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ABSTRACT 

Airborne acquisition and ground-view 3D point cloud 

provide complementary 3D information at city scale. A 

complete but lacks ground-view details, while the latter is 

incomplete for higher floors and severe occlusion. In this 

paper, First, a volumetric fusion method based on graph cuts 

were applied for fusing of airborne and terrestrial 3D LiDAR 

data. Second, we propose a method of constraints based on 

the local centroid of point cloud to eliminate the gap of fusion 

boundary. Finally, the experiments show that the improved 

fusion algorithm implement blending effectively. 

Index Terms—graph cut; volumetric fusion; boundary 

constraints 

1. INTRODUCTION 

With the rapid development of laser scanning 

technology, LiDAR 3D point clouds are becoming 

convenience. There has been a lot of research work based on 

the data , for instance, Automatic road vector extraction[1], 

Object detection[2], and Line segment extraction[3]. 

However, previous researches focus on information 

processing for the single data sources. And recently, 

structure-from-motion (SFM)[4] or Multi-View Stereo (MVS) 

[5] method have enabled the automated production of large-

scale unban models from airborne imagery, and also have 

been applied to street-side mapping. However, such large-

scale point cloud still often sparse especially on the ground 

view. Therefore, the generated 3D models still lack façade 

ground-level details due to occlusions and shadows. Some 

scholars proposed two methods mainly include SFM and 

mobile mapping of SFM. However, first, the acquired 

efficiency of SFM point cloud is lower than LiDAR systems. 

the density of point cloud is smaller than LiDAR 3D point 

cloud, and the precision of point cloud is lower than LiDAR 

3D point cloud. Second, constrained by the reason that many 

places do not have roads, it is difficult for us to cover all the 

perspective of the 3D large-scale objects only base on street-

side. 3D data based on LiDAR is density, high precision, and 

have no roofs, higher floors, and there is no traffic-free area 

such as courtyards for Terrestrial laser scanner. Therefore, 

Attempts to model and abstract buildings from such data to 

provide more detailed 3D information for large-scale 3D 

scene. It has practical application value that terrestrial LiDAR 

3D data is prepared to provide complementary solution for 

both MVS and LiDAR moblile mapping methods. Therefore, 

both airborne and terrestrial LiDAR 3D data needs to be 

exploited in order to produce the next generation of large-city 

models. The results of method should be complete and more 

detailed. 

Many approaches have been proposed to combine street-

side and aerial data for joint mesh reconstruction. For 

examples, Fruh and Zakhor [6] construct meshes over street-

side LiDAR range maps and over a larger-scale Digital 

Surface Model(DSM). However, they reconstruct a façade 

and an airborne mesh separately without topological fusion. 

There are rough and some gap at the results of fusion. Bódis-

Szomorú A and Riemenschneider H etc.[7] build a 3DT on 

top of MVS points and do inside/outside classication of 

tetrahedra while enforcing line-of-sight and photo-

consistency constraints. And then blending the two different 

3D point clouds using graph cut. They had obtained some 

meanful results in their experiments. However, because of 

affecting of SFM algorithm, the method is Time-consuming 

and lower precision.  

In this paper, we propose an improved solution to fuse 

airborne point cloud of large coverage but possibly low detail 

and a detailed but incomplete street-side point cloud in a 

volumetric fusion. In the alignment, the terrestrial LiDAR 3D 

data are aligned one-to-one to the objects SFM point cloud, 

which has corresponding geographical location, by using 

industrial software. In the blending step, inspired by 

reference[8], we also formulate this as a segment over the 

airborne point cloud and terrestrial LiDAR 3D data. 

constrained by using of normal vector and Euclidean distance, 

there are many wide gaps at the boundaries of the fusion 

results. Therefore, we propose a volumetric fusion based on 

boundary constraints to eliminate the gap. 

The contributions of this paper are as follows: 1) we 

applied a volumetric fusion method based on graph cuts to 

eliminate the stratification of two kinds of point cloud aligned 

manually; 2) a modified volumetric fusion method based on 

boundary constraints was used to eliminate the gap, which 

existed at the result of fusion. 
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2. POINT CLOUD BLENDING 

We formulate volumetric fusion as a segmentation over the 

airborne point cloud  𝑃 , which assigns a binary label 𝑙i ∈
{0,1} to each point 𝑝𝑖 ∈ 𝑃, and the points, being marked by 0, 

would be removed.  

As the reference[8], we seek the binary labeling over P  

that minimizes 

:
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Where 𝑙𝑖𝑁
 is the -i th adjacent point of labeling point 𝑝i, 1 is 

indicator function, 𝜆bis regularization parameter. The unary 

penalties 𝐸𝑖
b(0) for point 𝑝𝑖  to obtain label 𝑙 are defined as  
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Given SFM point cloud 𝑃 and the street-side point cloud 

𝑄 , an airborne point 𝑝𝑖  has street-side substitute 𝑞𝑗 ∈ 𝑄 

which is supposedly better quality if 𝑞𝑗is the nearest neighbor 

of 𝑝𝑖  in 𝑄. The nearest substitute was assigned that if both the 

Euclidean distance 𝑑𝑖𝑗  between them and the angle θ𝑖𝑗  

between their normal 𝑛(𝑝𝑖) and 𝑛(𝑞𝑗) are small. Constrained 

by Euclidean distance, the substitute when points 𝑝i ∈ 𝑃 is 

near the outer boundary of street-side point cloud 𝑄  was 

inaccurately, as figure 3(b). Therefore, it is necessary to 

enlarge the corresponding distance such that the substitute 

become more impossible on the boundary of point cloud𝑃. 

As fig.1, according to the characteristics of point cloud 

boundary, First, the nearest neighbor of 𝑝i in the point cloud 

𝑄 is searched and named 𝑞𝑗. And then, we compute the local 

centroid of 𝑝i in the point cloud 𝑃, and local centroid of 𝑝i in 

the point cloud 𝑄, so the distance𝛿ijbetween two centroids is 

used to represent the distance between a point of cloud point 

𝑃 and the boundary of point cloud 𝑄. At the end, we construct 

the weight factor 𝜔ij  as formula (4), 𝛿0  is constant, which 

more than resolution factor of point cloud 𝑄. Therefore, the 

likelihood for an airborne point to have a substitute can be 

formulate as 
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Where cos  𝜃𝑖𝑗 = 𝑛(𝑝i)
T𝑛(𝑞j) , and 𝜑  ranges from 0(no 

substitute) to 1(perfect substitute). 𝜎b is a blending parameter 

to control our notion of vicinity, which should incorporate 

deviations of 𝑃 from 𝑄 due to alignment and reconstruction 

errors. Normal vectors are computed in 𝑃 and 𝑄 separately 

by K-NN and least squares plane fitting, and by flipping 

normal according to relative perspective. 

For a smooth segmentation, we define the influence 

between adjacent nodes of the K-NN graph over P  as 
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Where 𝑑𝑖𝑖𝑁
 is the distance between any two adjacent points 

𝑝𝑖  and 𝑝𝑖𝑁
, and 𝑚𝑒𝑑𝑑𝑖𝑖𝑁

 is the median of all K-NN distances 

in 𝑃. 

 

Fig.1. 2D illustration of boundary constraints. The blue points in the dashed 

box inside the ellipse is the K nearest points of point 𝑝𝑖 , 𝑞𝑗 is the nearest 

point of 𝑝𝑖 , 𝐶𝑗
𝑄

 and 𝐶𝑖
𝑃are the corresponding centroids. 

3. EXPERIMENT 

Our method relies on PCL library[12], liblas library[13] and 

the GCOptimization library[14] for graph-cuts in C++. We 

could not find any publicly available dataset with both 

airborne and terrestrial LiDAR 3D point cloud for the same 

geographic location. Therefore, We show experiments on our 

datasets, Haiyun Campus ( 100 × 210 𝑚2 , Fig. 6(a).) 

captured in Xiamen, China. The airborne 3D data is generated 

by industrial software Acute3D, which is able to automatic 

generate 3D point cloud. The terrestrial LiDAR 3D point 

cloud is acquired via REIGL VZ1000. 

3.1 PRE-PROCESSING AND ALIGNMENT 

(a) (b)

(c) (d)

 

Fig.2. aligned results of the two different point clouds. (a) is registered result 
of 3D point clouds from the scanning muti-stations, (b) is the 3D point cloud 

from SFM, and (c) is registration result of the above two point clouds, (d) is 

the whole result of muti-buildings point clouds and airborne data. 

Ground-view 3D point cloud can be got by variety of 

equipment and technology, Terrestrial laser scanner as 

REIGL VZ 1000, Z+F Imager 5010 etc. compared to 

SFM/MVS point cloud, Terrestrial 3D LiDAR data has 

higher precision and can be more efficiently accessed by 
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scanning. In our experiments, Terrestrial 3D LiDAR data was 

acquired by REIGL VZ-1000. The scanning objects such as 

buildings, were selected and segmented manually. And then, 

we eliminated outliers and align them each other manually, 

which has overlapped part, by industrial software. We got 

airborne data from industrial software smart 3D capture. The 

airborne data was used as baseline and registered it with 

terrestrial 3D LiDAR data. Fig.2 show the aligned results that 

every target building point cloud is aligned to the SFM point 

cloud. However, it exist stratification of point clouds (as 

show fig.5(a)) after aligning all the targets to airborne 3D 

point cloud, we have to eliminate stratification to implement 

fusion of two different point clouds. 

3.2 BLENDING OF POINT CLOUD 

We evaluate the effect of our modified fusion algorithm with 

boundary constraint compared to the algorithm of reference 

[8]. Our experiments were based on the labeling data. As 

Fig.3 (a), the two different point clouds has been registered, 

the size of grey one is 31423, the size of orange one is 8494, 

and the size of labeling set that should be substituted is 18830. 

We applied our method to fusing the two point clouds, and 

fix our parameters as 𝜎𝑏 = 0.2 , 𝛿0 = 0.05 , 𝑀 = 100 

volumetric regularization parameter as  𝜆 = 3.0   Fig.3 (b) 

show that the boundary gap exists at the fusion results, 

however, our result Fig.3(c) eliminate the gap between the 

two point clouds. The corresponding quantitative results in 

table 1 show that our method eliminate the boundary gap of 

point cloud fusion. 

(a)

(b)

(c)

 

Fig.3.The elimination of the boundary gap. The top (a) show two registration 
3D point cloud, and labeling overlapped point cloud with the orange data, 

the mid (b) is the result of reference[8], the below result is ours. 

Table.1 statistics of eliminating overlapped points 
 Labeled points Filtered points error 
Ref[8]’method 18830 20438 1608 

Our method 18830 18805 25 

In order to enhance the details of buildings and improve 

its relative accuracy, we eliminate the airborne 3D data which 

is spare and deformation by constructing formulation, and 

minimize the energy function though graph cut. 

As Fig.4, it obviously show that the airborne 3D data 

at Fig.4 (a) is spare and deformation. We take use of modified 

volumetric fusion procedure to segment the airborne 3D data 

which overlap with terrestrial 3D LiDAR data. We fix our 

regularization parameter as 𝜆 = 3.0, and minimize the energy 

function by graph cut. The segmented result is show at Fig.4 

(b).and Fig.4(c) show our result of fusion.  

Fig.5 shows the local result of fusion. From Fig. 5(a), we 

can observe that it exists stratification on the two registered 

point clouds. And after applying our method, the stratification 

is eliminated and fused each other. And Fig.6 shows the final 

fusion results. 

(a) (b)

(c) (d)

 

Fig.4. Output of our blending. (a) and (b) are 3D point clouds from SFM and 

REIGL VZ1000, and had been aligned, (c) is the segmented result by using 

graph cuts,(d) is the final fusion result.  

（a） （b）

 

Fig.5. Elimination of point cloud stratification. (a) is the stratified 

demonstration of  point cloud registration, (b) is the result of fusion. 

(a) (b)

(c) (d)

 

Fig.6. Final output of our blending at two views. The left column are same 

SFM point cloud, the right show fusion results from two different views. 

4. CONCLUSION 

The paper proposes an efficient method for fusion a 3D point 

cloud from a detailed, high precision but incomplete ground 

view and a complete but low-detail airborne point cloud. Our 

method provide a semi-automatic method to efficiently 

implement alignment and evaluate their accuracy. Thus, we 

also joins strengths of the data types by fusing them as a 

segmented problem of point cloud. Our detailed 

experimentation show good fusion quality and consuming 
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reasonable time. Applying the method at campus even city 

scale via terrestrial reconstructing data is part of our future 

work. 
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