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The quality of interferogram filtering affects the accuracy of interferometric
synthetic aperture radar (InSAR) applications. This article presents a new wavelet
domain filtering method for phase noise reduction in an InSAR interferogram.
The method first transforms the real and imagery parts of the original interfer-
ogram into the wavelet domain using the stationary wavelet transform (SWT).
Then the coefficients for each sub-band are filtered with detail compensation.
Finally, the wavelet coefficients are reconstructed in the space domain by the inverse
SWT. The results show that the proposed method can suppress the speckle effec-
tively, maintain details of the interferogram well, and greatly reduce the number of
residues.

1. Introduction

Interferometric synthetic aperture radar (InSAR) techniques, which use images
acquired by two repeat passes over the same area, are being used increasingly to mon-
itor landslides and volcanic deformation (Lundgren et al. 2001, Ohkura and Shimada
2001). During the past two decades, significant progress has been made in further
developing differential InSAR (DInSAR) technology for earthquakes (Massonnet
et al. 1993), ground movements (Fruneau et al. 1996, Usai 2001), volcanic eruptions
(Massonnet et al. 1995, Webley et al. 2002), etc. However, the phase noise in the
interferogram interferes with the phase unwrapping process and affects the quality of
deformation information extracted from the interferogram. Furthermore, the contam-
inated fringes (lines of discontinuity due to phase wrapping) in the interferogram make
simple linear low-pass filtering techniques inoperative (Sethu et al. 2008). Therefore, it
is important to design a filter that can reduce noise effectively for applications of the
interferogram.

Many techniques have been developed to reduce interferometric phase noise. The
Frost filter (Frost et al. 1982) is an adaptive and exponentially weighted averaging fil-
ter based on the ratio of the local standard deviation to the local mean of the degraded
image. Both pivoting mean filtering (Eichel et al. 1996) and pivoting median filtering
(Lanari et al. 1996) are simple sliding-window spatial filters. Based on 16 directional
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masks to adaptively filter noise, the Lee filter was developed to preserve phase gradient
and reduces phase noise according to the coherence (Lee et al. 1998). A modifica-
tion of the Lee adaptive complex filter was proposed by Wu et al. (2006) to remove
the limitation of the stationary orientation angle of the filtering window. The Boxcar
filter was implemented on a rectangular window by Goldstein and Werner (1998).
The Goldstein filter (Goldstein and Werner 1997) and the modified Goldstein filter
(Baran et al. 2003) were used to solve this problem by using a frequency domain
approach. Li et al. (2008) further modified the Goldstein filter by incorporating
interferometric coherence and the look number. Yu et al. (2007) proposed an adap-
tive contoured window filter to remove the decorrelation noise from InSAR phase
images. Other filtering techniques used for this purpose include the wavelet trans-
form (López-Martínez and Fàbregas 2002, Zha et al. 2008) and fuzzy logic (Aiazzi
et al. 2005). Meng et al. (2007) processed the InSAR interferogram on a nonlinear
two-stage filter structure. Sethu et al. (2008) proposed a noise reduction technique
using selective weighting of the wavelet coefficients of the noisy image. Li and Liao
(2010) applied a method based on the minimum mean squared error (MMSE) cri-
terion to auto-register the synthetic aperture radar (SAR) images together with
reducing the interferometric phase noise simultaneously. However, there is a contradic-
tion between speckle reduction and detail reservation in many current interferogram
filters.

The InSAR interferogram phase can be represented in the time and frequency
domains at the same time, and this can be realized by several solutions such as
detrended fluctuation analysis (DFA) (Peng et al. 1994, Chen et al. 2002, Varotsos
2005a,b, Varotsos et al. 2005, Varotsos and Kirk-Davidoff 2006) and wavelet analysis
(Fukuda and Hirosawa 1999, Audit et al. 2002, Valens 2004, Mallat 2008). DFA is
capable of eliminating the non-stationarities in the interferogram (Chen et al. 2002).
DFA has already proved its usefulness in several complex systems, such as surface
air-pollutants (Varotsos et al. 2005), the total ozone content (Varotsos 2005a,b) and
the global tropospheric temperature (Varotsos and Kirk-Davidoff 2006). In wavelet
analysis the use of a fully scalable modulated window solves the signal-cutting prob-
lem. The window is shifted along the signal and the spectrum is calculated for every
position. This process is then repeated many times with a slightly shorter (or longer)
window for every new cycle. The final result is a collection of time–frequency repre-
sentations of the signal, all with different resolutions (Valens 2004). A comparison
between wavelet analysis and DFA can be found in Oświecimka et al. (2006). Wavelet
analysis was chosen in this study because of its ease of implementation.

This article presents a novel wavelet domain detail compensation filtering method
for phase noise reduction in InSAR interferograms. After decomposing an InSAR
interferogram with wavelet analysis, the sub-band images are filtered with detail com-
pensation. The idea of detail compensation is similar to the two-stage filter structure
proposed by Meng et al. (2007). In our method, the interferogram is filtered twice.
First, the three wavelet-decomposed high-frequency components of the interferogram
are filtered with a facile filtering method (e.g. with the periodic pivoting mean filter
(Eichel et al. 1996) or the periodic pivoting median filter (Lanari et al. 1996)) and then
the difference interferogram can be obtained by subtracting the filtered interferogram
from the original interferogram. Next, the difference interferogram is filtered again,
and its outcome can be seen as the compensation to the original interferogram. Finally,
the detail compensated filtered interferogram is obtained by adding the compensation
to the filtered interferogram for the first time.
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A detail compensation filter for InSAR interferograms 7987

2. Principles of wavelet transform denoising

2.1 The discrete wavelet transform

The discrete wavelet transform (DWT) is a useful technique that can transform a dis-
crete time signal to a discrete wavelet representation. Based on sub-band coding, it
decomposes signals into basis functions through shifting and scaling:

X (t) =
∑

m∈Z

∑

n∈Z

Cm
n ψm,n(t), (1)

Cn
m = 〈

X (t) ψm,n(t)
〉
, (2)

ψm,n(t) = 2−m/2 ψ(2−mx − n), (3)

where X (t) is the signal to be analysed, m and n are the pixel coordinates, Cn
m is the

DWT coefficient, ψm,n(t) is the wavelet function and 〈·〉 denotes the inner products.
Multiresolution analysis is the design method of most of the practically relevant

DWT and the justification for the algorithm of the fast wavelet transform (FWT). In a
two-dimensional (2D) wavelet transform, mutiresolution analysis is carried out in row
and column directions with a low-pass (L) and a high-pass (H) filter, decomposing
the images and forming a pyramidal tree. During the decomposition, each (sub)image
is downsampled by a factor of 2. An example is illustrated in figure 1 (Fukuda and
Hirosawa 1999).

2.2 The stationary wavelet transform

The wavelet coefficients of DWT are sampled with scale change without violating the
Nyquist criterion (Panda 2007). However, the classical DWT suffers a drawback: it
is not time invariant. This means that, even with periodic signal extension, the DWT
of a translated version of a signal X is not, in general, the translated version of the
DWT of X . To preserve the invariance by translation, the down sampling operation

Image

H

L

2

2

H

L

H

L

2

2

2

2

HH

HL

LH

LL

Rows Columns Subimages

Figure 1. Wavelet decomposition of an image into four subimages. LL denotes the horizontal
and vertical directions at low frequency; LH denotes the horizontal direction at low frequency
together with the vertical direction at high frequency; HL denotes the horizontal direction at
high frequency and the vertical direction at low frequency; and HH denotes the horizontal and
vertical directions at high frequency. ↓ 2 denotes downsampling by a factor of 2.
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must be suppressed and the decomposition obtained is then redundant and is called a
stationary wavelet transform (SWT) (Mallat 2008).

3. The detail compensation filtering technique

3.1 Detail compensation

Some details of the interferogram will also be filtered out along with noise during the
filtering process. To preserve as many details as possible, the idea of detail compensa-
tion is introduced. First, we filter the original interferogram and get the difference
interferogram by subtracting the filtered interferogram from the original interfer-
ogram. Second, the difference interferogram is filtered for a second time with the
purpose of compensation for lost details. Third, the filtered detail-compensated inter-
ferogram is obtained by adding the filtered difference interferogram in the second step
to the filtered original interferogram in the first step.

In this article, to preserve the translation invariance during the wavelet transform
and to compensate for the detail loss, the detail compensation is applied to the SWT
decomposed high-frequency sub-bands.

3.2 Realization of the detail compensation filter

The practical procedure for the wavelet domain detail compensation filtering method
for an InSAR interferogram consists of the following steps (see figure 2).

(1) Decompose the real and imaginary parts of the InSAR interferogram into four
sub-bands using SWT, respectively.

The 1st SWT 
decomposion

The real part or 
imaginary part 

of the 
interferogram

CA1

The 2nd  SWT 
decomposion

The 3rd SWT 
decomposion

CD1

CH1

CV1

CA2

CD2

CH2

CV2

CVnew2

CHnew2

CAnew2

CDnew2

CDnew1

CAnew1

CHnew1

CVnew1

CA3

CD3

CH3

CV3

Detail-compensating

CDnew3

CHnew3

CVnew3

CAnew3

Primary 
interferogram

Filtered 
interferogram

Detail-compensating

Recon-
struction

Detail-compensating

The real or 
imaginary part 
of the filtered 
interferogram

Recon-
struction

Recon-
struction

Figure 2. The flowchart of the wavelet domain detail compensation filtering method for an
InSAR interferogram.
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(2) All of the high-frequency sub-bands for each wavelet subspace are filtered with
detail compensation. The high-frequency component D is filtered by some facile
filtering method to get D′, and the difference component �D is given by

�D = W
(
D − D′) , (4)

where W is an operator to wrap real values to the principal interval [−π, π). The
difference component�D is then filtered again by the facile filtering method to get D′.
Finally we obtain the compensated high-frequency component:

Dnew = W
(
D′ − D′′) . (5)

During the filtering process, the size of the filtering windows at each wavelet level is
defined as

wi = w02i−1 −1, i ≥ 2, (6)

where w0 = 7 denotes the size of the filtering window at the first level.
(3) Both the filtered real part and the imaginary part are reconstructed with the

inverse SWT.
(4) The filtered interferogram with detail compensation is obtained by extracting

the phase value from the reconstructed real and imaginary parts.
Figure 2 shows the flowchart of the detail compensation interferogram filter-

ing method based on the SWT. CAj, CVj, CHj and CDj (j = 1, 2, 3) refer to the
low-frequency components, high-frequency components in the vertical direction,
high-frequency components in the horizontal direction and high-frequency compo-
nents in the diagonal direction for each wavelet subspace, respectively. CVnewj, CHnewj

and CDnewj (j = 1, 2, 3) refer to the high-frequency components for each wavelet
subspace after detail compensation in the directions explained above.

4. Experimental results

The European remote sensing satellite (ERS) tandem images in single look com-
plex (SLC) CEOS format acquired on 2 and 3 January 1996 over the city of
Zhengjiang, Jiangsu, China (Track 00318/Orbit 23352 and 03679) were used to gener-
ate a interferogram of size 256 × 256. The SAR images were processed with GAMMA
Remote Sensing software (GAMMA Remote Sensing Research and Consulting AG,
Gümligen, Switzerland; http://www.gamma-rs.ch/) using the two-pass differential
interferometric approach. The phase trend expected for a smooth curved Earth was
removed from the interferogram, and then the flattened interferogram was obtained,
as shown in figure 3(a).

To evaluate the performance of the proposed method, the interferogram was filtered
with a two-stage filter structure (Meng et al. 2007), a Lee filter (Lee et al. 1998), Frost
filter (Frost et al. 1982), Boxcar filter (Goldstein and Werner 1998), wavelet packet
transform and a Wiener filter (Zha et al. 2008) and a selective weighting filter (Sethu
et al. 2008) (figure 3(b)–(g)). Moreover, to test the validity of the detail compensation
and the SWT-based methods, comparisons between DWT- and SWT-based methods
were made, as well as those between detail compensation and non-detail compensation
methods (figure 3(h)–(k)).
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7990 L. Chang et al.

(a) (b) (c) (d)

(h)(g)

(k)

( f )

( j )

(e)

(i)

Figure 3. Comparison of (a) the original interferogram and (b)–(k) the filtered interferograms,
using: (b) a two-stage filter structure, (c) a Lee filter, (d) a Frost filter, (e) a Boxcar filter, (f )
the wavelet packet transform and a Wiener filter and (g) a selective weighting filter; a periodic
pivoting mean filter based on DWT (h) without and (i) with detail compensation; and a periodic
pivoting mean filter based on SWT (j) without and (k) with detail compensation.

From figure 3(b)–(g) it can be seen that the edge of the interferogram filtered by
the Lee filter (figure 3(c)) is distorted, and that the Boxcar filter results in an over-
smoothed image (figure 3(e)). Figure 3(f ) shows that the interferogram generated by
the wavelet packet transform and the Wiener filter cannot remove the residues effec-
tively. Moreover, the image in figure 3(g) reveals that the selective weighting filter loses
some details. Figure 3(h) shows that the periodic pivoting mean filter based on DWT
can remove most of the noise, but there exist many residues near the edge of the
image. Figure 3(i), like figure 3(e), is also over-smoothed. By comparing the SWT-
based methods with the DWT-based methods, it can be concluded that the former
perform better than the latter.

However, it is difficult to evaluate the performances of figure 3(b), (d) and (k). To
show the comparisons more clearly, profiles (the second column in azimuth direc-
tion is chosen) along the range direction of the interferograms were extracted and
are shown in figure 4. From the comparisons of figure 4(b), (d) and (k), it can be seen
that the profile in figure 4(k) has a few glitches as well as a few residues (table 1).
The reason for the serious glitches in figure 4(b) may be that the second column in the
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Figure 4. Comparison of profiles of (a) the original interferogram and (b)–(k) the filtered
interferograms, using: (b) a two-stage filter structure, (c) a Lee filter, (d) a Frost filter, (e) a
Boxcar filter, (f ) the wavelet packet transform and a Wiener filter and (g) a selective weighting
filter; a periodic pivoting mean filter based on DWT (h) without and (i) with detail com-
pensation; and a periodic pivoting mean filter based on SWT (j) without and (k) with detail
compensation.

azimuth direction occupies less than half of the filter’s neighbourhood. Figure 4(d)
relieves some of the glitches, but it is still worse than figure 4(k). Furthermore, the per-
formances of figure 4(e) and (i) are consistent with previous analyses from figure 3(e)
and (i), which show that both the Boxcar filter and the periodic pivoting mean filter
based on DWT with detail compensation result in over-smoothed images. Thus, the
comparisons from figures 3 and 4 reveal that the periodic pivoting mean filter based on
SWT with detail compensation (figure 3(k)) performs better in both glitch mitigation
and detail compensation.

The residues have a considerable impact on InSAR interferogram phase unwrap-
ping, and the number of residues becomes an important indicator to measure the
performances of interferogram filters. The numbers of residues of the original inter-
ferogram and the filtered interferograms are summarized in table 1. In addition, to
evaluate the performances of the filtering algorithms, we used the universal image
quality index (IQI) proposed by Wang and Bovik (2002) and the signal-to-noise ratio
(SNR) and the mean square error (MSE). As shown in table 1, the SWT-based filters
have more ideal IQI, SNR and MSE values than the DWT-based filters. The two-stage
filter structure and selective weighting filter have similar indicators with the proposed
technique, but they perform badly when the profiles along the range direction of the
interferograms are compared.
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Table 1. The number of residues, image quality index (IQI), mean square error (MSE) and
signal-to-noise ratio (SNR) together with elapsed time for the original interferogram and

interferograms generated by different filtering methods.

Method
No. of

residues IQI
MSE
(rad)

SNR
(dB)

Elapsed
time (s)

Original 597 – – – –
Two-stage filter structure 97 0.315 1.38 4.40 2.17
Lee filter 68 0.255 1.80 3.24 8.10
Frost filter 89 0.199 1.93 2.94 5.94
Boxcar filter 4 0.104 2.35 2.22 0.06
Wavelet packet

transform and Wiener
filter

157 0.606 1.07 5.53 5.38

Selective weighting filter 61 0.250 1.62 3.74 5.06
Periodic pivoting mean

filter based on DWT
136 0.229 1.88 3.07 4.70

Periodic pivoting mean
filter based on DWT

10 0.093 2.41 1.98 11.19

with detail compensation
Periodic pivoting mean

filter based on SWT
126 0.311 1.61 3.75 65.44

Periodic pivoting mean
filter based on SWT

81 0.299 1.70 3.50 145.84

with detail compensation

5. Conclusions

In this article, we have proposed a new InSAR interferogram filtering method. This
method was presented by integrating the difference idea and the character of the SWT.
Comparisons with the two-stage filter, Lee filter, Frost filter, Boxcar filter, wavelet
packet transform and Wiener filter, selective weighting filter and the DWT-based filter
are also made. The results of the study can be summarized as follows.

1. The proposed technique can overcome the drawback of the sliding-window
spatial filters which distort the pixels that occupy less than half of the filter’s
neighbourhood.

2. By compensating for the InSAR interferogram details with the proposed
method, it can effectively suppress the speckle, reduce the residues and main-
tain the details.

3. Compared with the detail compensation filters based on DWT, the detail com-
pensation filters based on SWT perform better in both suppressing the speckle
effectively and smoothing the interferogram moderately.

As the proposed technique is implemented in the wavelet domain and filtered with a
facile filter, it is relatively expensive and complex to compute (see table 1). Further
research will be directed towards improving the computational efficiency.
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