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Abstract. High spatial resolution of imaging sensors onboard Earth observation satellites is often critical for land use and
land cover mapping. In this paper, we propose a self-adaptive motion estimation algorithm that combines the consistency
characteristics of image distortion, high accuracy feature point extraction, and image matching techniques to achieve
subpixel accuracy of motion estimation. Using the wavelet superresolution and the modulation transfer function (MTF), we
implemented the superresolution reconstruction from multiframe Satellite pour l’Observation de la Terre (SPOT-4)
panchromatic images under a framework of interpolation–restoration. The results show that this algorithm is promising for
reconstruction of a higher resolution frame.

Résumé. La haute résolution spatiale des capteurs imageurs à bord des satellites d’observation de la terre est souvent critique
dans la cartographie de l’utilisation du sol et du couvert. Dans cet article, nous proposons un algorithme auto-adaptatif
d’estimation du mouvement combinant les caractéristiques de cohérence de la distorsion d’images, l’extraction haute précision
des points caractéristiques et les techniques d’appariement d’images afin d’assurer la précision au niveau du sous-pixel dans
l’estimation du mouvement. Utilisant la superrésolution par transformée en ondelettes et la fonction de transfert par
modulation (FTM), nous avons réalisé une reconstruction superrésolution à partir d’images panchromatiques multiples de
Satellite pour l’Observation de la Terre (SPOT-4) dans un contexte d’interpolation-restauration. Les résultats montrent que cet
algorithme offre un bon potentiel pour la reconstruction d’une image à plus haute résolution.
[Traduit par la Rédaction]
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Introduction
Land use and land cover mapping of urban–suburban areas is

one of many applications where high spatial resolution satellite
images are useful and often critical. However, most of such
tasks done at the city or regional level have been utilizing low to
medium spatial resolution satellite images, such as Landsat
thematic mapper (TM) or enhanced thematic mapper plus
(ETM+) (15 m panchromatic, Pan and 30 m multispectral
(MS)) and Satellite pour l’Observation de la Terre (SPOT-4;
10 m Pan and 20 m MS) imagery, as the major data sources in
terms of their large ground coverage per image frame (e.g.,
185 km × 185 km for a Landsat-4/5 TM or Landsat-7 ETM+
frame and 60 km × 60 km for a SPOT-4 frame) and low cost
over the past two decades. An approach to obtain high spatial
resolution is to use commercial satellite images such as 1 m
resolution IKONOS and 0.6 m resolution QuickBird imagery or
aerial photographs. Although this approach is feasible,
covering a large area for urban and regional planning using

such imagery may be very costly (e.g., US$20 per square
kilometre for a Standard Ortho IKONOS image frame covering
11 km × 11 km on the Earth’s surface). An alternative approach
is to reconstruct a high-resolution image from a sequence of
low-resolution images using digital image processing
techniques. This is possible if there is a subpixel motion
between the acquired frames, for example, SPOT images.

In the digital image processing community, a number of
algorithms for the resolution enhancement of video images
have appeared in the literature (Gunturk et al., 2002;
Altunbasak et al., 2002; Mateos et al., 2000). Among these
algorithms, the focus of this paper is on image-superresolution
solutions. Image superresolution refers to image processing
algorithms that produce high-quality, high-resolution (HR)
images from a set of low-quality, low-resolution (LR) images
(Ur and Gross, 1992). Lukosz (1966) first realized the
possibility of image superresolution, and Tsai and Huang
(1984) first presented the seminal work on image
superresolution. From the viewpoint of image sampling, LR
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image data are nonuniformly sampled when considering all the
LR frames together on an HR grid, although each frame can be
sampled on a rectangular grid. Thus the image reconstruction
process can be performed under an interpolation–restoration
framework. Sauer and Allebach (1987) were the first
researchers to consider superresolution as an interpolation
method for non-uniformly sampled data. They used a
projection onto convex sets (POCS) algorithm to reconstruct
the unknown values. Aizawa et al. (1991) also modeled
superresolution as an interpolation problem with nonuniform
sampling and used a formula related to the Shannon sampling
theorem to estimate values on an HR grid. However, these two
methods ignored the atmospheric blurring effect on the remote
sensor. Tekalp et al. (1992) extended these algorithms to
include blurring effects and sensor noise and proposed an
additional restoration step. Ur and Gross (1992) considered the
Papoulis generalized multichannel sampling theorem for
interpolating values on an HR grid. The wavelet-based
interpolation method for processing nonuniformly sampled LR
data has only been considered in recent years. Ford and Etter
(1998) performed a reconstruction of nonuniformly sampled
one-dimensional (1D) signals using a wavelet basis in a
multiresolutional setting. Nguyen (2000) then expanded this
method to a two-dimensional (2D) case in a multiresolution
framework. Lertrattanapanich (2003) contributed further to
those efforts by strengthening the structural foundation to
support the use of multiresolution analysis. A good overview of
a variety of superresolution methods proposed in the past years
can be found in Farsiu et al. (2004). However, little has been
published in the literature about the superresolution solution to
complex satellite images.

In this paper, we propose a self-adaptive algorithm for
motion estimation with the consideration of local geometric
distortion in satellite imagery. Based on the theory of
multiresolution analysis, the wavelet superresolution method
for image reconstruction is briefly summarized and the post-
processing of wavelet-interpolated SPOT-4 Pan images is
performed experimentally. Following this introduction, some
issues related to motion estimation are examined, and a
description of the principle of the wavelet superresolution
algorithm is presented. The modulation transfer function
(MTF) and its corresponding formulas are detailed, the results
obtained using the proposed algorithm to process SPOT-4 Pan
imagery are presented, and conclusions are drawn and
challenges in future research on superresolution reconstruction
are outlined.

Motion estimation
Superresolution produces high-quality HR images from a set

of degraded LR images where relative frame-to-frame motions
provide different looks at the scene. Image superresolution is
possible only in the presence of relative frame-to-frame
motions of multiple frames. For the SPOT-4 images under
consideration in this study, the relative motions are unknown,
or are only approximately known according to the orbital

velocity and path of the satellite. Thus the relative motions
must be estimated from raw data in a preprocessing step of
superresolution reconstruction.

To extract subpixel information content from the LR image
sequences, image registration must be performed to estimate
the relative motion parameters between the reference image
and other images at the subpixel accuracy level. For the
complexity of distortion, the motion between two sequential
images is nonglobal and cannot be modeled with one fixed
motion model. Thus high accuracy motion estimation for
satellite imagery has been difficult and remains a considerable
challenge. A comprehensive review on motion estimation can
be found in Brown (1992).

In this study, we use the least-squares matching (LSM)
technique at an accuracy level of 0.10–0.01 pixels (Ackermann,
1984; Baltsavias, 1991). Since motion estimation can be
performed on each pixel and the accuracy of motion estimation
depends on the accuracy of image matching, it is ideal to use
the LSM technique for processing the images with different
gray scales, positions, orientations, and scales. However, it is
also too tedious to perform LSM on a pixel by pixel basis;
despite its low efficiency, mismatching may occur due to lack
of texture information in some regions, and the accuracy of
matching cannot be guaranteed. It is well known that the
motion between two sequential images cannot be simulated as
one global motion model for the whole image, but under the
assumption of small translation and rotation, no occlusions, and
sufficient smoothness, an affine motion model can serve as a
good approximation model for local small regions. Hence, if a
large image region is divided into several small regions with
appropriate sizes, motion estimation can be performed with the
local piecewise affine transform model in these small regions.
To solve the problem of region separation and local motion
estimation, we adopt the high-accuracy feature point extraction
operator in photogrammetry, such as the Förstner operator
(Förstner and Gülch, 1987) to extract the feature points from
the reference image, and then the LSM is performed to get its
tie points in the registered image. With these pairs of points, we
can use Delaunay triangulation (Davoine et al., 1996) to divide
a large image region into smaller regions, and then local motion
estimation can be performed with the piecewise affine
transform model.

As the motion estimation is based on the affine transform
model for a small region, there are six motion parameters that
should be estimated. Each pair of points can be written in a
generic form
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where m = (m1 m2 m3 m4 m5 m6)
T. For a triangular region, let (xi,

yi) be the feature points in the reference image and ( ′ ′x yi i, ) be
their corresponding tie points in the registered image, where i =
1, 2, 3. After substituting all pairs of points, Equation (1) can be
represented in matrix form as

542 © 2007 CASI

Vol. 33, No. 6, December/décembre 2007



Am = b (2)

where A is the coefficient matrix and b is the constant matrix.
The minimum norm least-squares solution can then be
expressed as

m = (ATA)–1ATb (3)

With these motion parameters estimated, we can register one
small triangular region to the reference region. Motion
estimation will be completed after all the triangular regions are
registered in the same way.

Theoretically speaking, this may serve as an ideal method for
the motion estimation between two sequential images, but the
problem is how to implement it. It is well known that the
geometric distortion of satellite imagery is very complicated
and its complexity corresponds to the characteristics of the
imaging area. The feature point extraction algorithm is based
on gray scale, and no geometric distortion is considered, so it is
difficult to determine how many feature points should be
extracted and how they are distributed. Although the number of
feature points extracted may be controlled manually with
different thresholds during the extraction process, it is the most
demanding and tedious work to properly perform the process of
feature point extraction from all kinds of satellite images.
Moreover, the process may lead to some unexpected results.
For example, more feature points can be extracted in flat areas
with less distortion but more texture information, and fewer
feature points can be extracted in hilly areas with large
distortion but less texture information.

To solve this problem, we consider the fact that the distortion
of the satellite imagery is continuous if the image is smooth
enough. Hence we can divide the whole image into some initial
regions, calculate the affine transform parameters of each
region, and then compare the parameters with those of neighbor
regions. According to the continuous distortion assumption, the
parameters of one region and those of its neighbor regions
should be similar or the same if the triangular regions are
divided well enough. If there is a large difference between these
parameters (i.e., larger than a given threshold T), the distortion
in this triangular region cannot be described precisely by the
local affine transform model. Then more feature points should
be extracted and added to this region to split them into more
subregions. If the parameters of one region and its neighbor
regions are the same, we can merge it with its neighbor regions.
It is a simple iterative process and the iteration will not stop
until the difference between parameters of all the regions and
its neighbor regions is less than a given threshold T. To this end,
when conducting feature point extraction and matching in a
certain region, local geometric distortion of the region should
be considered and the extracted feature points can be
automatically adapted to a reasonable distribution.

The procedures of self-adaptive motion estimation are
illustrated in Figure 1. As shown in Figure 1, the reference
image and registering images are chosen and a set of initial
feature points in the reference image are extracted with a high-

accuracy positioning operator, and the process of self-adaptive
triangulation is performed. With these initial points extracted
and those tie points matched by the LSM method, the whole
image is divided into some initial triangular regions by
Delaunay triangulation. The motion parameters are then
estimated through the initial triangular regions. If there are
large differences between the motion parameters estimated
from one region and those of its neighbors, more feature points
and tie points are added to split the region of interest. If the
differences between them are small enough, they can be
merged into one region. As shown in Figure 2, during the
merging process, the two vertices νt and νs are merged together
to form a new vertex ′νs . The derived region now contains one
vertex and two fewer triangles.

This is an iterative process; the difference between the
regions of interest and their neighbors needs more points, and
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Figure 1. Procedures of the self-adaptive motion estimation.

Figure 2. The process of triangle merging.



the added points will decrease the difference between them,
which will not converge until the motion parameters of all the
regions divided and their neighbor regions are just or almost the
same. Lastly, motion estimation based on a piecewise affine
transform model is performed to acquire the final motion
estimation information.

Wavelet superresolution
The wavelet superresolution is a wavelet-based

superresolution algorithm in a multiresolution framework. The
wavelet coefficients and coarse-scale approximation
coefficients are estimated at different scales through the
irregularly sampled data, and then the values of the HR grid are
calculated by the estimated decomposition coefficients. Since
several studies on multiresolution analysis with orthonormal
wavelets can be found in the literature, here we only summarize
the wavelet superresolution method proposed by
Lertrattanapanich (2003) without derivation that can be used
with both the global and local motion models. A more detailed
description of the wavelet superresolution method can be found
in Nguyen (2000) and Lertrattanapanich (2003).

Interpolation for 1D nonuniformly sampled data

In this section, we first consider the wavelet-based
interpolation technique for 1D nonuniformly sampled data.
Suppose that there are P nonuniformly sampled data of 1D
signal f(t), which are defined as {[xt, f(xt)]|t = t0, t1, …, tP–1}; we
want to obtain the values of M uniformly sampled data points of
f(t) at t = 0, 1, …, M – 1, where typically P < M, 0 ≤ ti ≤ M.
Substituting each coordinate {[xt, f(xt)]|t = t0, t1, …, tP–1} into
the wavelet decomposition equation of the 1D signal (Nguyen,
2000), we have P linear equations

f t a t b t i Pi J k J k i
k

j k
k

j k i
j J

( ) ( ) ( ) , ,, , , ,= + = −∑ ∑∑
=

−
φ ψ

1

0 1� (4)

where J is a given decomposition scale or subspace of Hilbert
space, which is illustrated in Figure 3. The first term on the
right-hand side of Equation (4) is the projection of f(x) onto the
subspace VJ, and this projection represents a coarse
approximation of f(x); and the second term is the projection of
f(x) onto the subspaces Wj, j ≥ J, which provides increased
details of f(x). A more detailed description of this interpolation
can be found in Nguyen (2000) and Lertrattanapanich (2003).

It is obvious that if we can estimate the scaling coefficients
{aJ,k}, k∈Z and {bj,k}, j ≥ J, k∈Z (where Z is the data space) in
Equation (4) from the given nonuniformly sampled data, we can
substitute the uniformly sampled coordinates into Equation (4)
to get their corresponding values. In this way, superresolution
reconstruction can easily be achieved when the scaling function
φ(t) and wavelet function ψ(t) are finitely supported.

Suppose that [0, N] is the finite support interval for φ(t) and
let tmax = max{ti} and tmin = min{ti}, then SJ = {–N + [2Jtmin],

…, [2Jtmax]} should be the set of shifts with nonzero
contribution in the right-hand side of Equation (4), and
therefore Equation (4) can be rewritten in vector form as

f G a H b= +
≥
∑J J j j
j J

(5)

where f = [f(ti)]i=0, …, P–1, aJ = ( ),a J k k S J∈ , bJ = ( ),bJ k k S j∈ ,

GJ = [ ( )], , ,φJ k i i P
k St J
= −
∈

0 1�
, and HJ = [ ( )], , ,ψ J k i i P

k St j
= −
∈

0 1�
.

To construct GJ and HJ, we need to know the basic function
values at sampling points {ti}, which can be calculated by
recursion. The key problem is to calculate the scaling
coefficients and the wavelet coefficients. To calculate the
scaling coefficients in Equation (5), we can ignore the detail
components and just consider the low-frequency component:

f G a≈ J J (6)

We can then solve Equation (6) for a regularized least-squares
estimation in wavelet domain for some regularization
parameter λ > 0, which is

� ( )a G G G fJ J J J= + −T TλI 1 (7)

where I is the unit matrix. With the least-squares estimation
value �a J , a coarse-scale estimation of f is yielded, which is
denoted by
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� �f G aJ J J= (8)

Then, �bJ , the estimation of wavelet coefficient bJ, can be
calculated by computing the difference between f and �fJ with
the least-squares estimation method:

H b f G aJ J J J≈ − � (9)

The additional wavelet coefficient vectors bj, j > J, can be
obtained in the same way:

H b f fJ j j j J≈ − >� (10)

Thus the values of f(t) at the HR grid points t = 0, 1, …, M – 1
can be calculated with the scaling coefficients and wavelet
coefficients estimated as follows:

f t a t b t tJ k J k
k S

j k J k
k Sj JJ j

( ) � ( ) � ( ) , ,, , , ,≈ + =
∈ ∈≥
∑ ∑∑φ ψ 0 � M −1 (11)

Interpolation for 2D nonuniformly sampled data

The wavelet superresolution in the previous section can
easily be extended to the 2D case. Suppose that a set of P
nonuniformly sampled data points are obtained after image
registration {[(ti, si), f(ti, si)]|i = 0, 1, …, P – 1}, all these
sampled coordinates can be substituted into the wavelet
decomposition equation of 2D signal in the following form:

f t s a t si i J k l J k l i i
k l Z

( , ) ( , ), , , ,
,

=
∈
∑ Φ

+
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∑∑ b t sj k l j k l i i

k l Zj J
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( , )h hΨ
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∑∑ b t sj k l j k l i i

k l Zj J
, , , ,

,

( , )v vΨ

+ = −
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∑∑ b t s i Pj k l j k l i i

k l Zj J
, , , ,

,

( , ) , , , ,d dΨ 0 1 2 1� (12)

Equation (12) can also be expressed in matrix form as

f G a H b H b H b= + + +
≥ ≥ ≥
∑ ∑ ∑J J j j
j J

j j
j J

j j
j J

h h v v d d (13)

Similarly, the detailed components (last three terms b j
h , b j

v , and
b j

d ) are ignored to estimate aJ; bj
v and bj

d are ignored to
estimate bj

h through r f fJ J= − � , where � �f G aJ J J= ; and then bj
d

are ignored to estimate bj
v through r f fJ J= − � , where

� �f G a H bJ J J j j
j J

= +
≥
∑ h h ,

and by following the same method to estimate bj
d . A more

detailed description of wavelet superresolution can be found in
Nguyen (2000) and Lertrattanapanich (2003). This demonstrates

that b j
h , b j

v , and b j
d can be estimated in the same way as dealing

with the 1D case described in the previous section.
Superresolution is implemented in this paper at the

framework of interpolation and restoration. Figure 4 illustrates
the relationship between motion estimation and superresolution
interpolation. When the motion estimation information from all
the LR frames is obtained, the sampling points of LR frames
can be considered as irregular samples on an HR grid (see
Figure 4). Thus the HR image reconstruction becomes the
issue of interpolation from nonuniformly sampled data.

HR image denoising and deblurring
Because the wavelet interpolation process does not consider

the effect of sensor blurring and noise degradation, the
reconstructed HR image usually is the blurred, noisy, and
undersampled version of the original image. Hence HR image
denoising and deblurring can further improve the signal-to-noise
ratio. For the special case of SPOT-4 Pan image superresolution,
the methods of image denoising and deblurring are analyzed in
this section as the postprocessing for the interpolated HR image.

To analyze the problem from the viewpoint of signal
processing, the acquisition of digital images can be modeled as

g(x) = h(x)f(x) + n(x) (14)

where f(x) is the original signal, g(x) is the observed signal, h(x)
identifies the property of the imaging system, and n(x) is the
effect of noise. As shown in Equation (14), the quality of the
observed image is mainly affected by the point spread function
(PSF), which is the Fourier transform of h(x), and noise. The
original signal can be well restored if we know the PSF and
noise intensity exactly. However, this is impossible for the case
of the general image acquisition process. The noise effect can
be modeled as a Poisson distribution in the general case,
although it is very complex. Under this assumption, a Weiner
filter is employed to reduce the noise effect to an acceptable
intensity level. According to Latry and Rougé (1998), the
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SPOT pushbroom imaging system is the product of
convolution of three main contributing elements: the PSF of the
optical sensor, the PSF corresponding to the integrated effect
on the surface of the elementary detector, and the PSF
corresponding to the effect of satellite motion along its orbit,
which is caused by the displacement of the detector during the
integration time. For convenience, here we express the
equation in the Fourier transform of the PSF, which is called
the modulation transfer function (MTF):

MTFglobal = MTFopticalMTFdetectorMTFmotion (15)

Let fx and fy be the spatial frequencies expressed in rows and
columns, respectively, let ∆X and ∆Y be the dimensions of the
detector projected to the ground corresponding to the row and
column sides, respectively, and with V the velocity of the
subsatellite point and ti the integration time, the MTF of a
SPOT image can be described as

MTF expoptical ( , )f f f fx y x y= − +





α 2 2

MTF expdetector ( , ) ( ) sin ( ) sin ( )f f f c f X c f Yx y x x y= −β π ∆ ∆ (16)

MTFmotion i( , ) sin ( )f f c f Vtx y y= π

where sin c(x) = sin x/x and the values of parameters α andβare
determined by the values of the MTF for the
frequencies(1/2∆X, 0), (0, 1/2∆Y), which can be calculated by
recursion. Figure 5 illustrates the simulated MTF for a SPOT-4
imaging system; because the MTF is finite support, only the
nonzero values are plotted as a grid size of 11 × 11.

Experimental results
Test datasets

In this study, three datasets are used to test the proposed
algorithm, two of which are simulated datasets and one is the

real dataset. The first simulated dataset consists of two
subsections of an orthorectified SPOT-4 Pan image and its
corresponding digital elevation model (DEM). The two images
follow the strict distortion geometry of linear pushbroom
imagery, and each scan line has an unique set of perspective
centre and rotation angles. The collinearity equation between a
pixel on the ith scan line (xi, 0) of the simulated image and its
corresponding object point (X, Y, Z) in object space is written as

x f
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The y coordinate along the direction of flight is implied in the
position and attitude of the satellite at a given time, which can
be linearly related to the location and attitude of the central
linear array as follows:
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(18)

where f is the focal length; ϕ0, ω0, κ0, Xs0, Ys0, and Zs0 are the
exterior orientation elements of the central scan line; ϕi, ωi, κi,
Xsi, Ysi, and Zsi are the exterior orientation elements of the ith
scan line; ai, bi, and ci are the elements of the rotation matrix;
and � � , � , � , � ,ϕ, ω κ X Ys s and �Z s are the variation rates of the exterior
orientation elements.

With 12 given elements (ϕ0, ω0, κ0, Xs0, Ys0, Zs0, �ϕ, �ω, �κ, �X s , � ,Ys
�Z s ), the orthorectified image, and the DEM, the distortion can be
modeled precisely by Equation (18). The given elements that are
used to generate simulated images are shown in Table 1. The
ground elevation of the DEM range varies from 73 to 455 m.

The second simulated dataset was generated from an original
HR image with dimensions of 300 × 300 pixels. The HR image
was first blurred by a Gaussian PSF with a window of 3 and the
variance of 1 and then was down-sampled by a factor of 2 with
a random shift value to generate five LR image frames with
dimensions of 150 × 150 pixels that include the motion
information.

The third dataset consists of seven SPOT-4 Pan images with
dimensions of 512 × 512 pixels each. Their acquisition time
and viewing angles are listed in Table 2.

Results and discussion
In the case of dataset 1, we first use a given position (X, Y, Z)

to calculate its pixel coordinate (x, y) in each simulated image
with the different coefficients given in Table 1. Thus the
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motion information between the two simulated images can be
predetermined using the precisely calculated pixel coordinates.
The proposed self-adaptive motion estimation algorithm is then
used to estimate the motion information of these two simulated
images. A total of 100 points evenly distributed in these two
simulated images are randomly chosen to compare the
estimated motion information with the predetermined motion
information. For comparison purposes, the motion information
is also estimated using the gradient-based motion estimation
algorithm (Tekalp et al., 1992). The error between the
estimated motion information and the predetermined motion
information is shown in Figure 6. The estimated motion error
by the proposed algorithm is plotted as a solid line in Figure 6
and has a maximum error of 0.6 pixels and an average error of
0.2 pixels. The estimated motion error by the gradient-based
algorithm is plotted as the broken line in Figure 6 and has a
maximum error of 4.7 pixels and an average error of 3.2 pixels.
This result demonstrates that the proposed algorithm can
achieve subpixel registration accuracy, which is much better
than that of the gradient-based motion estimation algorithm.
The lower accuracy of motion estimation obtained using the
gradient-based algorithm may be due to the complex distortion
of satellite images.

In the case of dataset 2, we randomly selected an LR frame
from the five LR frame images as the reference frame and then
estimated the motion information of the other LR frames based
on the reference frame. Figure 7a shows one of the LR frames,

Figure 7b the simple averaging of the registered frames, and
Figure 7c the reconstructed superresolution image with a
superresolution factor of 2, which is double that of the original
shown in Figure 7a. We then use the mean square error (MSE)
to evaluate the similarity between the reconstructed
superresolution image and the original HR image. MSE is
defined as follows:

MSE =
1 2

MN
x xij ij

i j

( � )
,

−∑

where xij and �x ij are the values of the original HR image and the
reconstructed image, respectively. The results obtained
demonstrate that the reconstructed superresolution image has
an MSE value of 9.87, which is much higher than that of the
simulated LR image with an MSE value of 32.99 and that of the
averaging of the registered frames with an MSE value of 23.97
(see Figure 7).

In the case of dataset 3, we chose frame 3 as the reference
frame because it is the only nadir viewing image and has a
lower noise level. The motion information between the
reference frame and the other frame images is then estimated
using the proposed motion estimation algorithm. Figure 8
illustrates the results of self-adaptive region division, with
Figure 8a presenting initial triangulation results based on the
feature points extracted, and Figure 8b the final triangulation
results based on the feature points extracted after the self-
adaptive process is completed.

The superresolution reconstruction of SPOT-4 Pan images is
implemented using the wavelet superresolution algorithm
described in the previous section, and the resolution
enhancement factor employed is 2. The Daubechies DB4 filter
(Ford and Etter, 1998; Nguyen, 2000) is used in this study
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Frame No.
Acquisition date
(month–day–year) Viewing angle (°)

1 05–08–2000 10.8
2 06–08–2000 26.4
3 02–21–2001 0.0
4 08–16–2001 4.8
5 10–10–2001 –20.4
6 01–04–2002 23.4
7 01–05–2002 –11.4

Table 2. Seven SPOT-4 Pan images. Figure 6. Motion error distribution with different motion
estimation algorithms. The solid line is the estimated motion error
by the proposed algorithm, and the broken line is the estimated
motion error by the gradient-based algorithm.

Element Simulated image 1 Simulated image 2

Xs0 (m) –4.232490×105 –4.451286×104

Ys0 (m) 1.694972×105 –3.375800×104

Zs0 (m) 8.127166×105 8.291104×105

ϕ0 (rad) 4.789554×10–1 6.243126×10–2

ω0 (rad) –1.820755×10–1 3.881773×10–2

κ0 (rad) –2.547037×10–1 –2.570903×10–1

�Xs(m/pixel) 1.392486×102 2.644680×101

�Xs(m/pixel) 1.392486×102 2.644680×101

�Ys (m/pixel) 7.494897×102 5.535497×102

�Zs (m/pixel) –1.853987×102 –2.769930×101

�ϕ (rad/pixel) 1.849889×10–4 2.039998×10–4

�ω (rad/pixel) –3.613227×10–5 2.324194×10–4

�κ (rad/pixel) 2.814000×10–5 –8.659719×10–6

Table 1. The elements of two simulated images.
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Figure 7. Superresolution experiment with dataset 2. (a) One of the LR frames. (b) Simple averaging of the registered
frames. (c) Reconstructed superresolution image with a superresolution factor of 2.

Figure 8. Self-adaptive region division. (a) Initial triangulation with feature points extracted.
(b) Final triangulation with self-adaptive feature point extracted.



because of its good behavior in superresolution and simplicity.
Figure 9a shows the original 10 m resolution SPOT-4 Pan
image (as the LR frame), and Figure 9b is the superresolution
image reconstructed from the original LR image, the resolution
of which is double that of the original shown in Figure 9a.

Visually, the reconstructed image has a higher level of detail
than that of the original SPOT-4 Pan image. To further prove the
higher resolution and better quality of the reconstructed image,
some object positioning experiments were performed (using
Equation (15)) with the original and reconstructed images,
respectively. We assume that object positioning is carried out
under the same conditions, and the better positioning accuracy
results in the better image resolution. Under this assumption,
we first choose 11 ground control points (GCPs) and 13

checkpoints from both the original image and the reconstructed
image. The exterior orientation elements of Equation (15) are
calculated with these GCPs. Then the corresponding ground
coordinates of these checkpoints can be calculated with the
exterior elements, the DEM, and their image coordinates. To
this end, we get two sets of ground coordinates, one of which is
calculated and the other measured. Since all these calculations
are conducted under the same condition, the difference between
the calculated and measured ground coordinates can be used to
identify the positioning accuracy. As shown in Table 3, the
positioning accuracy of the reconstructed image is better than
that of the original image, which implies that the reconstructed
image has a higher resolution than that of the original SPOT-4
Pan image.
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Figure 9. Superresolution image reconstructed from the original SPOT-4 Pan image. (a) Subsection
of the original LR frame. (b) Reconstructed HR frame.

Object

Reconstructed HR image Original LR image

dX = X′ – X dY = Y′ – Y d d dXY X Y= +2 2 dX = X′ – X dY = Y′ – Y d d dXY X Y= +2 2

1 25.048 15.847 29.640 45.149 3.706 45.301
2 –1.354 –30.571 30.601 –15.188 –15.106 21.422
3 40.642 –10.072 41.871 72.559 –44.896 85.325
4 –7.707 0.1203 7.708 –30.483 –5.0837 30.904
5 –22.515 4.976 23.059 –3.773 –28.647 28.894
6 13.823 17.718 22.473 25.213 1.173 25.240
7 35.821 –41.842 55.080 20.081 –31.058 36.985
8 20.669 –11.697 23.749 15.867 22.554 27.577
9 31.140 –40.047 50.729 –30.440 15.575 34.193
10 7.730 –25.594 26.736 60.585 –15.924 62.643
11 20.274 8.592 22.019 60.524 –50.501 78.827
12 9.629 6.362 11.542 –45.149 –43.731 62.856
13 6.025 –12.422 13.806 15.845 28.849 7.000

∆i
i

N
2

1=
∑

N

22.046 21.557 6.467 39.530 28.244 32.914

Note: X′ and Y′ are calculated coordinates, and X and Y are measured coordinates.

Table 3. Statistical analysis of positioning accuracy (in m) of the reconstructed HR image and the original LR image.



Conclusions and outlook
A self-adaptive motion estimation algorithm for

superresolution reconstruction of the multiframe SPOT-4 Pan
images has been presented. The proposed method integrates
feature point extraction with image matching, which can easily
adapt to any motion estimation model and better solve the
motion estimation for complex satellite images. The
experiments have demonstrated that the proposed self-adaptive
motion estimation algorithm is very promising when applying
the wavelet superresolution algorithm to reconstruct the
multiframe SPOT-4 Pan images. The results obtained show
higher spatial resolution of the reconstructed images than the
original images. This method can also be used in other areas
where high accuracy motion estimation or image registration is
required. However, the wavelet superresolution algorithm
works well for the LR images with small dimensions. As the
image dimensions increase, the increase in geometric series
may slow down the process owing to its computation
complexity. Therefore, improving the computation efficiency
of the wavelet superresolution algorithm when processing a
large satellite image (e.g., a typical SPOT-4 frame image is
6000 × 6000 pixels) is still a very challenging task. In addition,
the considerable differences introduced by the images acquired
at different dates during a long interval may also cause
problems when using the proposed algorithm.
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