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Abstract— In this paper, a target-free automatic self-calibration
approach for multibeam laser scanners is proposed. The proposed
approach uses the isomorphism constraint among the laser scanner data
to optimize the calibration parameters, uses the ambiguity judgment
algorithm to solve the mismatch problem, and finally achieves the purpose
of automatic calibration. The experimental results show that the accuracy
of our algorithm is higher than that of the target-based calibration
approach. The calibration process is automatic and fast.

Index Terms— Multibeam laser scanner, self-calibration, sensor, simul-
taneous localization and mapping, target free.

I. INTRODUCTION

IN THE application of laser-based simultaneous localization and
mapping and 3-D reconstruction [1], to further improve the

mapping process, multisensor data fusion brings more robustness and
higher precision to the algorithm and captures the 3-D environment
in detail. Due to the limited view of a single-laser scanner sensor,
multiple-laser scanner sensors are usually cross-mounted to more
completely acquire 3-D data. In the multisensor system, sensors have
their own local coordinates. To unify the coordinate system, the
3-D coordinate transformation relation between the laser scanners
must be accurately calibrated.

Previously, a common approach to deal with the multisensor
calibration is to achieve a common view of the sensors by introducing
special calibration targets [2]. As a classical tool for laser scanner cal-
ibration, a pattern plane plays a significant role in extrinsic calibration
of laser scanner. Atanacio et al. [3] and Muhammad and Lacroix [4]
proposed the feature-constraint-based methods for multibeam laser
scanner self-calibration. He et al. [5] used the multitype geometric
feature (corner points, lines, and planes)-based algorithm to handle
the pairwise light detection and ranging (LiDAR) calibration. These
methods improve the accuracy of the calibration to a certain extent,
but require special design targets with specific geometric features.
In multibeam laser scanner calibration, to determine the correspond-
ing target points or corner features in the common view of the sensor

Manuscript received July 25, 2017; revised September 20, 2017; accepted
September 22, 2017. This work was supported in part by the National Science
Foundation of China under Grant 61771413 and Grant 4141379 and in
part by the Fundamental Research Funds for the Central Universities under
Grant 20720170047. The Associate Editor coordinating the review process
was Dr. George Xiao. (Corresponding author: Chenglu Wen.)

Z. Gong, C. Wen, and C. Wang are with the Fujian Key Laboratory of Sens-
ing and Computing for Smart City, School of Information Science and Engi-
neering, Xiamen University, Xiamen 361005, China, and also with the Fujian
Collaborative Innovation Center for Big Data Applications in Governments,
Fuzhou 350003, China (e-mail: 770369550@qq.com; clwen@xmu.edu.cn;
cwang@xmu.edu.cn).

J. Li is with the Fujian Key Laboratory of Sensing and Computing for Smart
City, School of Information Science and Engineering, Xiamen University,
Xiamen 361005, China, with the Fujian Collaborative Innovation Center for
Big Data Applications in Governments, Fuzhou 350003, China, and also with
the GeoSTARS Laboratory, Department of Geography and Environmental
Management, University of Waterloo, Waterloo, ON N2L 3G1, Canada
(e-mail: junli@xmu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2017.2757148

Fig. 1. (a) Our backpack 3-D scanning system. (b) Laser scanner A and
laser scanner B’s coordinates. (c) Coordinate of laser scanner.

from the sparse point cloud is very difficult. An automatic intrinsic
calibration approach for multibeam laser scanner is suggested by
energy function but cannot handle extrinsic calibration [12].

In this paper, a target-free automatic self-calibration approach is
proposed for multibeam laser sensors. The approach uses one LiDAR
mapping in the first step, and then uses the isomorphism constraint
among the data to optimize the calibration parameters with no target
required. During calibration, generally mismatch in target registra-
tion may introduced, which brings errors into the statistical model.
To eliminate the mismatch and achieve accurate automatic calibration,
a mismatch elimination rule based on the statistical model is also
developed. In comparison of target-based approach, our approach
eliminates the need of external target, and thus fully automatic. Since
the approach does not need the manually fitting to find the corre-
sponding target point in sparse point cloud frame data, it also avoided
the fitting error and achieves efficient and accurate self-calibration.

II. DATA ACQUISITION AND COORDINATE SYSTEM

A. Data Acquisition

Our calibration experiments were performed on a backpack
3-D scanning system [Fig. 1(a)]. The system uses two 16-line
3-D laser scanners (Velodyne VLP-16) [6], each composed of sixteen
laser-detector pairs individually aimed in 2° increments over the 30°
(−15° to +15°) field of view of the laser scanner [Fig. 1(b)]. The
point cloud P (x, y, z) in the scanner’s own coordinate system is
identical to those calculated for VLP-16, as given in (1) and shown
in Fig. 1(c).

B. Multisensor Coordinate System
Laser scanner A (Laser A) is placed horizontally and laser scanner

B (Laser B) is mounted at 45 below it [Fig. 1(b)]. The point cloud
data in the Cartesian coordinate system (X, Y, Z) are calculated for
3-D laser scanners in (1). Our goal is to determine a transform Tcali
that places PLaser A and PLaserB in the same coordinate and merge
them in Pglobal (2)

P =
⎡
⎣

X
Y
Z

⎤
⎦ =

⎡
⎣

R∗ cos(ω) ∗ sin(α)
R∗ cos(ω) ∗ cos(α)

R ∗ sin(α)

⎤
⎦ (1)

Pglobal = PLaser A + Tcali∗PLaserB . (2)
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III. TARGET-BASED MANUAL CALIBRATION

For comparison, a sensor calibration experiment with feature-
constraint target-based manual calibration was first conducted [4],
and then, the proposed target-free automatic calibration experiment
was conducted. In the target-based manual calibration experiment,
two white square targets with a square hole were used and placed in
the sensor’s common view area (Fig. 2).

The detailed registration process of the feature-constraint target-
based calibration approach is the following. First, several targets
were placed in the scanning scene. Second, the target feature points
(corner points, lines, and planes) were manually labeled and matched
in the common view point cloud. Third, the target coordinates were
transformed with coarse registration by the manually selected points.
Finally, the point cloud registration algorithm (normal distribution
transform [10]) was used for fine registration.

IV. TARGET-FREE AUTOMATIC SELF-CALIBRATION APPROACH

A. Automatic Self-Calibration Algorithm

Instead of using the target-based approach, the sensors coordinate
transformation in a large quantity of data is calculated in our method;
that is, the calibration matrix is recursively computed in the contin-
uous construction of the submap and its isomorphism constraint.

Based on the generalized-ICP algorithm [7] and LiDAR odometry
and mapping (LOAM) [8] method, a precise local submap, M was
built. Assuming T n

A is laser scanner A’s trajectory at time (0 − n)
in the mapping algorithm, Pn

B is the laser scanner B’s point cloud
at time n. Tguess is the initial value of the coordinate transformation
relation between the two sensors. Tguess is estimated by a coarse
manual measurement. Among them, T n

A and Pn
B are synchronized,

with one-to-one correspondence. The output of the approach is to
determine the exact calibration matrix Tcali.

Using the multilaser scanner system, the following data are
obtained:

Given
(
M, T n

A , Pn
B , Tguess

)
(n = 0 ∼ t)

And T n
A ∼ Pn

B (synchronization)

Find Tcali.

With the isomorphism and rigid coordinate constraints, the math-
ematical model for automatic calibration is introduced by

Pn
A = N N

(
M, T n

A , Pn
B , Tguess

)
(3)

Tcali = argminTcali

∑
n

∥∥Pn
B∗Tcali − Pn

A

∥∥2
. (4)

In (3), NN is the nearest neighbor point search algorithm in
fast library for approximate nearest neighbors [9]. Based on the
assumption that data and trajectories are synchronized, laser scanner
B’s point cloud Pn

B is transformed to its location at time n in the
subusing T n

A and Tguess. Then, the nearest neighbor search algorithm
is applied to find the nearest neighbor point Pn

A on the sub-map.
Finally, the environmental consistency constraint is introduced to
deduce (4) to obtain T n

cali.
For each set of corresponding point clouds, the ICP algorithm is

used to obtain the minimum value with the initial transform Tguess

T 1
cali = ICP

(
P1

B , P1
A, Tguess

)
, Tguess = T 1

cali (5)

T 2
cali = ICP(P2

B , P2
A, Tguess), Tguess = T 2

cali (6)

· · ·
T n

cali = ICP
(
Pn

B , Pn
A, Tguess

)
, Output :T n

cali (7)

Fig. 2. (a) Target-based calibration experimental scene. (b) Laser scanner
A’s point cloud. (c) Laser scanner B’s point cloud. (d) Registering the point
cloud (green point cloud) from laser scanner B to the local submap (red point
cloud) from laser scanner A.

TABLE I

CALIBRATION ERRORS OF TWO METHODS

B. Mismatch Problem and Its Solution

Ambiguity of the calibration environment (e.g., a long corridor)
easily leads to the failure of the calibration algorithm. To deal with
it, an ambiguity evaluation algorithm is proposed to filter the outliers
and use multiple registration statistics to estimate the calibration
matrix [(8) and (9)]. The random sample consensus (RANSAC) [11]
method is used to remove the large error outliers. Then, the mean
value is calculated to determine the final calibration matrix T Final

cali

T
′
cali = RANSAC

(
T n

cali
)

(8)

T Final
cali = Mean

(
T n

cali
)
. (9)

V. EXPERIMENTAL RESULTS

A. Target-Based Calibration Experiment

For target-based calibration approach in [4], the size of targets
“A” and “B” at 400 × 400 mm2 with hole size 200 × 200 mm2 was
designed and placed one meter away on the left and right sides of
the system, respectively [Fig. 2(a)]. As shown in Fig. 2(b), the point
cloud of the multibeam laser scanner is too sparse to locate the exact
correspondence point in the common view area. Thus, the RANSAC
fitting method was used to fit two squares (yellow squares) in the
sparse point cloud, thereby locating the corresponding points on the
square corner.

The target corner points P1 ∼ P8 and P
′
1 ∼ P

′
8 [Fig. 2(b) and (c)]

were used to analyze the error of the calibration matrix. After
calibration, the average distance between the corresponding points
of the target and the total least mean square error was calculated.
Two groups of experimental errors (X , Y , Z , roll, yaw, pitch error
and mean square error) are listed in Table I (scene b1 and scene b2).

B. Target-Free Calibration Experiment

Carrying our backpack system and walking along two corridor
scenes, two sets of data (scene f1 and scene f2) were collected.
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Fig. 3. Automatic self-calibration results.

Fig. 4. Multilaser scanners mapping results for different scenes. (a) Two-floor
corridor. (b) Outdoor. (c) Basement.

Each set of data includes 550-point cloud frames. The LOAM [8]
method was used for short-term (550 frames) mapping of point cloud
data collected by laser scanner A [red point cloud in Fig. 2(d)].
The data of laser scanner B [green point cloud in Fig. 2(d)] were
rotated using initial value Tguess and synchronized transformed to
the approximate nearest point location of the laser scanner A’s local
submap.

Fig. 3 shows the automatic calibration result from 0∼550 frames
for scene f1 and scene f2. Our approach performs well
between 100–360 frames, but becomes unstable after 360 frames.
A generalized-ICP [7] was used in our approach to register the point
cloud of laser scanner B to the local submap of laser scanner A.
When the mapping system moving in an environment where obvious
structural features are absent (e.g., long corridors), the generalized-
ICP becomes unstable, causing mismatch and large errors. The
ambiguity judgment algorithm was performed in this situation to
remove outliers and achieve stable calibration results.

Target corner points were used to analyze the error of the calibra-
tion matrix. The average distances between the corresponding points
of the target and the total least mean square error were calculated.
Two groups of experimental errors (X , Y , Z , roll, yaw, pitch error,
and mean square error) are listed in Table I.

In Table I, rms_T _ error is the x , y, z mean square root error,
and rms_R_ error is the roll, yaw, and pitch root mean square
error. Results indicate that both in rotation and drift calibration, our
approach achieves better accuracy and robustness than the target-
based calibration approach.

Our calibration approach can work in both indoor and outdoor
scenes that have rich structural features (lines or corners). Fig. 4
displays the final multilaser scanner mapping results using the trans-
formation matrix achieved by the proposed approach. The testing
scene is a 30-m long, 2-m wide two-floor corridor [Fig. 4(a)]. Orange
and yellow point clouds were acquired by laser scanner A and laser
scanner B, respectively. Our calibration approach was also tested
on outdoor [Fig. 4(b)] and basement scene [Fig. 4(c)]. The results
indicate the data from the two calibrated sensors are well fused.

VI. CONCLUSION

This paper proposes a target-free automatic self-calibration
approach for multibeam laser scanners using the isomorphism con-
straint and ambiguity judgment algorithm. The proposed calibration
process is rapid and fully automatic. Experimental results show that
our algorithm outperforms that of target-based calibration approach
in precision.
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