applications and purposes, such as mobile, aerial, and terres-
trial LiDAR systems, as well as multispectral and hyperspec-
tral LiDAR systems. Due to the superior advantages of LiDAR
systems and their resultant point cloud data, they have been
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used in a wide range of fields such as intelligent transportation
systems, forest inventory, heritage documentation, surveying,
and mapping engineering. Meanwhile, techniques and algo-
rithms on point cloud data processing have attracted great
attention and have been paid great efforts. As an important
research topic, object extraction from point cloud data has
been intensively studied and a number of achievements have
been obtained in the literature.

In [1], 3-D Hough forest (HF) was designed for extract-
ing road scene objects. To improve feature representations,
supervoxel neighborhood-based HF [2] and deep-learning-
based HF [3] were also developed for object extraction.
Convolutional neural network (CNN) was used in [4] to extract
instant objects. In this method, depth images were gener-
ated for appearance-based classification. In [5], a 3-D object
matching (OM) framework was proposed to provide a
template-driven strategy. To depict object-oriented feature
representations, bag of contextual-visual words (BoCVWs)
model was developed in [6]. The BoCVWs model was able to
characterize the contextual statistical features of point cloud
objects. In [7], a preRoIpooling convolution technique was
presented for vehicle extraction. In addition, two-level point
processes [8], grid-cell-based method [9], geodesic morphol-
ogy [10], object-based point cloud analysis [11], decision
trees [12], etc., were also exploited for vehicle extraction tasks.

In [13], hierarchical Euclidean clustering was adopted to
extract buildings using a divide-and-conquer strategy. Taking
advantage of the geometric features of buildings, neural oscil-
lator networks [14] and marked point process [15] were
proposed for delineating building boundaries. In addition,
multisensor data fusion techniques were also exploited for
building extraction [16], [17]. To assist in road infrastruc-
ture inventory, a bag-of-visual-phrases model was developed
in [18] to extract traffic signs. Considering the linear structures
and highly reflective properties, segmentation and filtering
strategies were also applied to extract traffic signs [19], [20].
Pairwise 3-D shape context (PSC) [21] and ball falling (BF)
and location guided segmentation [22] were proposed to
extract light poles. In [23], a complete processing chain
composed of Laplacian smoothing, Latent Dirichlet allocation
topic model, and Markov random field was developed to
extract transmission lines. Moreover, methods, such as profile
analysis [24], Bayesian approach [25], and a dual growing
method [26], were suggested to extract trees. Instead of
processing 3-D point clouds, some methods converted them
into georeferenced feature images to extract road surface
features, such as cracks [27], road markings [28], and manhole
covers [29].
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Fig. 1. Illustration of the local affine transformation model. T1 and T2 are
two triangles generated through Delaunay Triangulation. �T1 and �T2 are the
transformation parameters for template feature points on triangles T1 and T2.

In this letter, we develop a 3-D feature matching frame-
work for point cloud object extraction. To determine the
optimal transformation parameters for each template feature
point, a continuous and convex dissimilarity function and
the locally affine-invariant geometric constraints were, respec-
tively, designed to measure the feature and geometric dissim-
ilarities between the template and scene feature points.

II. 3-D FEATURE MATCHING

A. Problem Formulation

The issue of feature matching can be defined as matching
a group of template feature points, representing an object
of interest, to another group of scene feature points, repre-
senting a scene containing an instance of that object. The
matched scene feature points should preserve similar local
features and relative spatial relationships to the corresponding
template feature points. Different from the existing feature
matching strategies seeking for point-to-point matching pat-
terns, in this letter, we propose an affine-transformation-based
feature matching framework, which dedicates to determine the
optimal transformation parameters for each template feature
point such that the matching position (unnecessary being a
specific scene feature point) of each template feature point falls
into the scene with similar local appearance and geometric
structure.

Denote nt and ns as the numbers of template and scene
feature points, respectively. Let P = {pi = [x pi , ypi , z pi ]T |i =
1, 2, . . . , nt } and Q = {q j = [xq j , yq j , zq j ]T | j = 1, 2, . . . , ns}
be the sets of template and scene feature points, respectively.
Then, our feature matching objective is to determine an
optimal affine transformation function Ti (�i ): Rn → R3,
i = 1, 2, . . . , nt for each template feature point pi based
on the scene feature points in Q. Ti (�i ) transforms template
feature point pi into a position in the scene with transformation
parameters �i ∈ Rn . In this letter, we formulate the affine
transformation function as follows:

Ti (�i ) =
⎡
⎣

α1 α2 α3
α4 α5 α6
α7 α8 α9

⎤
⎦

⎡
⎣

x pi

ypi

z pi

⎤
⎦ +

⎡
⎣

ξ1
ξ2
ξ3

⎤
⎦ (1)

where Ti (�i ): R12 → R3 computes the matching position
of template feature point pi under transformation parameters
�i = [α1, α2, α3, α4, α5, α6, α7, α8, α9, ξ1, ξ2, ξ3]T ∈ R12.
To provide a local affine transformation model allowing
certain global deformations, first, we organize the template
feature points into a Delaunay Triangulation representation.
Then, every three feature points defining a triangle share the
same set of affine transformation parameters (see Fig. 1).
In this way, we define a separate affine transformation function
for each triad of template feature points.

One objective of feature matching is to match each template
feature point pi to its matching position Ti (�i ) in the scene
with the constraint of preserving similar local appearance.
To this end, we define a dissimilarity measure function mci (q):
R3 → R, i = 1, 2, . . . , nt for each template feature point pi
to measure the local feature dissimilarities between pi and its
matching position q . Specifically, two feature points having
similar local appearances should produce a low dissimilarity
measure result.

To solve the feature matching problem, our overall objective
is to determine a group of optimal transformation parameters
�T1,�T2 , . . . ,�Tm , where m is the number of triangles, for
the Delaunay-triangulated representation of template feature
points p1, p2, . . . , pnt to minimize the following objective
function:

min
�T1 ,�T2 ,...,�Tm

m∑
t=1

∑
pi∈Tt

mci (Ti (�Tt ))

+ λ · G(�T1,�T2, . . . ,�Tm )

s.t. C j (�T1,�T2 , . . . ,�Tm ) ≤ 0, j = 1, 2, . . . , nc,

Ti (�Ta )=Ti (�Tb) for all pi ∈ Ta and pi ∈ Tb.

(2)

where mci (Ti (�Tt )) computes the local feature dissimilarity
between pi and Ti (�Tt ). G(�T1,�T2, . . . ,�Tm ) is a convex
term reflecting the local geometric dissimilarities between
the template feature points and the matching positions.
C j (�T1,�T2, . . . ,�Tm ) ≤ 0, j = 1, 2, . . . , nc defines a set
of convex constraints. Here, nc is the number of constraints.
Ti (�Ta ) = Ti (�Tb) defines a set of equality constraints that
guarantee one template feature point’s matching positions
computed by different triangles’ transformation parameters are
the same position. λ weights the feature dissimilarity and the
geometric dissimilarity measures. In this study, it is set to be
0.5 to favor feature dissimilarity more to well handle geometric
deformations of objects.

B. Feature Dissimilarity Measure

To characterize the local appearance of a feature point,
we adopt the fast point feature histograms (FPFH) feature
descriptor [30]. Denote costi , j , i = 1, 2, . . . , nt, j =
1, 2, . . . , ns as the feature dissimilarity between template fea-
ture point pi and scene feature point q j . Then, we define
costi , j as the square root of the χ2 distance between the FPFH
descriptors of pi and q j :

costi, j =
√√√√∑

k

(
H k

pi
− H k

q j

)2

H k
pi

+ H k
q j

(3)

where H k
pi

and H k
q j

are the kth components of the FPFH
descriptors of feature points pi and q j , respectively. Then, for
each template feature point pi , we define a discrete feature
dissimilarity function as follows:

MCi (q j ) = costi, j , j = 1, 2, . . . , ns, q j ∈ Q. (4)

The above discrete feature dissimilarity function still provides
a point-to-point matching pattern and is nonconvex. To solve
this problem, we relax each MCi (q j ) to construct a continuous
and convex dissimilarity function mci (q) that can be effec-
tively optimized through convex optimization techniques.
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Fig. 2. Illustrations of (a) feature dissimilarities viewed as a 4-D point set,
and (b) lower convex hull (facets).

For each template feature point pi , we organize all the
scene feature points together with their feature dissimilarities
costi, j as a set of 4-D points, whose first three dimensions are
the position of a scene feature point and the fourth dimension
corresponds to the feature dissimilarity [see Fig. 2(a)]. Then,
we design the convex dissimilarity function mci (q) for tem-
plate feature point pi based on the lower convex hull of the
4-D point set associated with pi with respect to the feature
dissimilarity dimension. As shown in Fig. 2(b), the facets are
the lower convex hull of the 4-D point set. Denote {w =
akx + bk y + ckz + dk|k = 1, 2, . . . , nf } as the hyperplane
functions defining the nf facets on the lower convex hull.
[ak , bk , ck , dk]T are the hyperplane parameters. Then,
we define the continuous convex dissimilarity function as
follows:

mci ([x, y, z]T )=max
k

(ak x +bk y+ckz+dk), k =1, 2, . . . , nf

(5)

where [x , y, z]T can be any position in the scene domain.
To effectively minimize the dissimilarity function in (5),
we convert it into an equivalent linear programming problem:

minimize
x,y,z

mci ([x, y, z]T ) ⇔
min

x,y,z,ui
ui

s.t. ak x + bk y + ckz + dk ≤ ui , k = 1, 2, . . . , nf (6)

where ui is an auxiliary variable representing the upper bound
of mci ([x , y, z]T).

To minimize the dissimilarity measure mci (Ti (�Tt )) in (2),
we rewrite the affine transformation function Ti (�Tt ) into
Ti (�Tt ) = [xi(�Tt ), yi (�Tt ), zi (�Tt )]T , where xi (�Tt ),
yi (�Tt ), and zi (�Tt ) are the three components of the matching
position of template feature point pi . Then, by substituting x ,
y, and z in (6), we obtain the following convex optimization
model:

min
�Tt

mci (Ti (�Tt )) ⇔
min

�Tt ,ui
ui

s.t. ak xi (�Tt ) + bk yi (�Tt ) + ckzi (�Tt ) + dk ≤ ui ,

k = 1, 2, . . . , nf (7)

C. Geometric Dissimilarity Measure

Recall that the matching positions should preserve similar
relative spatial relationships to the template feature points.
To this end, we formulate the geometric dissimilarity measure
using locally affine-invariant geometric constraints. Based on
the Delaunay triangulation representation of the template fea-
ture points, each template feature point pi can be represented

by an affine combination of its connected neighbors on the
triangulated mesh as follows:

pi =
∑

pk∈Npi

wik pk (8)

where Npi is the set of connected neighbors of pi on the tri-
angulated mesh, and wik is the affine combination coefficient.
By using the locally affine-invariant geometric constraints,
the geometric dissimilarity measure in (2) is designed as
follows:

G(�T1 ,�T2, . . . ,�Tm )

=
m∑

t=1

∑
pi∈Tt

∥∥∥∥∥∥
Ti (�Tt ) −

∑
pk∈Npi

wik Tk(�Ts )

∥∥∥∥∥∥
2

. (9)

Finally, by combining the feature dissimilarity measure
in (7) and the geometric dissimilarity measure in (9), we obtain
the overall objective function, which can be effectively solved
through convex optimization techniques. After optimization,
the matching position of template feature point pi can be
computed by Ti (�Tt ) and the result of the objective function
reflects the cost for matching the template with the scene.

III. RESULTS AND DISCUSSION

A. Data Sets

To evaluate the performance of the proposed 3-D fea-
ture matching framework on point cloud object extraction,
we collected five point cloud data sets using the RIEGL
VMX-450 mobile LiDAR system in Xiamen, China. The
RIEGL VMX-450 mobile LiDAR system integrating two laser
scanners can provide a maximum measurement rate of 1.1 mil-
lion measurements per second and a line scan speed of up to
400 scans per second. The first data set covering a road length
of about 4260 m was used to extract light poles. The second
data set covering a road distance of about 2522 m was also
collected for light pole extraction. The third data set covering
a road segment of about 776 m was selected for evaluating
vehicle extraction performance. The fourth data set covering
a road section of about 2108 m was also used to assess
vehicle extraction performance. The fifth data set covering
a road area of about 1813 m was used to evaluate palm
tree extraction performance. In addition, the public KITTI
vision benchmark [31] was also used to test vehicle extraction
performance.

B. Object Extraction

We integrated the proposed 3-D feature matching framework
into a point cloud object extraction workflow. As proposed
in our previous work [5], for a point cloud scene being
processed, first, the large-volume ground points were removed
from the scene using the voxel-based upward growing method.
This method can rapidly filter out ground points and main-
tain a good completeness of the off-ground objects. Then,
the discrete and unordered off-ground points were grouped
into separate clusters using the Euclidean distance clustering
method. The Euclidean distance clustering method can effec-
tively segment the isolated objects; however, the overlapped
objects cannot be well segmented. Next, to further segment
such clusters containing multiple objects, we adopted the
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TABLE I

OBJECT EXTRACTION RESULTS AND PROCESSING TIME OBTAINED ON
DIFFERENT POINT CLOUD DATA SETS

Fig. 3. Subset of (a) light pole extraction and (b) vehicle extraction results.

voxel-based normalized cut segmentation method to obtain
individual objects. Finally, we applied the proposed 3-D fea-
ture matching framework to a point cloud template and each
of the segmented individual objects to extract the specific type
of objects.

To perform feature matching, first, for the point cloud
template and each of the segmented individual objects,
we oversegmented them into a supervoxel representation using
the voxel cloud connectivity segmentation (VCCS) algo-
rithm [32]. Then, for each supervoxel, the point closest to the
supervoxel center was selected as the feature point. In this way,
we obtained a group of template feature points representing the
template and a group of scene feature points representing an
object. Next, we carried out the proposed 3-D feature matching
framework between the template feature points and each group
of the scene feature points. After optimization, the result of
the overall objective function in (2), namely, matching cost,
reflected the similarity between the template and the object.
That is, the lower the matching cost, the more similar the two
objects. Finally, the matching costs from all individual objects
were thresholded to extract the specific type of objects.

To evaluate the performance of the proposed 3-D feature
matching-based object extraction method, we applied it to
the aforementioned six point cloud data sets to extract light
poles, vehicles, and palm trees, respectively. To quantitatively
assess the object extraction results, we adopted the following
four measures: completeness (cpt), correctness (crt), qual-
ity (qat), and F1-measure (fmr) [5]. Table I shows the details
of the object extraction results obtained on the six data sets.
As reflected in Table I, for each of the data sets, most of
the objects of interest were correctly extracted. However, due
to the similarities of some other objects to the template,
they were falsely extracted as true targets caused by low
matching costs. For example, some polelike objects had very
low matching costs to the light pole template; thus, they were
falsely labeled as light poles. In addition, caused by occlusions
of other nearby targets, some objects of interest were scanned
with severe incompleteness. These objects obtained very high
matching costs; therefore, they were failed to be extracted.

TABLE II

OBJECT EXTRACTION RESULTS AND PROCESSING TIME OBTAINED
BY DIFFERENT METHODS

Specifically, the proposed method achieved average complete-
ness, correctness, quality, and F1-measure of 0.96, 0.97, 0.93,
and 0.96, respectively, in extracting light poles, vehicles, and
palm trees from the six data sets. For visual inspections,
Fig. 3 shows a subset of object extraction results from the
test data sets. The proposed method was implemented using
C++ and run on an HP Z820 workstation (CPU: 2 GHz). The
processing time of the proposed method on the six data sets
was also reported in Table I for computational performance
analysis. As a whole, the proposed 3-D feature matching-based
method showed promising performance in point cloud object
extraction tasks.

C. Comparative Study

To further evaluate the performance and accuracy of the pro-
posed 3-D feature matching-based object extraction method,
we conducted a set of comparative experiments with the
following six methods: HF method [2], OM method [5],
PSC method [21], BF method [22], VoxelNet [33], and
Vote3Deep [34], for light pole extraction on data sets I and II,
and the following six methods: HF method [2], deep HF
method (dHF) [3], CNN method [4], BoCVWs method [6],
VoxelNet [33], and Vote3Deep [34], for vehicle extraction
on data sets III, IV, and KITTI. Table II presents the object
extraction results. For light pole extraction, the HF method
obtained lower performances than the other five methods,
whereas the BF and VoxelNet methods performed similar to
our proposed method. For vehicle extraction, the BoCVWs
and VoxelNet methods exhibited similar performances to our
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proposed method and achieved better extraction results than
the other four methods. In addition, the processing time of
each method was also reported in Table II for computa-
tional performance comparison. Comparatively, our proposed
method performed robustly and showed superior or compatible
performance over the other compared methods in extracting
the specific type of objects from point cloud data.

IV. CONCLUSION

This letter has presented a 3-D feature matching framework
for point cloud object extraction. Rather than seeking for a
point-to-point matching pattern, an optimal affine transforma-
tion was defined for each template feature point to compute
its corresponding matching position in the scene. A continu-
ous and convex dissimilarity function and the locally affine-
invariant geometric constraints were designed to measure the
feature and geometric dissimilarities, respectively, between the
template and the scene. The 3-D feature matching frame-
work has been integrated into a point cloud object extraction
workflow to extract light poles, vehicles, and palm trees on
six selected mobile LiDAR point cloud data sets. Extraction
results showed that the proposed method achieved average
completeness, correctness, quality, and F1-measure of 0.96,
0.97, 0.93, and 0.96, respectively. A set of comparative studies
also confirmed that the proposed method performed robustly
and obtained superior or compatible performance over the
other compared methods in extracting point cloud objects.
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