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This letter presents a novel algorithm for automated building detection from light
detection and ranging (lidar) point-clouds. The algorithm takes advantage of a
marked point process to model the locations of buildings and their geometries.
A Bayesian paradigm is used to obtain a posterior distribution for the marked
point process. A Reversible Jump Markov Chain Monte Carlo (RJMCMC) algo-
rithm is implemented for simulating the posterior distribution. Finally, the maxi-
mum a posteriori (MAP) scheme is used to obtain an optimal building detection.
The results obtained on a set of lidar point-clouds demonstrate the efficiency of
the proposed algorithm in automated detection of buildings in complex residential
areas.

1. Introduction

Since buildings are one of the most obvious features of a city or a rural area, geo-
metric modelling of buildings becomes a fundamental part in a growing number of
applications, ranging from urban planning, environmental impact assessment, cultural
heritage protection, transportation management to disaster preparedness. To date,
automatically detecting and modelling buildings from remotely sensed data has been
a challenging topic in the fields of photogrammetry, remote sensing, and computer
vision. Existing methods to building detection are time-consuming when processing
large scenes containing hundreds of buildings. For example, in Ortner et al. (2007),
3 hours were required to automatically extract building outlines from images taken
over an area of 200 m × 200 m in size. Therefore, automated and efficient methods to
building detection from large scenes are highly in demand.

Light detection and ranging (lidar) technologies have been rapidly developed for the
acquisition of geospatial information in recent years (Shan and Toth 2008). Due to the
capability of lidar systems in directly measuring the surface topography accurately and
densely without any geometrical distortions, the data scanned by these systems have
become a leading source for automated extraction of various objects (e.g. buildings,
trees, terrain, etc.) (Xu et al. 2007, Lafarge et al. 2008, Pu et al. 2011). Consequently,
a variety of methods to building detection (Ma 2005, Zhang et al. 2006) from lidar
point-clouds have been proposed in the literature. However, these methods suffered
from high time complexities and high omission errors (e.g. omission error of up to
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35% in Zhang et al. (2006)). Therefore, it is impractical to directly apply these methods
to large scenes containing numerous buildings.

In this letter, we present a marked point process-based approach to building detec-
tion from lidar point-clouds. This is a stochastic and object-oriented method, which
can efficiently process large scenes with unknown number of buildings and buildings
with unknown sizes and adjust the boundaries of all the detected buildings within a
short time. The idea behind the marked point process is to model the number and loca-
tions of buildings as point processes, to define their geometries as marks, and to attach
a set of random parameters to each building. The proposed algorithm has been tested
on a set of lidar point-clouds. The results demonstrate the efficiency and feasibility of
the proposed algorithm in automatically detecting buildings.

2. Methodology

2.1 Data model

A lidar point-cloud is a collection of data points {(xi, yi, zi); i = 1,2, . . . n}, where
n is the total number of data points. These data points can be re-originated as
Z = {zi = Z(xi, yi); i = 1,2, . . . n, (xi, yi)∈D}. From a spatial statistics point of view,
Z can be considered as a collection of discrete samples on the ground points {(xi, yi);
i = 1,2, . . . n} from a random function Z(x, y) defined on domain D. On the other
hand, Z can be characterized by a random field (RF), in which the collection of n geo-
referenced observations do not represent a sample of size n, but rather a sample of size
one from an n-dimensional distribution (Schabenberger and Gotway 2005).

Consider an RF Z = {zi = Z(xi, yi); i = 1,2, . . . n, (xi, yi) ∈D}, from which a lidar
point-cloud is sampled. In order to distinguish buildings from other objects, such as
the ground and trees in Z, D is divided into three regions, i.e. D = {Dg, Dt, Db}, where
Dg, Dt, and Db correspond to the ground, tree, and building regions, respectively, and
Db = {Wj; j = 1,2, . . . k}, where Wj is the orthographic projection (or outline) of
the jth building and k denotes the number of buildings. Assume that the elevations in
these three regions are characterized by Gaussian distributions as follows:

p(zi) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1√
2πσg

exp
(

− (zi−μg)
2

2σ 2
g

)
, (xi, yi) ∈ Dg

1√
2πσt

exp
(
− (zi−μt)

2

2σ 2
t

)
, (xi, yi) ∈ Dt

1√
2πτj

exp
(

− (zi−υj)
2

2τ 2
j

)
, (xi, yi) ∈ Wj

, (1)

where μg, μt, υj, σg, σt, and τj are the means and standard deviations of Gaussian
distributions for the elevations of the ground, trees, and the jth building, respectively.

Assume that all elevations are independent. Then, the joint distribution for the
elevations in each object region is expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
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1√

2πσt
exp

(
− (zi−μt)

2

2σ 2
t

)
, Zt = {zi; (xi, yi) ∈ Dt, i ∈ {1, 2, ...n}}

p(Zb) = �Wj∈Db�(xi ,yi)∈Wj
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2πτj
exp

(
− (zi−υj)

2

2τ 2
j

)
, Zb = {zi; (xi, yi) ∈ Db, i ∈ {1, 2, ...n}} .

(2)
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Marked point-based building detection from lidar data 1129

2.2 Building model

A building is composed of one or multiple simple shapes with rectangular footprints.
In this letter, a building is characterized by a cuboid with an attribute vector (u, v, h,
l, w, α), where (u, v) is the centre of the orthographic projection of the cuboid, and h,
l, w, and α are the height, length, width, and orientation of the cuboid, respectively.
In addition, υ and τ are introduced to represent the mean and standard deviation of
a Gaussian distribution that models the distribution of the height h.

In this letter, the attribute vectors for all buildings are modelled with a marked point
process, in which the locations of building centres G = {(uj, vj); j = 1,2, . . . k} is
characterized by a homogeneous Poisson point process, where k, denoting the number
of buildings, follows a Poisson distribution and (uj, vj) distributes on D uniformly. The
marks associated with the centres, denoted by M = {(lj, wj, αj, υ j, τ j); j = 1,2, . . . k},
in the point process are the geometric attributes of the buildings.

2.3 Bayesian model

The parameter set of the buildings is denoted by B = {G, M, k}. It can be rewritten as
B = {G, l, w, α, υ, τ}, where l = {lj; j = 1,2, . . . k}, w = {wj; j = 1,2, . . . k}, α = {αj;
j = 1,2, . . . k}, υ = {υ j; j = 1,2, . . . k}, and τ = {τ j; j = 1,2, . . . k}. By Bayesian
paradigm, the posterior distribution of the parameter set conditional on a given point-
cloud is expressed as follows:

P(B|Z) ∝ P(Z|B)P(B), (3)

where P(·) denotes the probability, and the likelihood P(Z|B) is defined as

P(Z|B) = P(Z|G, M, k) = P(Zg)P(Zt)P(Zb|G, M, k), (4)

and

P(B) = P(G|k)P(l|k)P(w|k)P(α|k)P(υ|k)P(τ |k)P(k). (5)

Assume that the centres and orientations uniformly distribute on D and (–π/2, π/2],
respectively; the prior distribution of the parameter k is assumed to follow a Poisson
distribution with mean λ (Stoyan et al. 1995), and other parameters are assumed to be
Gaussian distributions.

2.4 Simulation and optimization

In order to simulate the posterior distribution in equation (3), the Reversible Jump
Markov Chain Monte Carlo (RJMCMC) (Green 1995) algorithm is implemented.
The flow chart of the proposed algorithm is shown in figure 1. The operations pro-
posed in the scheme include (1) updating building model parameters in M = {l, w,
α, υ, τ}, (2) moving the centres in G, and (3) birth or death of a building. Once the
operations are determined, the scheme can be designed as follows.

(1) Initialization. Set the initial number of buildings, taking k0 = 1, for simplicity.
Here, the superscript ‘0’ represents the initial case. Set the initial value of the
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1130 Y. Yu et al.

Segmentation

Y
N

StopInitialization Randomly
select a building

Update building
model parameters

Update centres

Birth/death of
a building

Calculate acceptance
probability

Update
parameter set

Figure 1. Flow chart of the proposed algorithm.

(a) (b) (c) (d) (e)

Figure 2. Transformations: (a) centre-based dilation, (b) centre-based shrinkage, (c) edge-
based dilation, (d) edge-based shrinkage, and (e) centre-based rotation.

parameter vector M0 = (l0, w0, α0, υ0, τ 0), which are drawn from their appro-
priate distributions. Set the initial locations of buildings G0 = (u0, v0), which
are uniformly drawn on D. And set the maximum iterations Tm.

(2) Updating building model parameters. As shown in figure 2, we consider five
types of transformations: centre-based dilation, centre-based shrinkage, edge-
based dilation, edge-based shrinkage, and centre-based rotation. For a selected
building model parameters M j

(t–1) = (lj(t–1), wj
(t–1), αj

(t–1), υ j
(t–1), τ j

(t–1)), j∈{1,2,
. . . k} in the tth iteration, draw a proposal M j

∗ = (lj∗, wj
∗, αj

∗, υ j
∗, τ j

∗)
from N(M j

(t–1),ε), where N(μ, σ ) represents a Gaussian distribution with mean
μ and standard deviation σ , and ε = (εl, εw, εα, ευ , ετ ), where εl, εw, εα, ευ ,
and ετ are the standard deviations of Gaussian distributions for the length,
width, orientation, height mean, and height standard deviation of the building
model parameters. Then calculate the acceptance probability for the proposal
as follows:

rB(B∗
j , B(t−1)

j ) = min

⎛
⎜⎜⎝1,

P(ZW∗
j
|B∗

j )P(B∗
j ) exp

(
n∗

j

N∗
j

)

P(ZW(t−1)
j

|B(t−1)
j )P(B(t−1)

j ) exp
(

n(t−1)
j

N(t−1)
j

)
⎞
⎟⎟⎠ , (6)

where Bj
(t-1) and Bj

∗ denote the parameter set of building j before and after
updating, Wj

(t–1) and Wj
∗ denote the region of building j before and after

updating, ZW(t−1)
j

= {zi; (xi, yi) ∈ W(t−1)
j , i ∈ {1, 2, ... n}} and ZW∗

j
= {zi; (xi, yi) ∈

W∗
j , i ∈ {1, 2, ... n}} represent the point sets corresponding to building j before

and after updating, nj is the number of data points within Wj that match the
prior model, and Nj is the total number of data points within Wj. Finally, accept
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Marked point-based building detection from lidar data 1131

the proposal if the acceptance probability exceeds a constant false alarm ratio
(CFAR) pf, i.e.

B(t)
j =

{
B∗

j , rB ≥ pf

B(t−1)
j , rB < pf

. (7)

(3) Updating centres. For a selected centre G j
(t–1) = (uj

(t–1), vj
(t–1)), j∈{1,2, . . . k}

in the tth iteration, propose a new centre G j
∗ = (uj

∗, vj
∗) by uniformly drawing

a point from Wj. There are two non-building classes: ground and tree; there-
fore, there are four combinations for calculating the acceptance probability as
follows:

r1
B

(
B∗

j , B(t−1)
j

)
= min

⎛
⎜⎜⎝1,

P(ZW∗
j −Wj |υ∗

j , τ ∗
j )P(ZWj−W∗

j
|μg, σg)P(B∗

j ) exp
(

n∗
j

N∗
j

)

P(ZW∗
j −Wj |μg, σg)P(ZWj−W∗

j
|υj, τj)P

(
B(t−1)

j

)
exp

(
n(t−1)

j

N(t−1)
j

)
⎞
⎟⎟⎠,

(8)

r2
B

(
B∗

j , B(t−1)
j

)
= min

⎛
⎜⎜⎝1,

P(ZW∗
j −Wj |υ∗

j , τ ∗
j )P(ZWj−W∗

j
|μt, σt)P(B∗

j ) exp
(

n∗
j

N∗
j

)

P(ZW∗
j −Wj |μg, σg)P(ZWj−W∗

j
|υj, τj)P

(
B(t−1)

j

)
exp

(
n(t−1)

j

N(t−1)
j

)
⎞
⎟⎟⎠ ,

(9)

r3
B

(
B∗

j , B(t−1)
j

)
= min

⎛
⎜⎜⎝1,

P(ZW∗
j −Wj |υ∗

j , τ ∗
j )P(ZWj−W∗

j
|μg, σg)P(B∗

j ) exp
(

n∗
j

N∗
j

)

P(ZW∗
j −Wj |μt, σt)P(ZWj−W∗

j
|υj, τj)P

(
B(t−1)

j

)
exp

(
n(t−1)

j

N(t−1)
j

)
⎞
⎟⎟⎠ ,

(10)

r4
B

(
B∗

j , B(t−1)
j

)
= min

⎛
⎜⎜⎝1,

P(ZW∗
j −Wj |υ∗

j , τ ∗
j )P(ZWj−W∗

j
|μt, σt)P(B∗

j ) exp
(

n∗
j

N∗
j

)

P(ZW∗
j −Wj |μt, σt)P(ZWj−W∗

j
|υj, τj)P

(
B(t−1)

j

)
exp

(
n(t−1)

j

N(t−1)
j

)
⎞
⎟⎟⎠ ,

(11)

where ZW∗
j −Wj = {zi; (xi, yi) ∈ W∗

j ∧ (xi, yi) /∈ Wj, i ∈ {1, 2, ...n}} and ZWj−W∗
j

is
defined similarly. Then, accept the proposal if one of the two following con-
ditions meets: (1) r1

B ≥ pf and r3
B ≥ pf or (2) r2

B ≥ pf and r4
B ≥ pf.

(4) Birth or death of a building. Let the probability of proposing a birth or death
operation be bk or dk, respectively, where k denotes the current number of build-
ings. For a birth operation, draw the centre G∗

k+1 = (u∗
k+1, v∗

k+1) from D − Db

uniformly and draw the parameters M∗
k+1 = (l∗k+1, w∗

k+1, α∗
k+1, υ∗

k+1, τ ∗
k+1) for the

new building from their prior distributions. According to the RJMCMC scheme
(Green 1995), the acceptance probability for the birth operation is written as
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1132 Y. Yu et al.

rb(B∗, B) = min
(

1,
P(Z|B∗)P(B∗)jbk (B∗)

P(Z|B)P(B)jdk+1 (B)P(B∗
k+1)

∣∣∣∣ ∂(B∗)
∂(B, B∗

k+1)

∣∣∣∣
)

, (12)

where jbk (B∗) = bk, jdk+1 (B) = dk+1
k+1 , P(B∗)

P(B)P(B∗
k+1) = P(k+1)

P(k) = λ
k+1 ,

∣∣∣ ∂(B∗)
∂(B,B∗

k+1)

∣∣∣ = 1.

For simplicity, let dk+1 = λbk, then equation (12) can be rewritten as

rb(B∗, B) = min
(

1,
P(Z|B∗)
P(Z|B)

)
. (13)

Since there are two non-building classes, there are two combinations for
calculating the acceptance probability as follows:

rbg(B∗, B) = min

⎛
⎜⎜⎝1,

�(xi ,yi)∈Wk+1
1√

2πτ ∗
k+1

exp
(

− (zi−υ∗
k+1)

2

2(τ ∗
k+1)

2

)

�(xi ,yi)∈Wk+1
1√

2πσg
exp

(
− (zi−μg)

2

2σ 2
g

)
⎞
⎟⎟⎠ , (14)

rbt(B∗, B) = min

⎛
⎜⎜⎝1,

�(xi ,yi)∈Wk+1
1√

2πτ ∗
k+1

exp
(

− (zi−υ∗
k+1)

2

2(τ ∗
k+1)

2

)

�(xi ,yi)∈Wk+1
1√

2πσt
exp

(
− (zi−μt)

2

2σ 2
t

)
⎞
⎟⎟⎠ . (15)

Accept the new building if rbg ≥ pf and rbt ≥ pf.
The acceptance probability for the death operation is as follows:

rd(B∗, B) = min
(

1,
P(Z|B)
P(Z|B∗)

)
. (16)

After the maximum iteration Tm, the maximum a posteriori (MAP) criterion is
used to obtain the final segmentation:

B = arg {max (P(B|Z))} . (17)

3. Experimental results and discussion

3.1 Study area and data set

The data sets used in our experiments are the ‘Downtown Toronto’ and ‘Vaihingen’
data sets from ISPRS Commission III, WG III/4. The ‘Downtown Toronto’ data set
covers an area of about 1.45 km2 in the central area of Toronto in Canada (figure
3(a)). The data were captured by the Microsoft Vexcel’s UltraCam-D (UCD) camera
and the Optech airborne laser scanner ALTM-ORION M. The ‘Vaihingen’ data set
was captured by Leica ALS50 over Vaihingen in Germany (figure 3(b)). We selected
four topographic lidar point-clouds covering areas with buildings from the above two
data sets. Figure 4 shows the test data I containing two point-clouds selected from
the ‘Downtown Toronto’ data set, and figure 5 shows the test data II containing two
point-clouds selected from the ‘Vaihingen’ data set. The colours represent elevation
variations.
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(a)

48° 55′ 25″ N

43° 38′ 49″ N

43° 38′ 47″ N

43° 38′ 36″ N

79° 23′ 03″ W

79° 23′ 29″ W

79° 23′ 18″ W
79° 23′ 39″ W

79° 22′ 16″ W

79° 22′ 10″ W

79° 23′ 16″ W

79° 23′ 14″ W

43° 38′ 48″ N

43° 38′ 54″ N

43° 39′ 19″ N43° 39′ 18″ N

43° 39′ 07″ N

48° 55′ 39″ N

48° 55′ 42″ N

48° 55′ 53″ N 48° 55′ 52″ N

48° 55′ 28″ N

48° 55′ 40″ N

48° 55′ 43″ N

8° 57′ 02″ E

8° 58′ 13″ E

8° 58′ 19″ E

8° 58′ 14″ E

8° 58′ 16″ E

8° 57′ 00″ E

8° 57′ 01″ E

8° 55′ 59″ E

(b)

Figure 3. Overview of the study areas: (a) Downtown Toronto and (b) Vaihingen.

(a) (b)

Figure 4. Test data I: point-clouds (a) and (b) from ‘Downtown Toronto’ data set.

(a)

(b)

Figure 5. Test data II: point-clouds (a) and (b) from ‘Vaihingen’ data set.
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1134 Y. Yu et al.

3.2 Detection results

Figures 6 and 7 show the distributions of detected building outlines after we apply
the proposed algorithm to the four point-clouds. For test data I, there are 130 and
153 detected building outlines for the two point-clouds, respectively. For test data II,
there are 263 and 290 detected building outlines for the two point-clouds, respectively.
The detected building outlines are overlaid on test data I and test data II, respec-
tively, for visual inspection in order to evaluate the accuracy of the proposed algorithm
(figures 6 and 7). The detected results illustrate that the proposed algorithm detects
rectangular shape buildings quite well. However, for some non-rectangular or irregu-
lar shape buildings, the proposed algorithm does not work very well. Some of these
buildings were either partially detected or detected as more than one segment. In addi-
tion, for some small buildings that are hidden in big trees, the proposed algorithm fails
to detect them. To accurately evaluate the detection results, seven indices were used for

(b)(a)

Figure 6. Detected building outlines (red rectangles) of test data I (a) and (b).

(b)

(a)

Figure 7. Detected building outlines (red rectangles) of test data II (a) and (b).
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Marked point-based building detection from lidar data 1135

Table 1. Object-based evaluation results in percentage for the test data.

Lidar data Cm Cr Ql Md Do Crd Crr

Test data I(a) 96.97 98.46 95.52 3.08 3.08 2.31 6.92
Test data I(b) 96.77 98.04 94.94 5.23 11.76 5.88 5.23
Test data II(a) 96.23 96.96 93.41 2.28 3.42 1.90 5.70
Test data II(b) 94.50 94.83 89.87 3.45 6.55 3.10 6.21
Average 96.12 97.07 93.44 3.51 6.20 3.30 6.02

object-based evaluation (Awrangjeb et al. 2012): (1) completeness (Cm), (2) correctness
(Cr), (3) quality (Ql), (4) multiple detection rate (Md), (5) detection overlap rate (Do),
(6) detection cross-lap rate (Crd), and (7) reference cross-lap rate (Crr). The evaluation
results are listed in table 1. On average, 93.44% quality is achieved with 96.12% com-
pleteness and 97.07% correctness. The best performance was found in test data I(a).
Therefore, the proposed algorithm performs quite well in detecting buildings from
large-scene lidar point-clouds.

The proposed algorithm is developed using C++ running on an Intel(R)
Core(TM) i5 computer. The processing time for the four point-clouds, which contain
1,755,589 points; 1,928,393 points; 3,775,182 points; and 3,582,656 points, respec-
tively, are 49 s, 51 s, 77 s, and 85 s, respectively. The computation burdens for updating
building model parameters, updating centres, and birth or death of a building account
for 5%, 35%, and 60%, respectively.

4. Conclusions

In this letter, we have proposed a novel algorithm for automated building detection
from lidar point-clouds. The algorithm was based on a marked point process of rect-
angles and Bayesian inference. By using marked point processes, the algorithm can
process large scenes containing unknown number of buildings and buildings with
unknown sizes. Furthermore, the algorithm overcomes the limitations of the existing
algorithms in time complexity and detection quality. The proposed algorithm can pro-
cess a large point-cloud containing millions of points and hundreds of buildings within
several minutes, and the average detection quality lies above 93%. In addition, instead
of processing lidar point-clouds on a point-by-point basis towards building detection,
the algorithm processes data points in and out of detected outlines simultaneously
on an object-oriented basis. The building detection results demonstrate the efficiency
and feasibility of the proposed algorithm in automatically detecting buildings from
large-scene lidar point-clouds.
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