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The discrimination of oil spills and look-alike phenomena (e.g., lowwind area, wind front area and natural slicks)
on Synthetic Aperture Radar (SAR) images is a crucial task in marine oil spill detection. Many classification
techniques can be employed for this purpose. In order to make the best use of the large variety of statistical
and machine learning classification methods, it is necessary to assess their performance differences and make
recommendations for classifier selection and improvement. The objective of this paper is to compare different
classification techniques for oil-spill detection in RADARSAT-1 imagery. The data of this study consists of 15 fea-
tures of 192 oil spills and look-alikes identified by Canadian Ice Service between 2004 and 2008 off Canada's east
and west coastal areas. The studied classifiers include the Support Vector Machine (SVM), Artificial Neural Net-
work (ANN), tree-based ensemble classifiers (bagging, bundling and boosting), Generalized Additive Model
(GAM) and Penalized Linear Discriminant Analysis (PLDA). Two performance measures, the specificity at fixed
sensitivity (80%) and the area under the Receiver Operating Characteristic (ROC) curve (AUC), were estimated
using cross-validation to evaluate the performance of classifiers at a high sensitivity. Overall, the bundling tech-
nique which achieved a median specificity of 90.7%, at sensitivity of 80%, significantly outperformed the second
best (i.e. bagging) by 1.5 percentage points, and theworst (i.e. ANN) by 15 percentage points. Themedian values
of AUC measure indicated consistent results. Bundling and bagging achieved comparable median AUC values
of about 92%, followed by GAM and PLDA, with ANN yielding the smallest. Most classifiers (SVM, bundling and
especially PLDA and ANN) performed significantly better on datasets pre-processed by log-transformation and
standardization than on the original dataset. These results demonstrate the importance and benefit of selecting
the optimal classifiers for oil spill classification, and configuring the classifiers by proper feature construction
techniques.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Oil spills seriously affect marine ecosystems and cause both social
and environment problems (Topouzelis, 2008). Produced by tankers
or drilling platforms, marine oil spills pollute the sea water, destroy
wildlife habitat and breeding ground, and damage beaches. Synthetic
Aperture Radar (SAR) onboard earth observing satellites has been
extensively used for oil spill detection in the marine environment due
to the wide coverage and all-weather and all-day capability (Brekke &
Solberg, 2005). Both oil spills and look-alike phenomena (e.g., low
wind area, wind front area and natural slicks) may appear as dark
formations on SAR images. It is impossible to discriminate oil spills
from look-alikes solely based on SAR intensity values as oil spills assume
a wide range of intensities due to their varying thickness and the com-
plexity of the marine environment (Brekke & Solberg, 2005).
ghts reserved.
Features that further characterize the dark spots, such as geometric
shape, contrast with surrounding areas and contextual information,
therefore have to be extracted and used as inputs for the discrimination
of oil spills and look-alikes (Brekke & Solberg, 2005; Topouzelis, 2008).
Overall, there are three steps for oil-spill detection: (i) dark-spot detec-
tion to exclude most open water surfaces and identify oil-spill candi-
dates (Li & Li, 2010; Shu, Li, Gomes, & Yousif, 2010), (ii) feature
extraction for collecting ancillary features about these candidates, and
(iii) classification for discriminating oil spills from look-alikes using
the features extracted (Brekke & Solberg, 2005). In the final stage, it is
important to achieve a high sensitivity in order to be able to respond
to the vast majority of the real oil spills. The focus of this paper is there-
fore on oil-spill classification at high sensitivity in step (iii) of the detec-
tion process.

Several classifiers have been employed for the discrimination of oil
spills and look-alikes. Solberg, Brekke, Volden, and Husøy (1999,
2007), Solberg, Storvik, Solberg, and Volden (1999), Solberg, Dokken,
and Solberg, (2003) proposed a Bayesian classification scheme by com-
bining prior knowledge, Gaussian densities and rule-based density

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2013.10.012&domain=pdf
http://dx.doi.org/10.1016/j.rse.2013.10.012
mailto:junli@xmu.edu.cn
http://dx.doi.org/10.1016/j.rse.2013.10.012
http://www.sciencedirect.com/science/journal/00344257
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corrections. Fiscella, Giancaspro, Nirchio, Pavese, and Trivero (2000)
used linear discriminant analysis (LDA) approach based on the
Mahalanobis distance. Nirchio et al. (2005) employed a multiple linear
regression method for oil-spill classification. Topouzelis, Karathanassi,
Pavlakis, and Rokos (2007) and Frate, Petrocchi, Lichtenegger, and
Calabresi (2000) adopted the artificial neural network (ANN) approach
to approximate the relation between dark-spot features and the class
labels. The support vector machine (SVM) was employed by Brekke
and Solberg (2008). However, these methods constitute only a limited
set of popular classification techniques. Other advanced techniques
such as bundling, bagging, boosting and the generalized additive
model (GAM) have not been explored for oil spill classification. More-
over, a systematic, quantitative comparison of the available classifiers
is still lacking, although performance differences may be substantial in
their application to remote sensing problems (e.g., Brenning, 2009,
Brenning, Kaden, & Itzerott, 2006; Brenning, Long, & Fieguth, 2012;
Knudby, Ledrew, & Brenning, 2010).

This paper therefore aims to compare a variety of statistical and
machine-learning classification techniques for oil-spill detection by
using state-of-the-art evaluation methods. We employ the receiver op-
erating characteristic (ROC) analysis (Metz, 1978; Zweig & Campbell,
1993) to evaluate the performance of the classifiers, and adopt the
k-fold cross-validation technique for the bias-reduced estimation of
performance measures. Moreover, since different classifiers require
differently prepared dataset, unbiased comparison of classifiers should
take into account the possible performance improvement of a classifier
by suitably preparing the dataset. We therefore explore the influence of
different feature preprocessing techniques on the performance of a
classifier and choose the best performance for comparing with other
classifiers. For the issue of feature importance which is of great interest
for many practitioners, this comparison scheme allows investigation on
the performance differences of a large variety of classifiers over subsets
of features which tends to provide a more balanced assessment of
feature importance.

2. Method

We compare 7 classifiers that predict a categorical response that in-
cludes two classes (oil spill and look-alikes) based on 15 features. We
adopt the specificity at fixed sensitivity (80%) and the area under the
ROC curve (AUC) to evaluate the performance of classifiers, and employ
the cross-validation technique for bias-reduced estimation of perfor-
mance measures. To account for the influence of data preparations on
classifiers, we determine the best performance of a classifier over differ-
ently preprocessed dataset according to the AUCmeasure, and compare
the classifiers based on their respective best performances. The signifi-
cance of performance differences among classifiers is statistically tested.

2.1. Data set

In order to monitor the illegal release of oily wastes from ships trav-
eling in Canadian waters, Canadian Ice Service (CIS) of Environment
Canada has been designing a program called Integrated Satellite Track-
ing of Pollution (ISTOP) as part of its ice surveillance operational
program towards effective use of RADARSAT images to aid oil spill
detection (Gauthier, Weir, Ou, Arkett, & De Abreu, 2007). The trained
human experts at CIS firstly identify the dark-spots on SAR images
as oil-spill candidates. They then discriminate between oil spills and
look-alikes based on their experience and prior information concerning
the location, the proximity to land, the weather information, the differ-
ence in shapes, and the contrast with the surrounding sea between oil
spills and look-alikes. Moreover, in order to increase the reliability of
the classification, they will look at the distances between the identified
oil spills and the nearest ships. Oil-spill candidates associatedwith ships
are classified into Category 1A, which means they have the highest
possibility to be true oil spills, and consequently the highest priority to
be verified by aircraft. Candidates that have ships within 50 km of
distance are classified into Category 1B, while those that have no ships
within 50 km are classified into Category 2. Potential oil spills with
relatively low confidence are put into Category 3, while those having
little chance to be oil spill remain uncategorized.

The dataset of this study comprises 15 features of 192 oil spills and
look-alikes identified by a human analyst at CIS based on five years
(2004–2008) observations off the east and west coast of Canada (see
Fig. 1). The dataset used in this study contains 93 RADARSAT-1 ScanSAR
NarrowBeam imageswith swathwidth of 300kmand spatial resolution
of 50m, and covers vast Pacific and Atlantic coastal areas. Contained in
these images are 98 oil spills that belong to Category 1, and 94 look-
alikes (Categories 2 and 3 or uncategorized). Each image contains at
least one instance of oil spill or look-like and has balanced number of
oil spills and look-alikes on average. Of the 98 oil spills, 21 of them
have been proved to be oil spills, but others have unknown identities
due to the lack of aircraft verification. So by treating them as true oil
spills to train classifiers, we are checking the ability of classifiers to ap-
proach the highest accuracy that can be achieved by human experts.
Of the 94 look-alikes, 7 of them belong to Category 2, and 25 of them
belong to Category 3, while the rest 62 were randomly selected from
the uncategorized dark-spots that were regarded as non-oil by human
analysts. For all the categorized dark-spots, their boundaries have
been provided by human analysts in CIS. We therefore do not need to
explicitly perform the dark-spot detection for these samples. But for
the 62 uncategorized dark-spots, since no boundary information is
available from CIS, we delineated their boundaries by visually discern-
ing the gray tone difference of dark-spots and the background.

Given the dark-spots in pixel-format, features need to be extracted
as input to classifiers. The features proposed by the researchers can
be categorized into four groups: (i) physical and textural properties,
(ii) geometric shape, (iii) contrast with background, and (iv) contextual
information (Brekke & Solberg, 2005; Topouzelis, 2008). Different
researchers employed different features. For example, Topouzelis et al.
(2007) adopted 10 features to train neural network classifier. The num-
ber of features fall into category (i), (ii) and (iii) are respectively 5, 3, 2.
Fiscella et al. (2000) used 11 features, Frate et al. (2000) used 11 and
Solberg et al. (2007) used 13. In this study, we intend not to use all
the proposed features by the other researchers, because it will increase
the dimensionality of the dataset, thus the risk of overfitting. Therefore,
we select 15 features out of all the available features as classifier input.
Moreover, features that belong to the same category are highly correlat-
ed. To reduce the information redundancy, for each group of features,
we select a certain number of representative features that are common-
ly employed by researchers in the literature (Frate et al., 2000; Solberg
et al., 2007; Topouzelis, 2008). The selected 15 features describe the
geometric shape (predictors no. 1–4), physical properties (no. 5–7),
contrast with background (no. 8–14) and contextual information
(no. 15) of identified objects, see Table 1.

(1) Target area A in number of pixels;
(2) Target perimeter P in number of pixels;
(3) Complexity measure C=P2/A;
(4) Spreadingmeasure S, the ratio between target width and length;
(5) Standard deviation of gray-scale intensity values of the object

(OSd);
(6) Average intensity value of the background area (BMe);
(7) Standard deviation of the intensity value of the background

(BSd);
(8) Power to mean ratio contrast (Opm/Bpm), with Opm=BSd/BMe,

Bpm=OSd/OMe and OMe representing the mean intensity value
of the background;

(9) The ratio between OSd and BSd, denoted by ConRaSd;
(10) Local area contrast ratio ConLa, defined as the radio between the

OMe and the mean intensity value of a window centered at the
region;



Fig. 1. The study areas (marked by the ellipses) are located off Canada's east and west coast. The identified oil spills studied in this work are denoted by symbol ‘+’, while look-alikes are
represented by symbol ‘▲’.
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(11) Maximum contrast ConMax, defined as the difference between
the backgroundmean intensity value and the lowest value inside
the target;

(12) Smoothness contrast: ConSm=(No/Go)/(Nb/Gb) where No is the
number of target pixels, Go: the sum of the gradient values of
target pixels; Nb: the number of background window pixels; Gb:
the sum of the background window gradient values;

(13) Maximumgradient value of the dark-spot border area,GMax. The
gradients are computed by the Sobel operator;

(14) Standard deviation of the border gradient values, GSd;
(15) Number of neighboring targets in the same image, N.

2.2. Pre-processing of predictors

All the predictors used in this paper are quantitative variables. Some
features (e.g., A, C, P, BMe, N, ConMax) have heavy-tailed distributions
Table 1
Summary statistics (i.e. min, median, max and interquartile range) of features for oil spills and

No. Feature Look-alikes

Min Med Max

(1) A 325 11,482 170,384
(2) P 106 675 2807
(3) C 15.2 31.5 325.9
(4) S 54.9 85.5 99.9
(5) OSd 7.7 19.5 46.1
(6) BMe 32.2 73.0 191.0
(7) BSd 11.5 28.2 56.1
(8) Opm/Bpm 0.5 0.9 1.3
(9) ConRaSd 1.1 1.4 2.6
(10) ConLa 0.4 0.7 0.9
(11) ConMax 32.2 71.0 190.9
(12) ConSm 0.3 0.7 0.9
(13) GMax 124.0 363.1 823.2
(14) GSd 20.0 59.8 128.5
(15) N 0.0 4.0 35.0
(Table 1). The predictors also have strongly varying ranges of values.
Based on the characteristics of the dataset, we adopt two pre-
processing techniques before training classifiers: (1) log-transform all
skewed features; (2) standardize the predictors, i.e. subtract their
mean value and divide them by their standard deviation. Since different
classifiers prefer differently prepared datasets, “fair” comparison of clas-
sifiers should be based on the highest performances of classifiers over
differently pre-processed datasets. As such the training samples are
preprocessed by the different combinations of the two techniques to
determine the best performance of classifiers. Afterwards we use the
respective best performance of each classifier for comparison purpose.

2.3. Classifiers compared

In this study, a total of 7 selected classifiers were compared, includ-
ing penalized linear discriminant analysis (PLDA), GAM, tree-based
look-alikes separately.

Oil spills

IQR Min Med Max IQR

32,039 17 912 16,912 2346
789 64 299 2011 289
30.6 20.4 80.0 510.8 115.2
19.7 72.1 96.4 100.0 9.7
10.9 8.1 20.6 52.6 17.4
33.9 31.6 77.3 191.7 52.0
16.3 10.1 28.3 56.6 21.7
0.2 0.5 0.9 1.0 0.1
0.4 1.0 1.3 2.4 0.6
0.2 0.5 0.7 0.9 0.2
30.0 31.6 72.9 178.6 52.2
0.2 0.5 0.8 1.0 0.14
163.2 113.9 408.0 943.5 325.6
29.8 24.7 62.0 146.3 48.3
4.5 0.0 0.0 15.0 2.0
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ensemble methods (bagging bundling and boosting), SVM, and ANN.
Although other traditional methods (e.g., k-means, LDA, logistic regres-
sion and classification tree) are also possible for oil spill classification,
we focus on more recently developed or adapted statistical and
machine-learning techniques in this study. All analyseswere performed
in the R programming environment (R Development Core Team, 2005)
with its contributed packages ‘rpart’ (Therneau & Ripley, 2010), ‘ipred’
(Peters & Hothorn, 2007), ‘gbm’ (Ridgeway, 2012), ‘mda’ (Hastie &
Tibshirani, 2006), ‘gam’ (Hastie, 2006), ‘LIBSVM’ (Chang & Lin, 2001),
‘e1071’ (Dimitriadou, Hornik, Leisch, Meyer, & Weingessel, 2008) and
‘nnet’ (Ripley, 1996).

2.3.1. Tree-based ensemble techniques: bagging
Tree-based ensemble classifiers are computational techniques that

combine a large number of individual classification trees for improved
prediction (Breiman, 1996). Classification trees are very flexible classi-
fiers that recursively split the input dataset into subsets based on binary
decisions (Breiman, Friedman, Olshen, & Stone, 1984). The class label of
a test object is predicted by applying the decision criteria from the root
to the leaves in order to determine which leaf it falls in. Since classifica-
tion trees are sensitive to the choice of particular training sample, the
bagging technique has been proposed (Breiman, 1996). Instead of train-
ing the tree on the original dataset, bagging trains separate trees on
many random (bootstrap) samples of the dataset. Then the class mem-
bership of a test object is decided by majority voting among the trees.
The classification trees and tree-based ensemble techniques have been
widely used in remote sensing classification applications (e.g., Chan &
Paelinckx, 2008; Duro, Franklin, & Dubé, 2012; Miao, Heaton, Zheng,
Charlet, & Liu, 2012). Bagging in particular was demonstrated by
Knudby et al. (2010) the best of the six chosen classifiers for mapping
of reef fish species richness, diversity and biomass. In this study, 100
bootstrap samples are used for building a committee of trees. For all
trees, we use gini split criterion, 7 minimum observations in leaf node
and 30 maximum depths. And we use 10-fold cross-validation with
complexity parameter of 0.01 for tree pruning.

2.3.2. Tree-based ensemble techniques: bundling
Bundling is similar to bagging except that it integrates the prediction

function of a classifier trained on out-of-bag samples as an additional
predictor variable for building classification trees (Hothorn & Lausen,
2005). It is therefore expected to be more efficient than bagging.

In this work, 100 bootstrap samples are used for bundling. The PLDA
classifier is incorporated as an ancillary classifier in bundling, using
its discriminant functions as predictor variables (Brenning, 2012). In
PLDA, we set the regularization parameter λ = 1. The parameters of
classification tree are the same as in bagging.

2.3.3. Tree-based ensemble techniques: boosting
Boosting tree is also an ensemble technique that intends to improve

the accuracy of prediction by combining the output of many tree-based
classifiers. However, unlike bagging and bundling, boosting allows the
evolution of trees over time and predicts the labels by weighted voting
among trees. The recent uses of boosting for mapping forest biomass
and global urban areas have achieved very high accuracy (Carreiras,
Vasconcelos, & Lucas, 2012; Schneider, Friedl, & Potere, 2010). In this
work, we adopt Friedman's gradient boosting machine approach
(Friedman, 2001). We use the binomial deviance loss function. Half of
the training samples are randomly selected to propose the next tree in
the additive tree expansion. The shrinkage parameter is 0.01. Since the
number of iterations determines primarily the generalization capability,
we estimate this parameter by 5-fold internal cross-validation for
efficient predictions on test samples.

2.3.4. Penalized linear discriminant analysis
The LDA predicts the classmembership based on the posterior prob-

abilities of different classes. It assumes that the densities of predictors
conditioned on class membership are Gaussian and that different clas-
ses share the same covariance matrix. Then the posterior log-odds
between two classes are linear function of the predictors. PLDA is de-
signed to deal with high-dimensional data and correlated predictors
by imposing smoothness constraints on the coefficients of predictors
(Hastie, Buja, & Tibshirani, 1995). We use the default regularization pa-
rameter λ=1.

2.3.5. Generalized additive model
Logistic regression, as a widely-used type of Generalized Linear

Model (GLM), models the logit of class probability as a linear function
of the predictors. GAM extends GLM by applying nonlinear transforma-
tion (e.g., cubic smoothing splines, or local polynomial regression) to
the original predictors. Hence, GAM ismore capable ofmodelingnonlin-
ear correlation among variables.

In this study, stepwise forward variable selection based on the
Akaike Information Criterion (AIC) is used to decide, for each predictor,
whether it is omitted from the model, included as a linear predictor, or
included as a nonlinear predictor that is transformed using smoothing
splines of two equivalent degrees of freedom.

2.3.6. Support vector machine
The SVMnonlinearly transforms the original covariate into a higher-

dimensional feature space in order to find an optimal separating hyper-
plane (Moguerza & Muñoz, 2006; Mountrakis, Im, & O gol e, 2011). It
has been used by Brekke and Solberg (2008) for oil spill classification.
Moreover, it proved to be an efficient technique in predictive geomor-
phological modeling (Brenning, 2005) and in land cover classification
(Brenning et al., 2006; Duro et al., 2012; Foody & Mathur, 2004).
C-classification with radial basis function is adopted in this work. The
bandwidth γ of the kernel function and the regularization parameter
C control the behavior of SVM. Instead of using the default setting im-
plemented in the R package ‘e1071’, we adopt an internal 10-fold
cross-validation to automatically tune the hyperparameters. Optimal
hyperparameters are selected by grid search in a discretized two-
dimensional parameter space along 2d, where d=−4, −3.5, −3,…, 1
for γ and d=−2, −1.5, −1,…, 4 for C.

2.3.7. Artificial neural networks
ANNs are highly flexible tools formodeling the complex relationship

between predictors and categorical responses. They provide direct esti-
mation of the posterior probabilities of class membership (Zhang,
2000). Amongmany types of neural networks that can be used for classi-
fication purposes, we focus onmultilayer perceptrons (MLPs), which are
the most widely studied and used ANN classifiers. Because Funahashi
(1998) has demonstrated that for binary p-dimensional Gaussian classi-
fication (here p = 15 features), three-layer neural networks with at
least 2p hidden nodes can approximate the posterior probability arbi-
trarily well, we adopt one hidden layer and set the number of hidden
nodes to be 40. The range of initial weights is set to −0.1–0.1 (Haykin,
1999; Kavzoglu & Mather, 2003). Other parameters are in accordance
with the default setting in R package ‘e1071’: weight decay = 0; max
iteration=100; with least-squares fitting.

2.4. Accuracy measure

In this work, the analysis of ROC curves estimated by cross-
validation is adopted to evaluate the performance of different classi-
fiers. The performance of a classifier presents itself as a trade-off be-
tween true positive rate (TPR, sensitivity) and true negative rate (TNR,
specificity). If a cost function is known, the optimal cut-off point that
produces the smallest overall misclassification cost can be determined.
Since the misclassification of true oil spills as look-alikes (expressed
by the false negative rate, FNR) is more serious than the misclassifica-
tion of look-alikes as oil spills (expressed by the false positive rate,
FPR), it would not be appropriate to compare the classifiers based on
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the misclassification error rate or overall accuracy, which assigns equal
weight to FNR and FPR.

In order to do a fair comparison, the ROC analysis, which is indepen-
dent of specific decision thresholds for binary prediction, is used to
evaluate classifier performance. The ROC curve is a graphical plot of sen-
sitivity and specificity as the decision threshold varies. The ROC curve of
a useless classifier would follow the diagonal line, while that of a perfect
classifierwould follow the left and top axes of the ROCplot (Metz, 1978;
Zweig & Campbell, 1993). Several techniques can reduce the ROC curve
to single scalar measures, such as the area under the ROC curve (AUC),
which represents the “probability that the classifier will correctly rank
a randomly chosen positive instance higher than a randomly chosen
negative instance” (Fawcett, 2006; Hanley & McNeil, 1982). In this
paper, we use the AUC to evaluate the overall performance of classifiers.

Moreover, since it is desirable for a classifier to detect oil spills at
very high accuracy, we would like to assess the ability of classifiers to
correctly classify look-alikes when the accuracy of classifying oil spills
is fixed at a high value, in this study 80%. This can be achieved by mea-
suring the specificity at fixed sensitivity based on the ROC curve. The R
package ‘pROC’ is used in this work (Robin et al., 2011).
2.5. Cross-validation estimation

To obtain unbiased accuracy estimation, the training set and test set
should be independent from each other and follow the same distribu-
tion (Hand, 1997). Accuracy measures evaluated based on the training
set are problematic because such measures tend to favor complex clas-
sifiers which are capable of overfitting the data, thus overestimate the
ability of generalizing the learnt rule to other independent dataset.
Splitting the dataset into training and test sets and estimating the accu-
racymeasures on test set could guarantee unbiased accuracy estimation
as long as the training set and test set have drawn from the same distri-
bution. However, this approach is not suitable for limited datasets as in
this study. Cross-validation can fully take advantage of the available
samples by repeatedly producing training and test sets (Hand, 1997).
In k-fold cross-validation (here k = 10), the dataset is randomly
partitioned into k subsets of equal size, k-1 of which are used as a train-
ing set and the remaining subset as a test set for performance estima-
tion. This is repeated k times so that each of the subset is used as a
test set once. The performance measures are averaged over all k test
sets. This procedure is repeated r times (here: r=100) in order to obtain
results that are independent of a particular partitioning and to be able to
test the significance of observed performance differences.

When there is spatial autocorrelation among samples during cross-
validation, such effects should be accounted for in order to reduce bias
(Brenning, 2012). Considering the sparse distribution of oil spills over
vast ocean surface in our study area, it is assumed that the observations
are independent. Nevertheless, we have to assume that samples located
within the same image scene are not independent because they were
observed under similar environmental conditions (e.g., wind and
wave regime). To be cautious, we account for this by performing the
cross-validation at the image level instead of the object level. In each
repetition of cross-validation, the 93 RADARSAT-1 images were ran-
domly partitioned into 10 sets of (approximately) equal size. Since the
images contain roughly equal numbers of oil spills and look-alikes, the
training and test sets will also have balanced numbers of oil spills and
look-alikes.

The construction of ROC curves requires numerical classifiers out-
puts instead of binary predictions. The classifiers are therefore set up
to predict probabilities or some numeric measure of the predicted like-
lihood of membership in the oil-spill class. ROC curves are created for
each repetition of the cross-validation procedure. The averaged ROC
curve over all the repetitions for each classifier is produced by threshold
averaging (Fawcett, 2006). The AUC and specificity at fixed sensitivity
are extracted from the ROC curves estimated by 100-repeated 10-fold
cross-validation and ranked based on their median values (Robin
et al., 2011).

2.6. Statistical inference

In this work, we wish to determine whether there are significant
differences between pairs of classifiers in terms of the selected perfor-
mancemeasures. After testing the null hypothesis that the performance
estimates of all classifiers are not systematically different from each
other (Kruskal–Wallis test at the 5% significance level), the statistical
significance of systematic pairwise differences between classifiers is
determined by two-sidedWilcoxon rank-sum tests. In order to account
for the problem of multiple testing, the output p-values of hypothesis
tests are processed by the Benjamini-Hochberg procedure, which con-
trols the false discovery rate (FDR) of a family of hypothesis tests
(Benjamini & Hochberg, 1995). We use FDRb=0.05.

2.7. Variable importance

The evaluation of the “importance” of variables is difficult due to two
issues. (1) The importance of a variable may show great variation, de-
pending on which evaluation criterion is used. As a result, features
that are useless for a particular classifier may be of great help for anoth-
er, while features that are useful for one classifier may become useless
for another. (2) Due to the correlation effect, variables that are individ-
ually irrelevant may become relevant in the context of others, while
variables that are individually relevant may be unimportant because
of possible redundancies (Guyon, Gunn, Nikravesh, & Zadeh, 2006).

We adopt a recent technique called permutation-based variable
accuracy importance (PVAI) to evaluate the importance of individual
variables based on the degree of deterioration in the performance of
a classifier if the variable is randomly permutated, or ‘messed up’
(Strobl, Boulesteix, Zeileis, & Hothorn, 2007). This technique has only
recently been adopted in remote sensing (Brenning et al., 2012). Com-
paring with univariate importance measures, PVAI considers the inter-
action among covariates by evaluating the importance of a variable in
the context of others. To take into the account the first issue mentioned
above, the PVAI technique is implemented on each of the 7 classifiers to
evaluate the variable importance relative to different criteria.

We evaluate the importance of variables pre-processed by log
transformation and standardization. For each partition of the 10-fold
cross-validation approach, a variable is permutated 10 times and the
performance deteriorations are measured by the reduction in AUC.
After repeating the cross-validation 10 times, we get 10 × 10 × 10 =
1000 permutations for each variable. The result is normalized by divid-
ing it by the largest AUC reduction value. The PVAI therefore measures
the relative importance of each variable (Brenning et al., 2012).

3. Results

3.1. Assessment of pre-processing methods

Employing log-transformation to pre-process the predictors with
heavy-tailed distribution enabled PLDA to achieve significantly (at a
FDR b =0.05) better results than adopting the other three pre-
processing types according to both accuracy measures (see Fig. 2).
Specifically, PLDA with log-transformed predictors achieved about 5
percentage points higher specificity and AUC than with the original
dataset. Measured by AUC, SVM and bundling performed significantly
better when they were implemented on the log-transformed dataset.

The standardization operation alone enabled ANN to significantly
outperform the case without pre-processing by about 5 percentage
points in specificity and 6 percentage points in AUC. In addition, PLDA
with standardized features achieved about 1 percentage point higher
AUC than without pre-processing, although this is probably due to the
scale-dependent property of parameter λ.



Fig. 2. Performance of the 7 classifiers on differently pre-processed dataset (no pre-processing, log-transformed, standardized, both log-transformed and standardized). The center of the
bars represents themean value, and the bars represent one standard deviation over the cross-validation repetitions. Pre-processing typewith rank number xyzt enabled the corresponding
classifier to perform significantly (at an FDR b=0.05) better than the pre-processing types with rank number y, z and t.

Table 2
The median, mean and standard deviation (in %) of specificity at fixed sensitivity (80%)
and AUC achieved by the 7 classifiers in 100-repeated cross-validation.

Specificity AUC

Model Med Mean Std.dev. Med Mean Std.dev.

Bundling 90.74 90.06 2.61 91.90 91.81 1.16
Bagging 89.26 88.97 2.90 91.78 91.60 1.12
GAM 83.33 82.78 3.24 87.45 87.14 1.90
PLDA 81.48 81.06 3.02 87.33 87.25 0.79
Boosting 79.63 79.48 3.18 87.31 87.26 1.23
SVM 79.63 78.65 4.78 86.07 85.53 2.84
ANN 75.93 75.19 4.07 85.59 85.41 1.68
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Compared with the case without pre-processing, the combined use
of log-transformation and standardization to pre-process the predictors
significantly increased the performances of ANN, PLDA, and SVM ac-
cording to specificity at 80% sensitivity, and the performances of ANN,
PLDA, SVM, and bundling according to AUC.

We identified the best performance of each classifier according to
AUC measure, e.g. the best performance of PLDA is the one achieved
on log-transformed dataset. And the comparison of classifiers in
Section 3.2 is based on the respective best performances of classifiers.

3.2. Classifier comparison

The Kruskal–Wallis test of the null hypothesis that there are no
performance differences among classifiers using the best-performing
preprocessing technique was rejected at the 5% significance level
(p-value: b0.001). Consequently, the two-sided rank-sum test with
FDRb=0.05 was performed on all pairs of classifiers. The results indi-
cate that bundling achieved a specificity at fixed sensitivity that is sig-
nificantly different from the other classifiers, outperforming the
second best (bagging) by 1.5 percentage points, and the worst (ANN)
by 14.8 percentage points (Tables 2 and 3). Both bundling and bagging
achieved a median specificity of about 90%, which means that if 80% of
the observed oil spills are correctly classified as oil spills, the bagging
and bundlingmethods can still correctly classify about 90% of the actu-
al look-alikes as look-alikes. GAM is the third best classifier, which
achieved 83% median specificity. The linear method PLDA performed
significantly better than the more flexible methods, i.e. boosting tree,
SVM and ANN, which achieved specificities below 80%.

Bundling and bagging achieved almost identical median AUC values,
followed by GAM and PLDA, with ANN yielding the smallest (see
Table 2). The order obtained with median AUC is consistent with the
ranking obtainedwith specificity, except that boosting appeared to out-
perform SVM.



Table 3
Pairwise comparison of classifiers: Differences in median specificity at fixed sensitivity,
tested using 21 two-sided Wilcoxon rank-sum tests. The symbol “*” indicates the differ-
ence is not statistically significant at FDR b=0.05.

Bundling Bagging GAM PLDA Boosting SVM ANN

Bundling – – – – – – –

Bagging 1.48 – – – – – –

GAM 7.41 5.74 – – – – –

PLDA 9.26 7.41 1.85 – – – –

Boosting 11.11 9.26 3.70 1.85 – – –

SVM 11.11 9.26 3.70 1.85 0.0⁎ – –

ANN 14.81 13.33 7.41 5.56 3.7 3.7 –

Fig. 4. The ROC curves of 7 classifiers averaged over 100 cross-validation repetitions. The
horizontal black line indicates the fixed sensitivity of 80%; the diagonal gray line is the
ROC curve produced by random guessing.
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The performances of PLDA, boosting, bagging and bundling had rel-
atively small variation over different cross-validation repetitions, while
those of SVM, GAM and ANN had large variances, with SVM having the
largest (see Fig. 3 and Table 2).

The ROC curves indicatemore detailed information about theperfor-
mance of classifiers (Fig. 4). No classifier could dominate the others
throughout the diagram. But the bundling and bagging are generally
closer to the left and top axes than the other classifiers, implying that
they achieved better overall performances. More specifically, bagging
performedbetter at low sensitivity level (0~60%),while bundling is bet-
ter at high sensitivity interval (60%~100%). The other techniques show
similar performances at both extremes of the ROC curve, but major dif-
ferences in the middle. Particularly, boosting and ANN are closer to the
left axes; PLDA is closer to the top axes, and GAM is closer to the top-left
corner.

3.3. Variable importance

Some shape features (C, A) and a contextual feature (N) have very
high PVAI values in most of the classifiers (see Table 4). Specifically,
the most important feature C achieved the highest PVAI values in five
of the seven classifiers, followed by N and A which were predominant
in one classifier each. The highest PVAI values of the features related
to the physical characteristics of dark-spots and the contrast of dark-
spotswith the background are between 0.05 and 0.61, and concentrated
mostly on two classifiers, SVM and ANN. Interestingly, the composite
features (e.g., Opm/Bpm, ConRaSd) did not achieve higher PVAI values
than the elementary features (e.g., OSd, BSd and Bme).
Fig. 3. TheROC curves of different classifiers. In eachfigure, X andY axes are respectively specific
by 100 repeated-cross-validation (one line for each repetition); the green solid line is the avera
ROC curve produced by random guessing. (For interpretation of the references to color in this
Different types of classifiers tended to present different patterns on
feature ranking and PVAI values. The tree-based classifiers and SVM
had C, N and A as the top three features. But the tree-based classifiers
yielded very small PVAI values on the rest of the features, while SVM
made relatively balanced use of all features. GAM achieved predomi-
nant usage of A, P and N. It is remarkable that GAM achieved zero
PVAI on C, while all other classifiers had very high values on C. PLDA
and ANN had C, A and Gmax as the top three classifiers, and differed
primarily on less important features.

3.4. Label uncertainty

In this study, label uncertainty may exist due to the ambiguities in
the labels of some training samples. In order to evaluate the effect of
ity and sensitivity in percentage; plotted in black dotted lines are the ROC curves produced
ged ROC curve over all the repetitions by threshold averaging; the gray diagonal line is the
figure legend, the reader is referred to the web version of this article.)



Table 4
Permutation-based variable accuracy importance (PVAI) estimated by the median of AUC
reductions using 10-repeated 10-fold cross-validation. Values are normalized relative to the
most important predictor of each classifier. The largest value of each row is shown in bold.

Rank Bundling Bagging GAM Boosting SVM PLDA ANN

C 1 1.00 0.88 0.00 1.00 1.00 1.00 1.00
N 2 0.95 1.00 0.14 0.57 0.42 0.34 0.16
A 3 0.72 0.79 1.00 0.73 0.48 0.60 0.62
Gmax 4 0.08 0.00 0.00 0.03 0.27 0.59 0.61
BSd 5 0.03 0.00 0.00 0.04 0.21 0.49 0.41
S 6 0.02 0.03 0.00 0.05 0.38 0.01 0.09
ConMax 7 0.03 0.00 0.00 0.01 0.16 0.34 0.35
Consm 8 0.01 0.02 0.00 0.03 0.35 0.08 0.05
OSd 9 0.02 0.00 0.00 0.00 0.17 0.14 0.27
ConRaSd 10 0.01 0.05 0.01 0.02 0.26 0.04 0.01
ConLa 11 0.04 0.03 0.00 0.01 0.21 0.14 0.03
P 12 0.02 0.01 0.19 0.01 0.21 0.09 0.12
BMe 13 0.02 0.00 0.00 0.01 0.18 0.01 0.03
GSd 14 0.01 0.00 0.00 0.01 0.04 0.05 0.01
Opm/Bpm 15 0.00 0.01 0.00 0.00 0.04 0.01 0.07
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label noise on the performance of classifiers, we plotted the conditional
densities of the continuous output of the classifiers with respect to the
types of training samples: (1) confirmed oil spills (i.e. the 21 verified
oil spills), (2) unconfirmed oil spills (i.e. the 77 non-verified oil spills),
(3) confirmed look-alikes (i.e. the 62 uncategorized dark-spots) and
(4) unconfirmed look-alikes (i.e. the 32 dark-spots belong to Categories
2 and 3). We used the Gaussian kernel to estimate the density function
for each of the four types of training samples identified above. We
report the result of the top two classifiers which were fed by features
without preprocessing. There is a large overlap between the distribu-
tions of oil spills and look-alikes in unconfirmed samples (see Fig. 5).
Thus the presence of label noise may increase the difficulties for sepa-
rating oil spills and look-alikes.

4. Discussion

The development of classifiers for the discrimination of oil spills and
look-alikes still constitutes a big challenge. While many statistical and
machine learning classification techniques can be used for this purpose,
no efforts have been made to explore their suitability for oil spill detec-
tion in a comparative perspective. Our paper is the first to study the per-
formance differences of advanced classifiers using unbiased performance
evaluation techniques.

4.1. Comparison of classifiers

Overall, the bootstrap-aggregated tree-basedmethods (i.e. bundling
and bagging) yielded significantly better results than the other
methods, achieving acceptable accuracy of around 90% specificity at
fixed sensitivity of 80%.We attribute this superiority to the combination
of the flexibility of the tree-based techniques and the stability
Fig. 5. The conditional densities of predicted oil-spill probabilities of two top classifiers (bund
UO: unconfirmed oil-spills, UL: unconfirmed look-alikes, CL: confirmed look-alikes). The X-axi
introduced by the bootstrap sampling. The bundling performed signifi-
cantly better than bagging, indicating the improved efficiency produced
by integrating an ancillary classifier (Hothorn & Lausen, 2005).While in
this study they were implemented on RADARSAT-1 images, we suggest
that bundling and bagging have potential to provide accurate results on
dataset of other SAR sensors.

The GAM is another promising classification technique according to
our study, which is theoretically capable of minimizing both the model
bias by introducing nonlinear features, and model variance by selecting
relevant variables in a stepwise manner. Moreover, GAM has less
assumption on the distribution of predictors comparing with PLDA,
and therefore more robustness to irregular distributions. In this study,
most features have certain deviations from Gaussian distribution,
which in addition to the possibly existence of nonlinear correlation be-
tween features and labels of dark-spots offers another explanation to
the higher accuracy achieved by GAM than PLDA.

The lower accuracy achieved by boosting than other tree-based en-
semble techniques, i.e. bagging and bundling is reasonable considering
the particularities of boosting technique and the characteristics of our
dataset. Boosting bears resemblance to bagging and bundling in that it
combines the outputs ofmany flexible tree classifiers to produce a pow-
erful “committee”. Nevertheless, boosting is substantially different due
to the fact that it allows the iterative improvement of tree classifiers
and makes predictions by weighted voting among trees (Friedman,
2001). Given these particularities, boosting intends more to minimize
model bias than bagging and bundling that aim primarily at reducing
model variance (Carreiras et al., 2012; Ganjisaffar, Caruana, & Lopes,
2011; Maclin & Opitz, 1997). It consequently faces larger risk of
overfitting during training stage, especially in the case such as our
work where training samples are not abundant. This may constitute
the major reason for the worse performance of boosting than bagging
and bundling. Moreover, boosting is sensitive to outliers in training
samples, since it gives more weights to samples that were previously
misclassified. Therefore, in our work, the existence of label uncertainty
in training samples may also contribute to the low accuracy of boosting.

The observation that the PLDA performed significantly better than
ANN and SVM indicates that additional flexibility as provided by SVM
andANNdoes not necessarily improve thepredictive performance com-
pared to a lessflexible linearmethod such as PLDA. As a “rigid” classifier,
PLDA is capable of reducing model variance and providing good perfor-
mance when input features have been preprocessed to roughly satisfy
Gaussian distribution, as conducted in our work. On the other hand,
flexible classifiers, such as ANN and SVM, trained on small-sized train-
ing samples in ourwork tend to overfit the dataset and could not gener-
alize well (Atkinson & Tatnall, 1997). Since ANN assumes a large
number of hyperparameters, it has proved difficult to determine exper-
imentally the optimal values of various hyperparameters in ANN
(Kanellopoulos & Wilkinson, 1997; Kavzoglu & Mather, 2003). In this
work, we relied on heuristics (Funahashi, 1998; Kavzoglu & Mather,
2003) for choosing certain important hyperparameters in ANN. And
ling, bagging) with respect to the types of training samples (i.e. CO: confirmed oil-spills,
s ranges of both plots are 0–1.
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we employed internal cross-validation for tuning hyperparameters in
SVM. Nevertheless, considering the small number of training samples
in this study, there is no guarantee that the optimal hyperparameters
values can be obtained.

4.2. Variable importance

Although most classifiers relied predominantly on limited features,
they tended to present different patterns on feature ranking and PVAI
values, as identified in Section 3.3. Given that the correlation effect
among features has been addressed by the PVAI technique, these different
patterns were primarily caused by the different preferences of classifiers.
Considering the dependence of feature relevance on the characteristics of
classifiers, the variation in feature importance can be better explained. For
example, the higher PVAI values of N on tree-based classifiers than the
other classifiers probably indicate that N is only important through
complex interactions with other variables. And the zero PVAI value of
C onGAM is probably due to somemultivariate correlation that explains
C as a linear or nonlinear function of other variables.

While the prior knowledge on features importance is of great inter-
est to many oil-spill detection practitioners, feature importance evalua-
tion by individual classifiers may lead to inconsistent conclusions. For
example, C, the most “important” feature according to SVM, was the
most “unimportant” to GAM. Hence, in order to reduce the bias caused
by the varying preferences of individual classifiers, the identification of
“important” features should be based on majority voting among many
classifiers. Accordingly, we identified some geometric shape features
(C, A) and the contextual feature (N) as predominant features, since
most classifiers rely heavily on them. In contrast, only limited classifiers
(i.e., SVM, PLDA and ANN) made some use of the contrast features and
physical characteristics features. The oil spills in our study area are pri-
marily attributed to tank leaking or ship washing, which may result in
some typical characteristics such as small coverage and an elongated
shape. In contrast, look-alikes caused mainly by low-wind areas and
biogenic slicks are large and complex in shapes. That is probably
why the shape features present great discriminative capability. Simi-
larly, Topouzelis and Psyllos (2012) reported that some shape charac-
teristics are the most important features based on the PVAI of random
forest classifiers. However, using the same dataset but the ANN classifi-
er, Stathakis, Topouzelis and Karathanassi (2006) and Topouzelis,
Stathakis and Karathanassi (2009) indicated that the contrast features
are the most important ones. This discrepancy that caused primarily
by different classifier preferences reinforces the necessity to look at
the “scores” of classifier committees for identifying the most relevant
features.

4.3. Preprocessing methods

The discrimination of oil spills from look-alikes requires a data-
mining system which takes into account the interaction between the
pre-processing techniques and the classification models. In this study,
the comparison of the performances of classifiers on dataset with differ-
ent pre-processing types indicates that log-transformation can signifi-
cantly improve the performance of several classifiers (SVM, bundling
and especially PLDA), while data standardization can improve the
performances of PLDA and especially ANN. Due to the variability of
classifiers and the fact that different classifiers may require differently
prepared inputs, we therefore recommend that depending on the cho-
sen classification method, data transformations should be considered
before oil-spill classification.

4.4. Accuracy measures

While misclassifying oil spills as look-alikes is more serious than mis-
classifying look-alikes as oil spills, most researchers applied accuracy
measures without considering the different importance of FPR and
FNR (e.g., Fiscella et al., 2000; Frate et al., 2000; Nirchio et al., 2005;
Topouzelis et al., 2007). Since it is desirable for a classifier to detect oil
spills at a high sensitivity, in this study, we evaluated a classifier by
the specificity at fixed, high sensitivity level of 80%.

Since the ROC curves of different classifiers often intersect, the ranks
of classifiers measured by specificity at fixed sensitivity may show
variation, depending on where sensitivity is fixed. The AUC eliminates
this uncertainty by summarizing the overall performance of a classifier.
The combined use of specificity at fixed sensitivity and AUC therefore
provides a more general assessment of classifier performances while
yielding consistent results in this study.

4.5. Label uncertainty

Since the ground truth of oil spills is difficult to collect, in practice,
the labels assigned by human experts are always treated as true values
to train classifiers (Fiscella et al., 2000; Frate et al., 2000; Solberg et al.,
1999, 2007; Topouzelis & Psyllos, 2012). The label uncertainty is a
common issue in oil-spill classification considering the fact that the
collection of ground truth is unavoidably affected by the subjective
judgment of human practitioners. While the label uncertainty can be
mitigated by more precise measurements and more careful labeling
process, it can also be mitigated by employing robust models
(Bouveyron & Girard, 2009; Lawrence & Schölkopf, 2001).

5. Conclusion

This paper presented a systematic comparison of popular statistical
and machine-learning classification techniques for SAR oil-spill detec-
tion following the approach of Brenning (2009). According to this case
study, the bootstrap-aggregated tree-based techniques bagging and
bundling yieldedmore reliable and accurate results in oil-spill classifica-
tion than all the other classifiers studied. Comparing with the worst
classifier ANN, bagging and bundling methods increased the median
specificity at fixed sensitivity of 80% by about 15 percentage points,
demonstrating the importance and benefit of selecting the optimal clas-
sifiers for oil-spill classification. The GAM method, which introduces
nonlinear features and then selects relevant features, also proved to
be an efficient classifier for oil-spill identification. Boosting failed to
achieve the high accuracy as by other tree-based ensemble techniques,
i.e. bagging and bundling. Given the limited training dataset, a more
rigid classifier such as PLDA can provide a safer alternative to flexible
classifiers such as Boosting, ANN or SVM, which were prone to over-
fitting in oil-spill classification. For data preparation, our study demon-
strated the importance of pre-processing original features by proper
transformation techniques.
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