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Abstract—Object detection in three-dimensional (3-D) laser
scanning point clouds of complex urban environment is a challeng-
ing problem. Existing methods are limited by their robustness to
complex situations such as occlusion, overlap, and rotation or by
their computational efficiency. This paper proposes a high com-
putationally efficient method integrating supervoxel with Hough
forest framework for detecting objects from 3-D laser scanning
point clouds. First, a point cloud is over-segmented into spatially
consistent supervoxels. Each supervoxel together with its first-
order neighborhood is grouped into one local patch. All the local
patches are described by both structure and reflectance features,
and then used in the training stage for learning a random for-
est classifier as well as the detection stage to vote for the possible
location of the object center. Second, local reference frame and
circular voting strategies are introduced to achieve the invariance
to the azimuth rotation of objects. Finally, objects are detected
at the peak points in 3-D Hough voting space. The performance
of our proposed method is evaluated on real-world point cloud
data collected by the up-to-date mobile laser scanning system.
Experimental results demonstrate that our proposed method out-
performs state-of-the-art 3-D object detection methods with high
computational efficiency.

Index Terms—Hough forest, local reference frame (LRF),
mobile laser scanning (MLS), object detection, point clouds, super-
voxel neighborhood.

I. INTRODUCTION

W ITH the development of mobile laser scanning (MLS)
systems [1]–[3] in recent years, the time of data col-

lection is tremendously reduced for subsequent use in urban
planning, maintenance functions, emergency response prepa-
ration, virtual tourism, and multimedia entertainment. As an
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important approach for urban scene analysis, automatic extrac-
tion of important urban scene structures such as road signs,
lamp posts, and cars from three-dimensional (3-D) point cloud
data has become a highly attractive research topic. The major
challenges in detecting objects from laser scanning point clouds
are huge point cloud data volumes, intraclass shape variation,
overlap between neighboring objects, point-density variation,
orientation variation, and incompleteness of object caused by
occlusion.

Most of existing object detection work is based on prior
knowledge of the specified object categories [4]–[16] or based
on object global shape description [17]–[19]. These methods
either are difficult to extend from the specific object categories
to more generic object categories or require the completeness
of objects, which is hard to ensure in complex real-world urban
scenes.

Hough forest [20], [21] is a successful object detection
framework based on a partial object description model—
implicit shape model (ISM). ISM [22] is essentially a codebook
of local part appearances. Similar features are grouped into the
same codebook entry, and each entry contains the same type of
local structure. Based on ISM, each local part of an object votes
the possible location of the object center. This attribute makes
ISM robust to occlusion and overlap, which commonly exist in
complex urban environments. Hough forest has been success-
fully used for object detection in two-dimensional (2-D) images
[20], [21] and 3-D shapes [23]–[26].

However, Hough forest lacks the ability to detect objects
with arbitrary orientation [21]. Because objects, such as cars
and pedestrians, are typically upright in normal images, lack-
ing the ability to detect objects with arbitrary orientation is not
an issue in normal image applications [20]. But in real-world
3-D scenes, identical categorical objects are commonly placed
in various azimuth orientations. Therefore, for object detec-
tion in point clouds of complex urban environment, a critical
requirement is the invariance to azimuth rotation. The detec-
tion performance of Hough forest also heavily depends on the
distinctiveness of the object’s local parts. Existing part-based
object detection methods either cannot control the size of each
part [18], [27] or does not consider the interior shape struc-
tures [26]. Moreover, detecting objects from MLS point clouds
requires high computational efficiency.

In this paper, we propose a method with high computa-
tional efficiency to detect objects from real-world 3-D laser
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scanning point clouds. Supervoxel, which groups the 3-D points
into perceptually meaningful clusters with high efficiency, is
incorporated into the Hough forest framework to accelerate the
3-D local patch extraction. The point cloud is first segmented
into supervoxels through the voxel cloud connectivity segmen-
tation (VCCS) algorithm [28]. Each supervoxel, together with
its first-order neighborhood, is grouped into one local patch. All
the local patches are described by both structure and reflectance
features, and then used in the training stage for learning a
random forest classifier as well as the detection stage to vote
for the possible location of the object center. To cope with
the azimuth rotation of objects, we use both the local refer-
ence frame (LRF) [29]–[31] and the circular voting [26] in the
Hough voting stage. The LRF-based voting strategy is the 3-
D counterpart of gradient-based voting strategy, which is used
for 2-D remote sensing images [21]. By defining LRFs for the
3-D local parts of ISM, we estimate the rotation transforma-
tion between matched pairs of asymmetrical training and testing
parts. Then, we align the offset vector, according to the rota-
tion transformation, to correctly vote the object center. If one
of the matched pair of parts is symmetrical, a circular voting
strategy is introduced by rotating the offset vector, and then all
locations with certain distances in the horizontal plane and in
the vertical direction are voted. Experimental results demon-
strate the robustness and efficiency of our proposed algorithm
on complex urban environment point clouds acquired by an
MLS system.

II. RELATED WORK

A. Existing Object Detection Methods

Most of existing object detection methods can be divided
into two classes. The first class of approaches is based on
prior knowledge of the specified object categories. Jaakkola
et al. [4] extracted curbstones and road markings, such as zebra
crossings, from MLS data based on intensity and height infor-
mation, and modeled the pavement as a triangulated irregular
network. Guan et al. [5] extracted road markings by interpo-
lating 3-D points into geo-referenced intensity images. Yu et al.
[6] detected buildings from airborne laser scanning points based
on a marked point process algorithm. Brenner [7] developed a
rule-based pole extraction method for intelligent driving guid-
ance and assistance. Lehtomäki et al. [8] detected pole-like
objects based on scan lines that are not applicable to unorga-
nized point clouds. Elhinney et al. [9] presented a road edge
detection method, where the cross section is modeled as a
2-D cubic spline, and the road edges are extracted by detect-
ing peaks and troughs from that fitted spline. For extracting
buildings and trees, Yang et al. [10] proposed a method to
generate feature imagery from point clouds. The generated fea-
ture image provides an alternative solution for extracting road
markings [11] and facade footprints [12]. Yang et al. [13] pro-
posed a marked point process-based method to extract building
outlines from airborne laser scanning point clouds. Pu et al.
[14] proposed a method to recognize basic structures, like poles
near roads, according to their geometric attributes. Becker [15]
proposed a model-driven method to extract windows based on
formal grammar. Friedman and Stamos [16] detected repeated

structures, such as windows, based on Fourier analysis. Some
research, specifically designed for road extraction, has also
been proposed [32]–[35]. Nevertheless, the use of prior knowl-
edge makes it difficult to extend these methods to more generic
object categories.

The second class of approaches is based on an object detec-
tion framework for generic categories. The methods belonging
to this class can also be classified into methods based on
global and partial shape description. Global shape-based meth-
ods require accurate segmentation in advance, whereas partial
shape-based methods are insensitive to segmentation. Aijazi
et al. [17] proposed a point cloud classification method in
urban environments. The point cloud is first segmented by the
super-voxel segmentation method. All super-voxels are then
merged into segmented objects. The classification is performed
based on the geometric descriptors extracted from these seg-
ments. Ning et al. [18] segmented the scene into clusters using
a surface growing algorithm [36] and represented the clusters
through primitive shape elements. Golovinskiy et al. [19] pro-
posed a framework for recognizing small objects from 3-D laser
scanning point clouds in urban environments. Their framework
is divided into four steps: location, segmentation, characteri-
zation, and classification. The completeness of objects, which
is hard to ensure because of occlusion and overlap between
neighboring objects in real-world scenes, restricts the perfor-
mance of these global shape-based methods. Although some
point cloud segmentation algorithms have been proposed [27],
[37], [38], accurate segmentation in a complex environment
is still an unsettled problem. A typical part-based 3-D object
detection method is proposed in [26]. Their method is based
on Hough forest object detection framework, and the effective-
ness is demonstrated through 3-D laser scanning point clouds
of real-world urban scenes.

B. Studies on 3-D Local Patch Extraction

One type of patch extraction method [18], [27] represents
the objects through primitive shape elements and then merges
the elements based on topological connectivity. This type of
method cannot control the size of each element and, thus, is
not robust to occlusion when used for detection. Another type
of method [26] represents the whole point cloud through octree
partition [39], and extracts local parts according to the leaves
of octree. The number of local parts is related to the size of
whole point cloud and the size of octree leaves. However, this
type of method does not consider the interior shape structures.
Supervoxel, an analogue of superpixel [40]–[42] that is widely
used in 2-D image applications, groups the 3-D points into
perceptually meaningful clusters with high efficiency. Points
within each supervoxel must have similar features and be spa-
tially connective. To speed up processing, supervoxels, instead
of the original points, are usually treated as the basic process-
ing units, which is very suitable for laser scanning point cloud
applications. VCCS is a novel supervoxel algorithm [28]. Points
within each supervoxel have similar feature appearances, such
as normal and fast point feature histogram (FPFH) [43]. A point
cloud is segmented into individual supervoxels of similar size
according to the constraint that each supervoxel cannot flow
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Fig. 1. Point clouds over-segmentation examples for: (a) a car; (b) a street lamp; and (c) a traffic sign based on VCCS. In (d), all the supervoxels (represented by
colored surfaces) within the first-order neighborhood of a supervoxel (red surface) constitute a local patch. The white and blue points are the centers of supervoxels,
and an adjacent graph is constructed by the connected dashed blue lines.

across the object boundaries. However, this constraint degrades
the distinctiveness of the supervoxels.

III. TEST MLS DATA

Our proposed method was evaluated on three datasets con-
taining three different categorical objects: street lamp, car,
and traffic sign. All of these datasets were collected by the
RIEGL VMX-450 system [1] (400 lines per second, 1.1 mil-
lion measurements per second, and 8 mm accuracy) in Xiamen,
China.

A. Street Lamps

The dataset, used to evaluate the performance of street lamp
detection, covers about 188 150 m2 and contains about 480 mil-
lion points. The intersection point of lamp pole and lamp header
is considered as the object center. Within the test scene, contain-
ing 183 street lamps with various azimuth rotations, only 159
street lamps were completely segmented from the scene. Due to
their overlap with other objects in the scene, the other 24 street
lamps failed to be segmented.

B. Traffic Signs

The dataset, used to evaluate traffic sign detection, covers a
distance of about 10 km along the surveyed road and contains
about 24 million points selected from the raw point clouds. This
dataset contains 73 traffic signs with various azimuth rotations
and sizes, of which 38 traffic signs were completely segmented
from the scene and 35 traffic signs failed to be segmented.

C. Cars

The dataset, used to evaluate car detection, covers about
8700 m2 and contains about 61 million points. The dataset con-
tains 134 cars with various azimuth rotations, of which 125 cars
were successfully segmented from the scene and the other nine
cars were failed to be segmented. Moreover, nearly half of the
cars are seriously occluded during scanning.

IV. OBJECT DETECTION WITH SUPERVOXEL

NEIGHBORHOOD-BASED HOUGH FOREST

In this section, we first introduce our local patch extraction
strategy based on supervoxel neighborhood. Then, we introduce

the Laplace–Beltrami scale space (LBSS) theory [44], [45] to
demonstrate our strategy’s superior distinctiveness. We intro-
duce the LRF definition and the appearance of each local patch
in Sections IV-C and IV-D, respectively. The training and detec-
tion procedure of supervoxel neighborhood-based Hough forest
is introduced in Section IV-E.

A. 3-D Local Patch Extraction Based on Supervoxel
Neighborhood

In this paper, we define the 3-D local patch as a clus-
ter that contains a supervoxel and its neighborhood. Given
a point cloud, we start the extraction of 3-D local patches
by over-segmenting the point cloud into supervoxels through
the VCCS algorithm. Fig. 1(a)–(c) shows three examples of
over-segmented supervoxels on the point clouds of real-world
objects using the VCCS algorithm with the voxel resolution
0.05 m and seed resolution 0.1 m. The voxel resolution is used
to construct the voxel-cloud space, and the seed resolution is
used to select the initial seed points of supervoxel. Then, we
construct an adjacency graph G for all supervoxels. The ver-
tices V of the graph G are composed of supervoxel centers,
and the edges exist only between directly neighboring super-
voxels. For a supervoxel centered at v, we define the nth-order
neighborhood Nn(v) as follows:

Nn(v) = {vi |d(v, vi) ≤ n, vi ∈ V } (1)

where the distance d(v, vi) is defined as the minimum number
of edges between two vertices v and vi. For a supervoxel cen-
tered at v, all the adjacent supervoxels within the distance n
constitute a local patch, and the center v is treated as the cen-
ter of the local patch. From now on, we denote a local patch
centered at v by the neighborhood Nn(v). For example, N0(v)
denotes that the supervoxel itself is treated as a local patch, and
N1(v) denotes that the supervoxel together with its first-order
neighborhood is treated as a local patch. Fig. 1(d) illustrates the
construction of a local patch N1(v).

B. LBSS Theory

By comparing our approach with directly treating supervox-
els as local patches, we demonstrate the effectiveness of our
local patch extraction approach through the measure of distinc-
tiveness. We use the LBSS theory [44], [45], which has been
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proposed to detect interest regions in 3-D unorganized point
clouds, to define the distinctiveness of a local patch. LBSS mea-
sures the distinctiveness of a point at different scales and selects
the maximum along the scale dimension of a suitable saliency
function.

In this paper, the distinctiveness of a local patch Nn(v) is
defined as follows:

ρ(p, t) =
2 ‖p−A(p, t)‖

t
e−

2‖p−A(p,t)‖
t (2)

where A(p, t) is an operator that can be interpreted as the
displacement of a point along its normal n(p) by a quantity
proportional to the mean curvature, CH(p), as given in (3)

A(p, t) ≈ p+ CH(p)n(p)t2 = p+
t2

2
ΔMp (3)

where ΔM is the Laplace-Beltrami operator, p denotes the key-
point of the local patch, and t is the current scale attached to p.
For the local patch Nn(v), we treat, as the keypoint p, the point
in N0(v) that is nearest to the centroid of N0(v), and define
the scale t as the largest Euclidean distance from the points in
Nn(v) to the keypoint p. The scale t is formulated as follows:

t = max{de(p, vi), vi ∈ Nn(v)} (4)

where de(p, vi) is the Euclidean distance from the keypoint p
to the point vi in Nn(v). The evaluation results demonstrate
that the distinctiveness of individual supervoxel is obviously
lower than supervoxel neighborhood, and we treat the first-
order supervoxel neighborhoods as local patches for better time
performance. Detail discussion is shown in Section VI-A.

C. Definition of LRF

To constrain the Hough voting in the detection stage, we
define a LRF for each local patch. LRF, a full 3-D coordinate
system, was first proposed to construct rotation-invariant fea-
ture descriptors [29]–[31] and also has been used to acquire the
transformation between query and database objects [30], [31].
LRF essentially relies on the neighboring shape structure of a
specific point. The three axes of the LRF are determined by per-
forming eigenvalue decomposition on the scatter matrix of all
points lying on a local surface. Usually, to improve the robust-
ness of the LRF to occlusion and clutter, the scatter matrix is
weighted by the distance. As described in [30], the sign of each
axis is disambiguated by aligning the direction to the major-
ity of the point scatters. However, the LRF is only stable on
asymmetrical local surfaces. Thus, in this paper, the LRF for a
symmetrical local surface is defined as a zero matrix.

Let {λ1, λ2, λ3} denote the eigenvalues of the scatter matrix
in descending order of magnitude, and let

ε =
λ2

λ1
(5)

denote the ratio between the second and the first largest eigen-
values. Then, ε = 1 for symmetrical surfaces, and ε < 1 for

asymmetrical surfaces. To cater for noise, we choose a thresh-
old 0 < ε0 < 1 to proceed with the definition of LRF. Thus, for
each local patch, we define LRF as follows:

LRF =

{
{ṽ1, ṽ3 × ṽ1, ṽ3}T , if ε < ε0
0, if ε > ε0

(6)

where ṽ1 and ṽ3 are two unique unambiguous orthogonal
eigenvectors corresponding to the maximal and minimal eigen-
values. In our experiments, the threshold ε0 is set to be 0.9.

D. Appearance of 3-D Local Patch

The local patch is described by both structure and reflectance
features. The structure features are as follows: spectral fea-
tures [46], eigenvalues of the covariance matrix, 3-D invariant
moments, and FPFH [43]. The spectral features describe the
local patch topology by assigning a saliency describing the
degree of scatter, linearity, and planarity. By defining λ1 ≥
λ2 ≥ λ3 to be the eigenvalues of the scatter matrix M defined
over a local patch, the saliency of scatter, linearity, and planarity
are measured by {σs = λ3, σl = λ1 − λ2, σp = λ2 − λ3}. The
eigenvalues of the covariance matrix describe the extent of local
patch spanning along three directions. The 3-D moments are
measures of the spatial distribution of a mass of 3-D points.
The 3-D invariant moments are moments invariant to trans-
lation and rotation transformation. FPFH are pose-invariant
features, which describe the local surface properties of points
using combinations of their k nearest neighbors. Besides spa-
tial information, laser scanning systems also capture reflectance
information of objects. The reflectance feature is the median of
reflectance intensities. Works based on both spatial and spectral
information have been discussed [47]–[50]. In addition, we also
use other features, such as the height of the local patch center
relative to the lowest point in the point cloud and the occupied
area of the local patch in the horizontal plane.

The appearance of each local patch is composed of four
components

P = (I, F, l, d) (7)

where I is the feature description described above, F is the LRF
of the local patch, l is the class label with one for positive sam-
ples and zero for negative samples, and d is the offset vector,
which goes from the object center to the patch center. Negative
samples have a pseudo offset, i.e., d = 0.

E. Object Detection With Supervoxel Neighborhood-Based
Hough Forest

The Hough forest algorithm is divided into two stages:
training and detection. In our proposed method, the training
stage starts with over-segmenting the point cloud into individ-
ual supervoxels through the VCCS method. Each supervoxel,
together with its first-order neighborhood, constitutes a local
patch. The appearance of the ith local patch Pi is composed of
four components: {Pi = (Ii, Fi, li, di)}. Based on these local
appearances, the optimal parameters of the split function on
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Fig. 2. Training procedure of supervoxel-based Hough forest algorithm. T is the number of trees in the random forest.

Fig. 3. Detection procedure of supervoxel-based Hough forest algorithm. The red cross represents the real object center, and the light blue cross represents the
estimated object center.

each branch node are determined [20]. To meet the requirement
of rotation invariance, instead of using the appearances at two
selected different positions within a local patch as described in
[20], we use the entire local patch’s appearance to learn the split
function. Afterward, according to the split function, the train-
ing patches that reach a branch node are split into two subsets.
The aforementioned splitting step is repeated until the depth
of the node reaches a maximum or the number of samples is
smaller than a given threshold. Each branch node of the trained

trees stores the selected feature channel and the corresponding
feature threshold. Each leaf node stores the proportion, the off-
set vectors, and the LRF of the positive training patches that
reach this node in the training stage. Fig. 2 shows the complete
training procedure of our algorithm.

Fig. 3 shows the complete object detection procedure. First,
the ground points are removed from the test scene [51]. By
gradually increasing the window size of the filter and using
elevation difference thresholds, the point clouds of nonground
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Fig. 4. Proposed method (red curve) is compared with the original Hough forest (green curve) method, Golovinskiy’s method (blue curve), our previous method
(black curve), and implicit shape model-based method (magenta curve) on three different categorical objects. Comparison of three methods for: (a) car; (b) street
lamps; and (c) traffic signs detection.

objects such as vehicles, vegetation, and buildings are pre-
served, and ground points are removed. Next, a segmentation
method is used to partition the scene into individual segments.
The segmentation approach is based on a nearest neighborhood
graph [19], and the segmentation error is minimized by the min-
cut algorithm. The local patches are extracted and described,
based on the method used in the training stage, and then passed
downward through the trained trees to a leaf node in each tree
according to the information stored in the branch nodes. The
spatial offsets stored in the leaf nodes are used to cast votes
to the object center. Finally, all votes create a 3-D Hough vot-
ing space, and the object center is determined by a traditional
nonmaximum suppression process.

However, because of rotations that exist between the training
samples and the test samples, the spatial offset vectors stored
in the leaf nodes cannot be directly used to vote for the object
center. In urban environments, the objects of interest such as
cars, traffic signs, and street lamps usually have azimuth rota-
tions. To achieve the invariance to the azimuth rotation, we use
different voting strategies in the Hough voting stage. If both
of the matched training and testing local patches are asymmet-
rical, the rotation transformation is estimated by aligning the
LRF of the training patch to the LRF of the matched testing
patch. Specifically, given a patch vs and the corresponding LRF
Fs centered at ps in the test sample, we pass vs down through
the trained trees and reach one leaf node containing a patch vm
with offset vector dm and LRF Fm. The rotation transformation
between vs and vm is estimated by

R = FT
s Fm. (8)

The correct offset vector ds starting from the object center to
the patch center ps for the patch vs is estimated as

ds = dmR. (9)

Then, the object center is estimated as

o = ps − ds = ps − dm(FT
s Fm). (10)

If one of the matched training and testing local patches is
symmetrical, the estimated rotation matrix R equals to zero. To

achieve invariance to the azimuth rotation, we adopt a circular
voting strategy. We rotate the offset vector for all orientations
in the azimuth direction. All positions with a certain distance
dh to the local patch center p in the horizontal plane and dz to
p in the vertical direction are potential positions of the object
center. By using the circular voting approach, we achieve rota-
tion invariance in the azimuth direction. For a patch centered at
{px, py, pz}, the object center is estimated by

⎧⎪⎨
⎪⎩
ox = px + dh cos(θ)

oy = py + dh sin(θ)

oz = pz − dz

. (11)

The circular voting approach is computationally efficient
because the operation of rotating offset vectors is implemented
by defining a discrete lookup table.

V. EXPERIMENTAL RESULTS AND COMPARISON

Our proposed method was evaluated on three datasets
described in Section III. All the category-specific random
forests are trained based on the samples with various azimuth
rotations. To evaluate the performance of our object detection
algorithm, we manually labeled the target objects in all train-
ing and testing point clouds as the ground truth. A detection
is marked as a true positive only if the estimated center falls
into certain distance thresholds relative to the labeled object
center in both horizontal and vertical directions. Each target
object matches only one detection. When there are multiple
detections for an object, only the one closest to the labeled
center is labeled as true detection and the others are labeled as
false positives. The detection performance is shown by the ROC
curve.

We compared our algorithm with the original Hough for-
est, our previous work [26], the method proposed in [19], and
the method based on ISM [25]. The performance of differ-
ent methods including ours is shown in Fig. 4. As seen in
Fig. 4, our method significantly outperforms the state-of-the-
art. Golovinskiy’s method [19] is based on an object’s global
shape features, and consequently the performance seriously
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Fig. 5. Results of the proposed detection algorithm. Red 3-D bounding boxes represent the true correct detection results. (a) Car detection result. (b) Traffic sign
detection result. (c) Street lamp detection result.

Fig. 6. Distinctiveness evaluation based on LBSS theory. (a) Shows the distinctiveness of the local patches extracted from different neighborhood sizes, and the
Y-axis represents the distinctiveness of the local patch; (b) shows the corresponding scales, and the Y-axis represents the size of the local patch. In both figures,
the X-axis represents the labels of the supervoxels.

depends on the completeness of the objects. Therefore, [19]
is vulnerable to scenes where objects cannot be segmented
from the background due to the overlap between neighboring
objects or where objects are seriously occluded when scan-
ning. On the contrary, our method is based on object part

appearance and thus is robust to occlusion and overlap. The
method based on ISM [25] treats the centroid as the object
center in the training stage, which is not stable for the point
density variation. In [25], the rotation invariance is achieved
by aligning the offset vector according to the normal of the
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Fig. 7. Detection performance on three object categories: (a) car; (b) street lamp; and (c) traffic sign using different local patch extraction approaches.

Fig. 8. Performances of the detection for: (a) car; (b) street lamp; and (c) traffic sign using combination of LRF and circular voting, LRF-based voting, and circular
voting strategies.

Fig. 9. Performances of the detection for: (a) car; (b) street lamp; and (c) traffic sign under different supervoxel resolutions.

keypoints. However, the normal is easily disturbed by the noise,
occlusion, and overlap. Moreover, the LRF used in our method
is constrained by both the maximal and minimal principal
components of local covariance matrix, whereas the normal is
constrained by only the minimal principal component of local
covariance matrix. Compared to our previous work [26], the
proposed method also achieves better performance. From the
results, we conclude that our method has the ability to cope
with overlap, occlusion, and rotation in cluttered real-world

scenes. Fig. 5 shows the detection results for three different
categorical objects.

VI. DISCUSSION

In this section, we first evaluate the local patch distinctive-
ness under different sizes of supervoxel neighborhood based on
the LBSS theory. The sensitivities of the detection performance
under different local patch extraction strategies and different



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: 3-D POINT CLOUD OBJECT DETECTION BASED ON SUPERVOXEL NEIGHBORHOOD 9

Hough voting strategies are evaluated in Sections VI-B and
VI-C. The sensitivity of our method to supervoxel resolutions
is analyzed in Section VI-D. Finally, we analyze the fea-
ture importance and time performance of our method in
Sections VI-E and VI-F, respectively.

A. Local Patch Distinctiveness Evaluation Based on LBSS
theory

We evaluate the distinctiveness of our method with experi-
ments conducted on the point clouds shown in Fig. 1(a). The
voxel resolution is set to be 0.1 m, and the seed resolution is set
to be 0.3 m. In Fig. 6(a), the distinctiveness evaluation results
are shown when n is equal to 0, 1, and 2. The corresponding
scales are shown in Fig. 6(b). From Fig. 6(a), we observe that
the distinctiveness of individual supervoxel (blue curve) is obvi-
ously lower than the supervoxel neighborhood (red and green
curves). Distinctiveness is lowered because a supervoxel cannot
flow across an object’s boundaries, whereas a supervoxel neigh-
borhood can cross an object’s boundaries. Comparing the red
curve to the green curve in Fig. 6(a), we observe that increasing
neighborhood size does not obviously improve distinctiveness.
Thus, in this paper, we consider only the first-order super-
voxel neighborhood for extracting local patches for better time
performance.

B. Effectiveness of the Proposed Local Patch Extraction
Approach

To demonstrate the effectiveness of our proposed local patch
extraction approach, we compared it with the method that
directly treats a supervoxel as a local patch and the method
based on octree [26]. All the experiments were performed with
the same Hough voting method, a combination of LRF and
circular voting. From Fig. 7, we observe that the proposed
local patch extraction approach (red curves) outperforms the
approach that directly treats supervoxels as local patches (green
curves) on all three categorical objects. The reason for this
superior performance is that a supervoxel neighborhood can
cross the object boundaries, whereas a supervoxel cannot flow
across the object boundaries. Using the supervoxel neighbor-
hood as a local patch, we maintain the dominant local structures
and substantially improve the discriminant ability. Compared to
the octree-based local patch extraction approach (blue curves),
we observe that our supervoxel neighborhood-based approach
achieves state-of-the-art detection performance.

C. Sensitivity Analysis of the Hough Voting Strategy

We also conducted experiments to test the proposed method
under different Hough voting strategies. Specifically, we tested
our method under the LRF-based voting, circular voting, and
combination of LRF and circular voting strategies while keep-
ing all other conditions the same. The LRF-based voting
strategy achieves rotation invariance according to the actual
rotation transformations, which rely on the LRFs associated
with each pair of matched training and testing asymmetrical
local patches. The circular voting strategy, because it also votes

Fig. 10. Feature analysis for: (a) car; (b) street lamp; and (c) traffic sign
detection.

some irrelevant locations, achieves rotation invariance at the
cost of a low false positive rate. From Fig. 8, we observe that
the performance of the combination of LRF and circular vot-
ing strategy outperforms the other voting strategies on car and
traffic sign categories. In Fig. 8(b), the performance of the
LRF-based voting is slightly better than the combination of
the LRF and circular voting strategy for the street lamp cat-
egory. The reason for the better performance is because most
of the extracted local patches of street lamps are asymmetri-
cal, and the votes are mainly based on the LRF-based voting.
Considering the comprehensive performance and the generality
of the method, we conclude that the combination of LRF and
circular voting has the best detection performance.

D. Sensitivity Analysis of Supervoxel Resolutions

The sensitivity of our proposed method to the supervoxel res-
olutions is analyzed in this section. We conducted six groups of
experiments with different voxel resolution and seed resolution
for each object category. Fig. 9 shows the detection perfor-
mance under different supervoxel resolutions for car, street
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TABLE I
RUNNING TIME OF TRAINING AND DETECTION

lamp, and traffic sign. From Fig. 9, we observe that when voxel
resolution is set to be 0.05 m and seed resolution is set to be
0.1 m, our method achieves best performance for all the three
categorical objects. The reason is that the robustness of our
method to occlusion and overlap is degraded when increasing
the size of local patch, although the distinctiveness of local
patch is promoted. Thus, in all of our experiments, the voxel
resolution is set to be 0.05 m and the seed resolution is set to be
0.1 m.

E. Feature Analysis

To evaluate which feature is important for object detection
from 3-D laser scanning point clouds, we counted the num-
ber of times that the feature is selected to segment the feature
space in the training stage. According to the splitting prin-
ciple of random forest classifier, only one feature channel is
selected optimally from the feature vector at each segmenta-
tion step. Fig. 10 shows the feature analysis histograms for the
three categorical objects. The horizontal axis represents the fea-
tures, and the vertical axis represents the number of times the
corresponding feature is chosen for training the random forest
classifier. Because of color variation, when detecting cars and
traffic signs, the reflectance intensity is not used. From Fig. 10,
we observe that all the features have made their contributions.
As seen from Fig. 10(a) and (c), the height, area, and FPFH play
important roles for distinguishing cars and traffic signs from
other objects. For street lamp detection, intensity, height, area,
and FPFH play important roles. In conclusion, the feature anal-
ysis result is consistent with our knowledge of distinguishing
objects from others.

F. Time Performance

All experiments were conducted on a machine with an Intel
Core i3 3.3 GHz processor and a 16-GB RAM. The running
time of training and detection on these three categorical objects
is presented in Table I. For the whole detection stage, we list the
time spending on its three main stages: ground points filtering,
nonground points segmentation, and object detection. We also
compared the object detection time of our proposed method
with our previous work [26]. From Table II, we observe that,
by extracting local patches based on supervoxels, our method
achieves higher computational efficiency. The reason for the
higher computational efficiency of supervoxel-based method is
that we treated each supervoxel as the basic processing unit,
whereas in our previous work, we treat each leaf of the octree
as the basic processing unit.

TABLE II
DETECTION TIME COMPARISON

VII. CONCLUSION

In this paper, we proposed a novel supervoxel neighborhood-
based method for object detection from laser scanning point
clouds of complex urban environments. The main contributions
of this paper include: firstly, we incorporate the supervoxel into
the Hough forest object detection framework to accelerate the
computational efficiency; secondly, we propose to treat a super-
voxel neighborhood as a 3-D local patch, which is proved to
have a higher distinctiveness than an individual supervoxel;
and finally, we solve the limits of Hough forest framework
for dealing with rotated objects through the combination of
LRF and circular voting. Our method was tested on three dif-
ferent categorical real-world objects with high computational
efficiency and achieves higher performances compared with
state-of-the-art 3-D object detection methods. Moreover, the
evaluation and comparison results, under different local patch
extraction strategies and different Hough voting strategies, also
experimentally verify the superiority of our method. Overall,
our method achieves improvements with high computational
efficiency over the existing 3-D object detection methods in
real-world 3-D laser scanning point clouds.

The limitation of the proposed method is mainly caused
by the difficulty of extracting supervoxels from point clouds
of nonsolid-surface structures such as tree canopy. Thus, our
method is not suitable for detecting objects such as trees with
nonsolid-surface structures.
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