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Abstract— Effective extraction of road boundaries plays a
significant role in intelligent transportation applications, includ-
ing autonomous driving, vehicle navigation, and mapping. This
paper presents a new method to automatically extract 3-D road
boundaries from mobile laser scanning (MLS) data. The proposed
method includes two main stages: supervoxel generation and 3-D
road boundary extraction. Supervoxels are generated by selecting
smooth points as seeds and assigning points into facets centered
on these seeds using several attributes (e.g., geometric, intensity,
and spatial distance). 3-D road boundaries are then extracted
using the α-shape algorithm and the graph cuts-based energy
minimization algorithm. The proposed method was tested on
two data sets acquired by a RIEGL VMX-450 MLS system.
Experimental results show that road boundaries can be robustly
extracted with an average completeness over 95%, an average
correctness over 98%, and an average quality over 94% on
two data sets. The effectiveness and superiority of the proposed
method over the state-of-the-art methods is demonstrated.

Index Terms— Mobile Laser Scanning (MLS), supervoxel, road
boundary, road detection, point cloud, graph cuts.

I. INTRODUCTION

AS A transportation infrastructure, roads play a signifi-
cant role in a variety of applications including driver

assistance and safety warning systems [1], [2], autonomous
driving [3] and vehicle navigation [4]. Accurate and up-to-
date road information is a critical requirement for intelligent
transportation system updating and provides auxiliary informa-
tion for intelligent vehicle applications to make decisions and
improve driving safety. Besides, roads provide rich contextual
cues for the detection and maintenance of road facilities (e.g.,
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light poles, traffic signposts, road markings, manholes, and
sewer well covers). Consequently, it is important and also chal-
lenging to effectively extract roads from surveyed data, e.g.,
satellite and aerial imagery, Airborne Laser Scanning (ALS)
data, and Mobile Laser Scanning (MLS) data. This paper
proposes a method to extract 3D road boundaries from MLS
data for creating high-definition road maps that can be used
for navigating driverless cars.

MLS systems have recently attracted increasing attention
in the areas of transportation, navigation and autonomous
driving. A MLS system usually consists of laser scanners,
an integrated Global Navigation Satellite System/Inertial Mea-
surement Unit (GNSS/IMU) system, and several digital cam-
eras. It produces three-dimensional (3D) point clouds of a
scene by recording its geometry and intensity information,
and records color/texture information produced by digital
cameras. Kaartinen et al. [5] tested the performance of various
MLS systems (i.e., ROAMER, RIEGL VMX-250, Sensei,
Streetmapper 360, and Optech Lynx) by collecting laser point
clouds from a given field and then verifying the point cloud
precision under favorable GNSS conditions. Guan et al. [6]
tested the performance of an MLS system (RIEGL VMX-
450) and developed algorithms to extract three road features
including road surfaces, road markings, and pavement cracks.
It is demonstrated that MLS is a reliable and cost-effective
alternative for road inspection [6]. In addition, a number of
methods have been proposed for MLS point cloud interpre-
tation, such as pole extraction [7], traffic sign extraction [8],
road marking extraction [9], point classification [10], and point
labeling [11]. Therefore, MLS systems have great potential for
road inspection, digital road mapping and city modelling.

In this paper, we propose a new method to extract 3D road
boundaries from MLS data in complex urban environments.
The proposed paper includes two main stages: supervoxel
generation for segmentation, and the alpha-shape algorithm
and graph cuts for road boundary extraction. The remainder
of this paper is organized as follows. Section 2 reviews
and discusses related methods for road extraction from sur-
veyed data. Section 3 introduces the proposed road boundary
extraction method, including supervoxel generation and 3D
road boundary extraction. Section 4 presents the experimental
results and discussion. Section 5 concludes the paper.

II. RELATED WORK

To extract roads from satellite and aerial images,
Quackenbush [12] and Mena [13] reviewed several
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representative methods. These methods mainly focus on
rural areas, where road networks are relatively sparse and
regular. Due to challenges including occlusions, shadows and
cars, it is difficult to extract roads from passive remotely
sensed imagery in complicated dense scenes, with only
limited methods being proposed in this direction [14].

A number of methods have recently been proposed to
perform road extraction from ALS data. Alharthy and
Bethel [15] obtained road points using intensity-based filtering
and then extracted road networks using connected components.
Choi et al. [16] used both height and reflectance information
to extract road points. Vosselman and Zhou [17] detected
curbstones from ALS data using small height jumps near the
terrain surface and generated the midpoints of high and low
points on both sides of the height jump. They then used these
midpoints to fit a smooth curve. Zhou and Vosselman [18]
extended this work to extract curbstones in both ALS and
MLS data. Boyko and Funkhouser [19] produced a map
spline by projecting a 2D map onto the 3D point cloud
merged from multiple airborne and mobile laser scans of an
urban environment. They then divided the road network into
patches using the map spline. By optimizing an active contour,
they developed a classical ribbon snake algorithm for each
patch. Finally, they labeled the points falling inside the active
contour as road points. Hu et al. [20] initially classified the
point clouds into ground and non-ground points. They then
extracted the road center lines using mean shift, tensor voting
and Hough transform.

Compared to ALS systems, MLS systems can acquire high
density and accurate point clouds along roads over large areas.
MLS data is more suitable for road extraction in several
aspects: (1) Since the platform for the MLS system moves on
a road, occlusions of the road caused by buildings and trees
are reduced significantly. (2) As an active sensing technique,
there is no shadow in MLS data. (3) The trajectory data
produced by a MLS system can provide accurate and real-time
position information of a vehicle, it also provides location and
direction information of the underlying road of the vehicle.
(4) Since road surfaces have similar reflectance, the intensity
information of MLS data can be used as an additional feature
for road extraction. Consequently, road extraction from MLS
data has become an active research topic in recent years.
These methods can be roughly classified into two categories:
1) projection-based methods that extract roads from range
images; 2) 3D-based methods that extract roads using features
from point clouds.

A. Projection-Based Methods

Generally, the projection-based methods initially gen-
erate range images using various attributes of MLS
data (e.g., height, intensity and pulse width) [21]–[23].
Jaakkola et al. [21] applied image processing algorithms (e.g.,
cropping, fitting and filtering) to the raster images created from
MLS data based on intensity and height features to detect
curbs. Hernández and Marcotegui [22] firstly filtered artifacts
in range images, which were generated by projecting 3D points
onto a plane. They then used a quasi-flat zone algorithm

and a region adjacency graph representation to extract the
contour between pavements and roads. Kumar et al. [23] used
the height, reflectance and pulse width attributes to generate
2D raster images. From these images, road boundaries were
extracted using a combination of two modified parametric
snake model methods. Serna and Marcotegui [24] mapped
point clouds to range images and then detected curb candi-
dates using both height and elongation. However, with these
methods, unnecessary matching errors are introduced in the
rasterizing process and it is difficult to obtain accurate results
of road boundaries.

B. 3D-Based Methods

The 3D-based methods use road features, such as
smooth surfaces/polynomials and local patterns (e.g., curbs),
to detect road boundaries. Several 3D-based methods use
smooth surface or polynomial to detect road boundaries.
Smadja et al. [25] used a RANSAC algorithm to gener-
ate a polynomial representation for the road in MLS data.
Yuan et al. [26] employed a maximum entropy based fuzzy
clustering method to cluster points and a weighted linear
fitting algorithm to generate road surfaces. These smooth
surface/polynomial based methods are sensitive to the per-
centage of road surface points in each data block and may
lose some road details (e.g., corners and undulant areas).
Other 3D-based methods use local patterns to detect road
boundaries. Ibrahim and Lichti [27] employed a derivative of
the Gaussian filtering algorithm to detect curbs from MLS
data. Yang et al. [28] first used GPS time of points to divide
point clouds into sequential road cross sections. They then
used a moving window operator to detect curb points in each
section based on elevation differences, point density and slope
changes. Guan et al. [6] used trajectory data to partition point
clouds into a number of blocks. Both slope and elevation tests
were used to detect curb point in each block. Wang et al. [29]
constructed a saliency feature map on point clouds to detect
curb points. Zai et al. [30] used local linear characteristic of
road boundary to detect curb points with graph cuts. Because
these local pattern based methods were developed to extract
road boundaries using curbs in urban environments, they may
face great challenges in real applications such as irregular
curbs and grass strips surrounding the curbs.

In this paper, we propose a new method to extract 3D
road boundaries from MLS data. Our method consists of two
main stages: supervoxel generation and 3D road boundary
extraction. An illustration of the workflow of our method is
shown in Fig. 1. In the first stage, the method first selects
smooth points as seeds and then assigns point clouds into
facets centered on these seeds based on the attributes of
the points (e.g., geometric, intensity and spatial distance).
The second stage contains three steps: (1) The boundary
points are extracted using the α-shape algorithm. (2) Graph
cuts based energy minimization are used to extract the road
boundary points. (3) Refinement is used to remove outliers
based on Euclidean distance clustering, to merge the road
boundaries and fit them into smooth curves. We tested our
proposed method on two datasets acquired by a RIEGL
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VMX-450 MLS system. The results have demonstrated the
effectiveness and feasibility of our proposed 3D road boundary
extraction method. Zai et al. [30] evenly partitioned point
clouds into voxels to remove non-ground points and terrain
points and then extracted road boundaries using graph cuts
based on the local linear characteristics of road boundary. This
paper is an extension of [30], its contributions are as follows:
1) We propose a new method to automatically extract 3D road
boundaries from large-scale 3D point clouds; 2) We propose
an improved supervoxel algorithm to segment road surfaces
into facets; and 3) We propose a graph cuts based energy
minimization algorithm to effectively extract road boundaries
using trajectory data as an original observation model.

III. ROAD BOUNDARY EXTRACTION

Due to the large number of points, it is highly challenging
to process a large-scale point cloud. Therefore, it is nec-
essary to partition point clouds into several blocks before
further processing. In this paper, the trajectory of the vehicle,
on which the MLS system is mounted, is used to partition
the point clouds into a number of overlapping blocks. These
blocks are segmented using a predefined distance interval
along the trajectory.

For each block, supervoxels are first generated according
to the points’ attributes (e.g., geometric, intensity) and spatial
distances between the points. A set of facets are then obtained
by integrating neighboring coplanar points. Next, the boundary
points between each pair of adjacent non-coplanar facets are
extracted. Road boundary points are then extracted using
the graph cuts based energy minimization algorithm. Finally,
outliers are removed based on Euclidean distance clustering
and the road boundary points are merged and fitted into smooth
curves.

A. Supervoxel Generation

Our proposed method focuses on road boundary extrac-
tion from MLS point clouds. To extract road boundaries,
an intuitive strategy is to extract road surfaces first. To extract
planes as large as possible, existing plane extraction algo-
rithms tend to under-segment point clouds. Examples of point
cloud under-segmentation methods include expectation maxi-
mum [31], Hough transform [32], RANSAC [33], and region
growing [34]. However, these algorithms cannot accurately
extract road boundaries for rough roads or roads occluded by
cars or pedestrians. To obtain road boundaries as complete as
possible, over-segmentation strategy is used to divide the point
clouds into facets (supervoxels). Supervoxel over-segments
point clouds into regions, within which points have similar
properties, while maintaining boundary information as much
as possible. Inspired by the 3D point cloud segmentation
work [35], we propose an improved supervoxel algorithm,
to segment road surfaces into a set of facets. Lin et al. [35] out-
performs the state-of-the-art algorithms in two major aspects,
which are beneficial for our road boundary extraction.

1. Several existing methods select supervoxel cluster
seeds by evenly partitioning 3D space with a fixed size
Rseed [10], [36]. Ramiya et al. [37] obtained supervoxels using

Fig. 1. The workflow of our 3D road boundary extraction method.

Voxel Cloud Connectivity Segmentation (VCCS) [36]. Baba-
hajiani et al. [38] generated supervoxels by evenly partitioning
point clouds into voxels and merging voxels via region grow-
ing. Song et al. [39] generated supervoxels through two steps:
detecting boundaries frame by frame and clustering points
by first excluding the boundary points. However, it is time-
consuming for high-dense point clouds. Our algorithm selects
saliently smooth points as seeds to ensure that structures (e.g.
curbs) smaller than Rseed can be well preserved.

2. Several existing methods generate voxels using a fixed
size [36] or two different sizes [10]. Our algorithm generates
voxels with adaptive sizes. Specifically, for MLS point clouds
with uneven density, some boundaries can be lost with large
voxels since too many neighboring points are segmented into
one voxel. In contrast, voxels with small sizes may be too
sparse to connect with their neighbors. Therefore, it is difficult
to achieve good segmentation performance using a fixed-
size voxel generation method. However, adaptive size voxel
generation method can avoid these problems.

While whole point clouds are segmented into facets [35],
our method segments road surfaces into facets and removes
uninterested points to extract road boundaries.

1) Spatial Seed Selection: Our algorithm starts by com-
puting the tangent plane and smoothness for each point pi

of a given point cloud P . The tangent plane T (pi) of pi is
represented as two-tuples:

T (pi) = (oi , �ni ) (1)

where o and �n are the center and the normal vector of pi ,
respectively. They are calculated from the K−neighborhood
NK (pi) of pi .

The iterative weighted least square algorithm is used to
generate the tangent plane for pi . For each point p, within
the K-neighborhood of pi , the weight w(p) is computed as:

w(p) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − (
dist(p, T n(pi ))

ε
)2)2,

dist(p, T n(pi)) < ε

0, dist(p, T n(pi)) ≥ ε

(2)
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dist(p, T n(pi)) = |(p − oi ) · �ni | (3)

where n denotes the iterative number (n = 0, 1, 2, . . .) and
ε is a predefined threshold to determine if point p belongs
to the tangent plane T n(pi). Then the tangent plane T (pi ) is
obtained by iteratively solving Eq. 4.

argmin
T (pi )

∑

p∈NK (pi )

w(p) ∗ dist(p, T (pi))
2 (4)

This process is repeated for each point until either the algo-
rithm is converged or a fixed number of iterations (3 in this
paper) is reached. The smoothness s(pi) for a point pi is then
calculated as:

s(pi ) = λ2

λ3
(5)

where λ1, λ2 and λ3 (λ1 ≥ λ2 ≥ λ3) are the eigenvalues of the
covariance matrix of the points used to compute the tangent
plane T (pi ).

Once the smoothness s(pi) of each point pi is obtained,
points with high smoothness are selected as initial candidates
for facet initialization since these points have a higher possi-
bility to be expanded to a facet.

Since our work focuses on road boundary extraction, the fol-
lowing two constraints are used to remove non-ground candi-
date points, which are different from [35]:

(a). Points higher than the road surface are removed from
the candidate list;

(b). The angle between the normal of a candidate’s tangent
plane and the Z-axis must be smaller than a predefined
threshold θ .

Finally, the candidate list Qc is represented as:

Qc = {p ∈ P |s(pi ) > s(p j ) if i < j

∧ p.z − pl .z < h ∧ T (p).�n · �z ≥ cosθ} (6)

where s(pi) > s(p j ) if i < j means that Qc is sorted
according to the smoothness. p.z − pl .z < h means that a
point is removed from Qc if its height difference with the
lowest point pl in the block is larger than a threshold h, where
h should be large enough to retain all road surface points.
T (p)�n · �z ≥ cosθ (�z = (0, 0, 1)) means a point is removed if
the angle between its normal and the Z-axis is larger than θ .

2) Facet Generation: A facet fi is defined as a triple:

fi = (Pi , o, �n) (7)

where Pi denotes a point set belonging to fi , o and �n
are the center and the normal of fi , respectively. Given a
candidate point cpi from the candidate list Qc, the initial
facet is generated as fi = ({cpi}, T (cpi).o, T (cpi ).�n). Within
a neighborhood defined by a radius Rseed and the center cpi ,
each point p is added to the point set fi .Pi and is removed
from Qc if the following two requirements are satisfied: (a)
The angle between T (p).�n and T (cpi).�n is smaller than θ ;
and (b) The distance from p to T (cpi) is smaller than ε.
If fi .Pi does not increase further, it is used to update fi .o
and fi .�n. Thus, a facet set is obtained when all candidates in
Qc have been tested.

Assigning points to facets is achieved using a distance
measure calculated in a feature space (including spatial extent,

normals and intensity). Since the proposed framework is
generic, other features or descriptors as listed in [40] can also
be added to the representation (e.g. FPFH). However, we found
that the features used in this paper are sufficient to achieve
high performance in our tasks.

Assigning points to facets ensures that the distance from a
point to its facet is smaller than the distance to other facets.
The distance function is calculated as:

D(p, f ) =
√

ws ∗ Ds
2 + wn ∗ Dn

2 + wi ∗ Di
2 (8)

where Ds , Dn , and Di represent the Euclidean distance,
normal distance and normalized intensity distance from a point
to its facet, respectively. In this paper, we empirically set the
spatial weight ws = 1, the normal direction weight wn = 4
and the intensity weight wi = 1.

When an assignment is completed, the center of a facet’s
point set and the mean of the normal vectors of the tangent
planes of all points are used to update the facet. This updating
process is repeated until the facets do not change, or a fixed
number of iterations is reached. To demonstrate the superiority
of our proposed supervoxel algorithm for road boundary
preservation, we conducted a comparative study (as shown
in Fig. 2). Figures 2(b) and 2(c) show the results obtained by
region growing [34]) and Voxel Cloud Connectivity Segmenta-
tion (VCCS) [36], respectively. The traditional region growing
algorithm tends to under-segment point clouds to extract large
planes, resulting in significant loss of boundary information.
VCCS is unable to detect the boundary of some small struc-
tures because VCCS generates supervoxels with almost the
same size. As shown in Fig. 2(d), our proposed algorithm
segments road surfaces into a set of facets with adaptive sizes,
successfully detects the boundaries and removes uninterested
points.

B. 3D Road Boundary Extraction

1) Boundary Extraction: When point clouds are segmented
into facets, the α-shape algorithm [41] is used to extract
boundary points of facets. Next, the boundary points between
each pair of adjacent co-planar facets are removed, as shown
by red points in Fig. 3 (b) and the boundary point extraction
results are obtained, as shown in Fig. 3 (c). It can be seen
from Fig. 3 (d) that each boundary point has the same label
as its facet.

2) Graph Cuts Based Energy Minimization: The extracted
boundaries Pb include both road boundary points and other
boundary points. Since the trajectory data provide the driving
route of the vehicle on which the MLS system is mounted,
the trajectory gives the approximate location of the road.
For each boundary point bp, the minimum distance to the
trajectory data T ra is computed as follows:

md = min
ti∈T ra

(|bp − ti |) (9)

These boundary points are removed if md > W , where W
is a given threshold and should be large enough to retain the
road boundaries.

To generate road boundaries from the extracted boundaries,
energy minimization is performed using an iterative graph-cuts
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Fig. 2. An illustration of point cloud segmentation results achieved by different algorithms. (a) Original point cloud. (b) Results achieved by region growing.
(c) Results achieved by VCCS. (d) Results achieved by the proposed algorithm (The removed points are shown in cyan).

Fig. 3. Result of boundary points extraction. (a) Facets after segmenting a given section of point cloud (different facets are shown in different colors).
(b) Extracted boundary points are shown in black and removed boundary points are shown in red. (c) Boundary points are shown in black. (d) The extracted
boundary points (different colors represent different labels).

based algorithm [42]. The separation between road boundaries
and non-road boundaries is actually a binary labelling problem.

Let G =<V , E> be a weighted undirected graph, where
each vertex vi ∈ V corresponds to a boundary point pi ∈ Pb

and each undirected edge ei, j ∈ E represents a link between

neighboring boundary point pi , p j ∈ Pb. The graph contains
two additional vertices (terminals) Vs and Vt . Additional edges
are created by connecting each boundary point pi ∈ Pb with
the two terminal vertices, ei,Vs and ei,Vt . For a weighted graph,
each edge e ∈ E has an associated weight we. A cut C ⊂ E
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Fig. 4. Result of 3D road boundary extraction. (a) The trajectory data is shown in red. tra(pi) is the direction of a trajectory point (the nearest one to pi ).
�d j is the distance residual between p j and the line defined by pi and tra(pi). (b) Result achieved by graph cuts based energy minimization. (c) Result
achieved by curve fitting.

TABLE I

RIEGL VMX-450 PERFORMANCE

partitions the vertices V of the graph G into two disjoint sets
S and T , where Vs ∈ S and Vt ∈ T . The cost of each cut C
is the sum of the weighted edge e ∈ C:

|C| =
∑

e∈C

we (10)

The minimum cut problem is defined as minimizing the cost
for a binary labelling function f in order to produce the
optimal segmentation with energy minimization. In this paper,
we use the energy function proposed in [43].

This energy function plays an important role in binary
labelling. Each point pi ∈ Pb is assigned a unique label in the
label set L to represent road boundary or non-road boundary.
The goal of this separation is to determine a labelling function
f to assign each point pi ∈ Pb a label f pi ∈ L, where f is
piecewisely smooth and has a low variation with respect to the

observation data. It is observed that the driving route and the
direction of the inspected road are provided by the trajectory
data. That is, the direction of the road boundaries should
be consistent with the direction of their nearest trajectory.
Given a trajectory point t pi and its four nearest neighboring
trajectory points, the least square algorithm is used to calculate
the direction vector of the point t pi . In this paper, trajectory
data is used as the preliminary observation model. The energy
function is defined as:

E( f ) = Edata( f ) + λ · Esmooth( f ) (11)

Esmooth measures the piecewise smoothness of f , Edata

measures the variation between f and the observation data,
and λ is a weighting parameter. Edata is computed as

Edata( f ) =
∑

pi∈Pb

d( f pi ) (12)

where d( f pi ) measures the extent to which the label f pi fits
the point pi in the observation data and is calculated as:

d( f pi ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − e
(−

�di

σ1
)

if pi is labeled as road boundary (pi ∈ S),

e
(−

�di

σ1
)

if pi is labeled as non-road boundary ( pi ∈ T ).

(13)

�di = 1

n

∑

p j

�d j (14)

where n is the number of the points with the label of pi , �d j

is the residual distance from a point p j with the same label as
pi to the line defined by pi and the direction vector tra(pi).
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TABLE II

PARAMETER SETTING OF THE PROPOSED ALGORITHM USED ON TWO
DATA SETS

As shown in Fig. 4 (a), tra(pi) is the direction vector nearest
to pi in the trajectory points, σ1 represents the average residual
of all points.

As defined in Eq. 14, the weights of two edges ei,Vs and
ei,Vt , are complementary. Among the two edges ei,Vs and ei,Vt ,
the one with a larger weight is cut during segmentation. More
specifically, a road boundary point pi has a small value of �d ,
resulting in a small weight of ei,Vs and a large weight of ei,Vt .
Furthermore, the definition of the data term (Eq. 12) favors
the cut to go through ei,Vt so that the point pi is labelled as
“road boundary”. This definition of data term penalizes these
road boundary points being labeled “non-road boundary”, and
vice versa. Therefore, the desired solution is enforced to be
consistent with road boundary.

The smoothness term provides a measure for the difference
between two neighboring boundary points pi , p j ∈ Pb (i �= j )
with labels f pi , f p j . Considering the pairwise relationship of
data points, Esmooth is defined as

Esmooth( f ) =
∑

{pi ,p j }∈N

B{pi ,p j } · δ( f pi , f p j ) (15)

where δ(·) is set to 1 if f pi �= f p j . Otherwise, δ(·) is set
to 0. δ(·) is used to measure the discontinuity along segment
boundaries. B{pi ,p j } is a pairwise relationship function.

B{pi ,p j } = e
− Dpi p j

σ2 (16)

where

Dpi p j =
√

(xi − x j )2 + (yi − y j )2 + (zi − z j )2 (17)

σ2 denotes the spatial resolution of the point set Pb. As defined
in Eqs. 16 and 17, close points with different labels have
larger smoothness penalty values, while, the smoothness value
is small for distant points, the smoothness penalty term is zero
for points with the same label. That is, the smoothness term
favors the neighboring points sharing the same label and penal-
izes the neighboring points with different labels. Edata and
Esmooth are combined in the energy function to differentiate
road boundary and non-road boundary points using the graph

Fig. 5. Results achieved by the graph cuts based energy minimization method
with different values of λ. (a) The extracted boundary points. (b) Extracted
road boundaries with λ = 32. (c) Extracted road boundaries with λ = 128.

cuts based energy minimization method. Figure 4 (b) shows
an illustration of the extracted road boundary points.

3) Refinement: It is observed that some outliers with sim-
ilar directional characteristics as the road boundary might
be incorrectly labeled as road boundary points. Meanwhile,
curb boundaries are recognized as road boundaries [44] and
have two parallel lines, as shown in Fig. 4 (b). However,
we just consider the points on road surface as road boundaries.
Therefore, a local clustering algorithm is used to extract road
boundaries in each given point’s neighborhood. First, points
with lower height are selected as candidates for clustering
since these points have a higher possibility to be considered
as road boundaries. Given a candidate pc, we remove it from
the candidate list as outliers if the number of points within
pc’s neighborhood is too small. Otherwise, all points within
pc’s neighborhood are clustered into two clusters. The points
within the cluster with an lower average height are considered
as road boundaries.

Consequently, the detected road boundary points are
sparsely distributed. A curve fitting algorithm [45] is finally
used to generate smooth road boundaries for each road.
Fig. 4 (c) shows an illustration of the refinement results.

IV. RESULTS AND DISCUSSION

A. MLS Data

The MLS data used in this paper were acquired by a RIEGL
VMX-450 system, which includes two full-view RIEGL VQ-
450 laser scanners, an inertial measurement unit (IMU),
a global positioning system (GPS), and a distance measure-
ment indicator (DMI). Table I shows the datasheet properties
of all the sensors. Each laser scanner provides low-noise and
gapless 360◦ lines at a measurement rate of 550, 000 pts/sec
and a scan rate of up to 200 lines/sec. The typical absolute
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Fig. 6. Road boundary extraction results on the industrial region dataset. Crossroads and Intersections are shown in Figs. (d-f).

positioning accuracy of IMU/GPS with DMI option is typical
2 − 5 cm, and the relative positioning accuracy is 1 cm. The
accuracy of the acquired point clouds is about 8 mm, and the
precision is 5 mm. Two datasets covering an industrial region
and a typical coastal ring road in Xiamen were selected to
test 3D road boundary extraction performance. The industrial
region dataset includes about 331 million points and covers
an area of 828m × 792m. For the industrial region dataset,
the length of the road boundaries is 9, 292.79m, and the length
of the road is about 5000m. The coastal ring road is a two
directional road with four lanes. The coastal ring road dataset
contains about 220 million points of a complex road scene
and has a road distance of approximately 2000m. Besides, this
coastal ring road dataset includes irregular road boundaries of
3, 939.03m with grass strips, trees, fences and cars, which pose
significant challenges for road boundary extraction. We imple-
mented our proposed method on a computer with an Intel Core
i5 3.20-GHz processor and a 16 G B RAM.

B. Road Boundary Extraction

We first partitioned the MLS point clouds into a number of
blocks using an interval of 100m along the trajectory. For each
block, specific values were given to the parameters ε, θ , Rseed ,
and K in the supervoxel algorithm to segment road points
into facets and remove uninterested points. Graph cuts based
energy minimization was then used to extract road boundaries.

The values of these parameters used in the two datasets are
listed in Table II. Specifically, ε, θ , Rseed , and K are set to
the average resolution of original point clouds, 22.5◦, 15ε and
15, respectively (similar to [35]).

Weighting parameter λ provides a trade-off between the data
and the smoothness terms defined in Eq. 11. Specifically, for
straight road boundaries, a small λ should be used to favor the
data term. In contrast, for curved road boundaries, a large λ
should be used to favor the smoothness term. Our boundary
extraction results with two different λ values on two different
scenes are shown in Fig. 5. Better performance is achieved
with a larger value of λ when dealing with crossroads, but
a smaller value of λ produces better performance for straight
roads surrounded with grass strips. Since λ is a data-related
parameter, we selected a training set from each of the two
datasets to train λ.

As shown in Figs. 6 and 7, our road boundary extraction
results (red points) are superimposed on the MLS point clouds.
Several parts of typical road scenes are enlarged for visual
inspection. It is observed that road boundaries are accurately
extracted by our method. However, since some places have
different patterns as compared to their nearest trajectories,
the proposed method may fail to extract road boundaries for
these places. That is mainly because the trajectory in these
places is not consistent with the road boundary. As illustrated
in Fig. 8, the #1 and #2 road boundaries were not extracted
when the trajectory did not exactly follow the road boundaries.
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Fig. 7. Road boundary extraction results on the ring road dataset. Irregular road boundaries with a wall, curbs surrounded by fences and tall grass strips,
and curbs surrounded by grass strips are shown in black rectangles of Figs. (b, c), (e, g) and (f, h), respectively.

In contrast, if the trajectory has the similar direction as
the road boundaries, the road boundaries can be accurately
extracted (see #3 boundary in Fig. 8). In practice, several scans
should be acquired at different viewpoints to obtain complete
point clouds of a scene, which significantly reduces the
weakness of our proposed method. As shown in Figs. 6 (d-f),
our method accurately extracts road boundaries at crossroads
and intersections. Moreover, our method achieves a superior
performance even in some highly challenging situations, e.g.,
irregular road boundaries with a wall (Figs. 7 (b, c)), curbs
surrounded by fences and tall grass strips (Figs. 7 (e, g)), and
curbs surrounded by grass strips (Figs. 7 (f, h)).

C. Comparative Study

To further demonstrate the performance of our method,
we compared it with the methods proposed in [28]–[30]. First,

ground-truth road boundary points were extracted manually
on the two test datasets. For road boundaries occluded by
vehicles or road intersections, the distance between the two
endpoints of occluded road boundaries are added into the
length of the ground truth road boundary.

To quantitatively test the accuracy of road boundary extrac-
tion methods, we used three metrics [28] including complete-
ness, correctness, and quality. These metrics are defined as
follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Completeness: r = T P

Lr

Correctness: p = T P

Le

Quality: q = T P

Le + F N
= T P

T P + F P + F N

(18)

where Lr is the total length of the ground-truth road bound-
aries, Le is the total length of the extracted road boundaries,
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Fig. 8. Road boundary extraction results without curve fitting.

TABLE III

ROAD BOUNDARY EXTRACTION RESULTS

T P is the length of the correctly extracted boundaries, F P
is the length of the extracted boundaries that do not exist in
the data, and F N is the length of the ground-truth boundaries
that are not extracted. Table III shows the meta results used
to calculate the evaluation metrics. Table IV shows the final
evaluation results. It is clear from Table III that, our method
achieves the second best results on the industrial region
dataset, which represents a relative simple scene. However,
for the more challenging coastal ring road dataset, the pro-
posed method achieves the best performance in all. As shown
in Table IV, our method achieves completeness of 96.68%
and 95.03%, correctness of 98.46% and 98.30%, and quality
of 95.24% and 93.49% on the two datasets, respectively.
Our method outperforms the existing methods in terms of
Quality on two datasets. Although our method is relatively
more time-consuming than existing methods, its running time
is still acceptable considering the large number of points (i.e.,
331 and 220 million points for the two data sets). Overall, our
proposed method is very accurate for road boundary extraction
from MLS data.

TABLE IV

QUANTITATIVE EVALUATION RESULTS

The good performance of our method is attributed to at least
two factors: (1) The improved supervoxel algorithm segments
road points into facets and the boundary information can be
well preserved. (2) The graph cuts based energy minimization
algorithm can effectively extract road boundaries based on the
intrinsic characteristics of road boundaries.

V. CONCLUSION

In this paper, we have presented a new method for rapid and
automated road boundary extraction from MLS point clouds.
Our method was tested on two MLS datasets acquired by a
RIEGL VMX-450 system. Our proposed method achieves an
average completeness, correctness and quality of more than
95%, 98%, and 94% on two datasets. Comparative experiments
clearly demonstrate that our proposed method outperforms
the other two methods. It can extract road boundaries more
completely and effectively.
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